%;i;

Locks on Multicore and

Multisocket Platforms

John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

COMP 522 28 March 2019

Context

e Lastlecture: locks and barriers

e | Lock synchronization on multicore platforms

e Upcoming
—transactional memory
—practical non-blocking concurrent objects

Papers for Today

e Everything you always wanted to know about synchronization
but were afraid to ask. David Tudor, Rachid Guerraoui, and
Vasileios Trigonakis. In Proceedings of SOSP '13. ACM, New

York, NY, USA, 33-48.

e Lock cohorting: a general technique for designing NUMA
locks. David Dice, Virendra J. Marathe, and Nir Shavit. In
Proceedings PPoPP '12. ACM, New York, NY, USA, 247-256.

2012.

Motivation for Studying Lock Performance

There are many types of locks and architectures
Does lock performance depend on architecture?
How?

Which lock is best?

Locks

Test and set (TAS)
Test and test and set (TTAS) Ticket lock
Array-based lock
MCS lock
CLH lock
Hierarchical CLH lock (HCLH)
Hierarchical Ticket lock (HTICKET)

Hierarchical backoff lock

FIFO

Locks

Test and set (TAS)
Test and test and set (TTAS) Ticket lock
Array-based lock

MCS lock
CLH lock
Hierarchical CLH lock (HCLH)
Hierarchical Ticket lock (HTICKET)

Hierarchical backoff lock

Queuing
Locks

Locks

e Test and set (TAS)

e Test and test and set (TTAS) Ticket lock
e Array-based lock

e MCS lock

CLH lock

¢| Hierarchical CLH lock (HCLH) L::Cks V\;e
aven’
¢| Hierarchical Ticket lock (HTICKET) . ©
discussed

Hierarchical backoff lock

CLH List-based Queue Lock

type gqnode = record
prev : “qnode
succ_must wait : Boolean

type lock = “qnode [linitialized to point to an unowned gnode

procedure acquire lock (L : "lock, I : “gqnode)
I->succ_must wait := true
pred : “qnode := I->prev := fetch and store(L, I)

repeat while pred->succ must wait

procedure release lock (ref I : "“qnode)
pred : “qnode := I->prev
I->succ_must wait := false
I := pred Il take pred's qnode

has lock;
in critical
section

CLH

CLH Queue Lock Notes

Discovered twice, independently

—Travis Craig (University of Washington)
— TR 93-02-02, February 1993

—Anders Landin and Eric Hagersten (Swedish Institute of CS)
— IPPS, 1994

Space: 2p + 3n words of space for p processes and n locks
—MCS lock requires 2p + n words

Requires a local "queue node" to be passed in as a parameter
Spins only on local locations on a cache-coherent machine

Local-only spinning possible when lacking coherent cache

—can modify implementation to use an extra level of indirection
(local spinning variant not shown)

Atomic primitives: fetch_and_store
10

Why Hierarchical Locks?

NUMA architectures

e Not all memory is equidistant to all cores

—each socket has its own co-located memory
—consequence of scaling memory bandwidth with processor count

e Today’s systems: system-wide cache coherence

e Access latency depends on the distance between the core
and data location

—memory or cache in local socket
—memory or cache in remote socket

e Multiple levels of locality
—0 hop, 1 hop, 2 hop, ...

11

Locks on NUMA Architectures

Problem:

—passing locks between threads on different sockets can be costly
—overhead from passing lock and data it protects

—data that has been accessed on a remote socket produces long
latency cache misses

Solution:

—design locks to improve locality of reference

—encourage threads with mutual locality to acquire a given lock
consecutively

Benefits:

—reduce migration of locks between NUMA nodes
—reduce cache misses for data accessed in a critical section

12

Hierarchical CLH

e Structure

—local CLH queue per cluster (socket)
—one global queue
—qnode at the head of the global queue holds the lock

e Operation: when a node arrives in the local queue ...

—delay for a bit to let successors arrive

—move a batch from a socket queue to the global queue
— CAS local tail into global tail

— link local head behind previous global tail

Victor Luchangco, Dan Nussbaum, and Nir Shavit. A hierarchical CLH queue lock.

In Proceedings of Euro-Par '06, Wolfgang E. Nagel, Wolfgang V. Walter, and
Wolfgang Lehner (Eds.). Springer-Verlag, Berlin, Heidelberg, 801-810. 2006.

13

Hierarchical CLH in Action

-J.

R\
has |00k§> Spm Spm

in critical
section

Socket J Ly Socket K

Hierarchical CLH in Action

--L

has lock;™ spin — spin

in critical
section

Socket J L, Socket K

pause

Hierarchical CLH in Action

--L

has |00k§> spin = spin

in critical
section

Socket J L, Socket K Lk

pause ™~ spin

16

Hierarchical CLH in Action

--L

has |00k§> Spm

in critical
section

Socket J

pause ™~ spin

spin

Socket K

pause

Lk

17

Hierarchical CLH in Action

--L

has |00k§> Spm R Spm

in critical
section

Socket J L, Socket K Lk

|

pause — spin ™~ spin pause ™~ spin

Hierarchical CLH in Action

--L

has |00k§> spin > spin

In critical
section
Socket J j: Socket K Lk
BN BN]

linkin — spin ™ spin pause ™~ spin

9

Hierarchical CLH in Action

w
N
N

has lock;™ spin — spin

in critical
section

Socket J

w
N
N

N
N
N

linking

L,

1

w
N
N

\ spi&B spin

Socket K Lk

pause ™ spin

20

Hierarchical CLH in Action

has lock;™~) spin ™~ spin ~—spin — spin ™ spin

in critical
section

Socket J L, Socket K Lk

1
]

pause ™ spin

Hierarchical CLH in Action

has lock; ™~ spin ™ spin ~—spin ™~ spin ™ spin

in critical
section

Socket J L, Socket K Lk

1 1
I B

linking ™~ spin

22

Hierarchical CLH in Action

has IockQB SP,RB s.pm<>spm<B smeB spin

in critical
section

Socket J L, Socket K Lk

w
pause Iinkin&B spin

23

Hierarchical CLH in Action

P g oy oy S
haslo&spi&spin \spin \ spin \ spin linking \ spin

in critical
section

Socket J L, Socket K Lk

pause
24

Hierarchical CLH in Action

has lock;™— spin ™ spin ~—spin ™) spin ™) spin~—spin ™ spin

in critical
section

Socket J L, Socket K Lk

pause
25

Hierarchical Ticket

e Two levels of ticket locks

—qglobal
—Ilocal: one per socket

e Two-level ticket lock (cohorting version by Dice et al.)
—acquire
— acquire local ticket
— if flag “global granted” is set, proceed
— else acquire global ticket lock

—release

— if successors available in local lock, set “global granted” for local
lock and increment local ticket

— otherwise, clear “global granted” for local lock and increment global
ticket

e “Everything...” paper used a more complex version
—https://github.com/tudordavid/libslock/blob/master/src/htlock.c

26

Hierarchical Backoff Lock

Test-and-test-and-set lock with back off scheme to reduce
cross node contention of a lock variable

Use thread locality to tune backoff delay
—when acquiring a lock
— assign thread ID to lock state
—when spin waiting
— compare thread ID with lock holder and back off proportionally

Limitations:

—reduce lock migration only probabilistically
—Ilots of invalidation traffic: costly for NUMA

Z. Radovic and E. Hagersten. Hierarchical Backoff Locks for
Nonuniform Communication Architectures. In HPCA-9,
pages 241-252, Anaheim, California, USA, Feb. 2003.

27

Systems with Different Characteristics

e Opteron: 4 x AMD Opteron 6172 (48 cores)

—directory based cache coherence
—directory located in LLC

e Xeon: 8 x Intel Xeon E7-8867L (80 cores; SMT disabled)
—broadcast snhooping

e Niagara: SUN UltraSPARC-T2 (8 cores; 64 threads)
—coherence via shared L2 cache on far side of chip

e Tilera: TILE-Gx CPU (36 cores)
—coherence via distributed, shared L2 cache

28

Opteron Platform

e Opteron: 4 x AMD Opteron 6172 (48 cores)
e Each chip contains two 6-core dies

e MOESI protocol, directory based cache coherence
—directory located in LLC

e Average distance: 1.25 hops

3

Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

29

Xeon Platform

e Xeon: 8 x Intel Xeon E7-8867L (80 cores; SMT disabled)
—broadcast snooping

e 10 cores per socket

e Average distance: 1.375 hops

/7 4
2

O /

Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

e Niagara: SUN UltraSPARC-T2 (8 cores; 64 threads)
—coherence via shared L2 cache on far side of chip

Niagara

8-way MT L1
8-way MT L1
8-way MT L1
8-way MT L1
8-way MT L1
8-way MT L1
8-way MT L1
8-way MT L1

Crossbar

L2 Cache

Figure credit: Niagara: A 32-way Multithreaded SPARC Processor; P. Kongetira, K. Aingaran, K. Olukotun

31

Tilera

e Tilera: TILE-Gx CPU (36 cores)
—coherence via distributed, shared L2 cache

i JUr BT Yer W e
i L.,q.u@m.quu

.m+mt+un+x.u+.|u+ A
:

Figure credit: http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8036_PB033-02_web.pdf

32

Operation Latency Across Platforms

System
Hops

Modified
Owned
Exclusive
Shared
Invalid

Modified
Owned
Exclusive
Shared

Operation
Modified
Shared

Latencies depend upon distance and (sometimes) state

same die

all

81
83
83
83
136,

83|
244,
83
246

110;
272

Opteron (2.1 GHz)
isame MCM Eone hop itwo hops

all

Xeon (2.13 GHz) Niagara (1.2 GHz)
same die lone hop Etwo hops| same core other core
loads
109] 289 400 c} 24
921 273 383 3! 24
aa| 223 334 3! 24
35 492 601 176 176
stores
115 320 431 24, 24
115, 315 425 24, 24
: : 116 318 428 24 24
atomic operations: Compare & Swap (C), Fetch & Increment (F), Test & Set (T), Swap (S)
' | all all CF TSICFTS
120 324 430] 71 108 64 95§ 66 99 55 90
113 312 423|76 99 67 93:66 99 55 90

161
163
163
164
237

172
255!
171
255!

197:
283!

all

172
175!
175
176!
247;

191!
286!
191
286!

gaII
216§
312§

252
254
253
254
327

273
291
271
296

296
332

all

Tilera (1.2 GHz)

one hop max hops
45, 65
45! 65
45 65
118; 162
57 77
57 77
86 106

C FT SiC F T s
7751 70 63 98 71 89 84
124 82 121 95{142 102 141 115

Xeon: load latency depends on state

Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.

Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

33

Throughput(Mops/s)

Variation in Performance of Atomics

| CAS —o— TAS —=— CAS based FAI —— SWAP —x— FAl ——]
Opteron Xeon Niagara Tilera

o

NN [N N I T I N N AN I
— 1T

A ldw A Lo A

| NS I I Y Y N A [N [N N N S|

1 |A
0 6 12 18 24 30 36 42 48 0 10 20 30 40 50 60 70 80 O 8 16 24 32 40 48 56 64 O 6 12 18 24 30 36
Threads Threads Threads Threads

Throughput: Higher is better

Observations

—relative performance of atomic primitives and cache operations
varies widely in the hardware

—varying performance of locks is in part due to varying
performance of atomic operations

34

Lock Performance vs. Platform

W A~ OO N @

Throughput (Mops/s)

o = DN

TTAS —e— ARRAY —=&— MCS —H=— CLH —<— HTICKET —&— TAS —*— HCLH —— MUTEX —*— TICKET ——

Opteron Xeon Niagara Tilera

= Best single thread: 22 Mops/s

0 6 12 18 24 30 36 42 48 0 10 20 30 40 50 60 70 80 O 8 16 24 32 40 48 56 64 0 6 12 18 24 30 36
Threads Threads Threads Threads

_ Throughput: Higher is better
Observations

—throughput on multi-socket systems is lower than on single chips
—there is no universally best lock

35

Lock Acquisition vs. Previous Owner

*single thread =same core 4 same die Xsame mcm ®one hop ®two hops +max hops

I (G100 I T T T
A
AT A e by w e
tooete b Mab litelte
= o) N o)
TP P B e e b b B e
O X HH X | = S| O H | X| | H S| O

o (Hoo2o HOolx D

— <= <=

I
Niagara Tilera

Figure 6: Uncontested lock acquisition latency based
on the location of the previous owner of the lock.

Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48. 36

160
140

120
100

(o2}
o

Throughput (Mops/s
[0}
o

N b
o o

Throughput (Mops/s)
N W s o o N o

[J—

Impact of Contention on Performance

TTAS —e— ARRAY —&—

MCS —&—

CLH —x— HTICKET —&—

TAS —%—

HCLH —— MUTEX —+— TICKET —&— |

Opteron

Xeon

Niagara

Tilera

6 12

18 24 30 36 42 48 0
Threads

Figure 7: Throughput of different lock algorithms using 512 locks.

10 20 30 40 50 60 70 80 O
Threads

8

16 24 32 40 48 56 64 0
Threads

Threads

TTAS —e— ARRAY —=—

MCS —&—

CLH —<— HTICKET —o—

TAS —%—

HCLH —— MUTEX —— TICKET —&—

Opteron

Xeon

Niagara

Tilera

T T

Best single thread: 22 Mops/s -

T T T T T T

T T T T T T T T

Best single thread: 34 Mops/s

6 12

18 24 30 36 42 48 0
Threads

Figure S: Throughput of different lock algorithms using a single lock.

10 20 30 40 50 60 70 80 O
Threads

8

16 24 32 40 48 56 64 0

Threads

6

12

18

Threads

24

30

Study Conclusions

e Crossing sockets is expensive

— 2x to 7.5x slower than intra-socket
—hard to avoid cross-socket communication
— e.g., Opteron: incomplete cache directory (no sharer info)

e |Loads, stores can be as expensive as atomic operations
—non-local access can be a bottleneck

¢ Intra-socket non-uniformity matters (e.g., Tilera vs. Niagara)
—hierarchical locks scale better on non-uniform systems

e Simple locks can be effective
—ticket lock performs best in many cases

e There’s no universally optimal lock
—optimal lock depends upon architecture and expected contention

38

An Unwise Conclusion?

Simple locks are powerful. Overall, an efficient im-
plementation of a ticket lock 1s the best performing syn-
chronization scheme in most low contention workloads.
Even under rather high contention, the ticket lock per-
forms comparably to more complex locks, in particular
within a socket. Consequently, given their small mem-
ory footprint, ticket locks should be preferred, unless it
1s sure that a specific lock will be very highly contended.

39

Locks in Linux

40

Non-scalable Locks are Dangerous

1500 o _. _

7
E \
7 . _
2 |
= R
P oo :
=, .'%*HXH%HW* Pyt ,(e R
2 u ' —e— Ticket lock —+— Proportional lock ticket + proportional backoff
’gu ' —a— MCS lock —»— K42 lock IBM’s variant of MCS lock
A . —— CLHlock _
ﬁ -

0 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

0 2 6 12 18 24 30 36 42 48
e lower is better

Figure 10: Throughput for cores acquiring and releasing
a shared lock. Results start with two cores.

Non-scalable locks are dangerous Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. In the Proceedings of the Linux Symposium, Ottawa, Canada, July 2012. 41

Linux Benchmarks

Benchmark Operation .time Top lock instance name Acquires per J Average critical section % of operation in
(cycles) operation time (cycles) critical section
FOPS 503 d_entry 4 92 73%
MEMPOP 6852 anon_vma 4 121 7%
PFIND 2099 M address_space 70K 350 7%
EXIM 1156 K anon_vma 58 165 0.8%

Figure 3: The most contended critical sections for each Linux microbenchmark, on a single core.

FOPS creates a single file and starts one process on each
core. Each thread repeatedly opens and closes the file.

PFIND searches for a file by executing several instances
of the GNU find utility. PFIND takes a directory and
filename as input, evenly divides the directories in the
first level of input directory into per-core inputs, and
executes one instance of find per core, passing in the
input directories. Before we execute the PFIND, we create
a balanced directory tree so that each instance of find
searches the same number of directories.

MEMPOP creates one process per core. Each pro-
cess repeatedly mmaps 64 kB of memory with the
MAP_POPULATE flag, then munmaps the memory. MAP_
POPULATE instructs the kernel to allocate pages and pop-
ulate the process page table immediately, instead of doing
so on demand when the process accesses the page.

EXIM is a mail server. A single master process listens
for incoming SMTP connections via TCP and forks a
new process for each connection, which accepts the in-
coming message. We use the version of EXIM from
MOSBENCH [3].

Non-scalable locks are dangerou Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and

Nickolai Zeldovich. In the Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

42

MCS vs. Ticket Lock in Linux

o B T T T T T T T . LN B S S BN BN S B B R |
e Ticket lock | - 7
U a MCS lock - A ;"M“‘M‘*‘\ -
é d/; 1 é L // ‘*w“ N
§ ¥ 7 g w L -
g g i e Ticket lock
'a @ - . . 'g'_ a— MCS lock
= M‘&“‘““ R -5. 200 -
P o | e I
E E
1 -
Pt] — R
0 1 1 1 1 i 1 L 1 'y 1 2 1 4) o To—— 0
0 [n”n 11 " W » 42 4% 0 & 12 13) P) L) “, 4] e
Cores 5 Cores 5
(a) Performance for FOPS. 73 /0 (92) (b) Performance for MEMPOP. 7 /0 (1 21)
L 0} 1 1 1 L4 | 1 4 | 4 T ! 4 | | | | T J 1000 T 1 \J 1 T 1 T 1 4 1 4 1 L4 1 4 .‘[
12 aha N - —e— Ticket lock ‘,.aa"‘ 4
i - - o~ MCS lock -
S L ‘\‘“‘“AA&“/ - § 150 - -
¥ =
2 " — 3
E :
= —— Ticket lock g o L .
} s L —a— MCS lock -
:; P -
ﬁ 3 — _ ﬁ 30 - —
n - R - 7
h Ig h e r 0 A 1 A 1 A 1 A L A 1 A 1 i L i L 0 A 1 A 1 A 1 A | A | A 1 A 1 A 1
. 0 3 2 18 M 30 36 2 48 0 6 12 15 M 0 % «Q a8
Is Cores Cores
(0]) 0
better (c) Performance for PFIND. 7% (350) (d) Performance for EXIM. 0.8% (1 65)

Non-scalable locks are dangerous Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. In the Proceedings of the Linux Symposium, Ottawa, Canada, July 2012. 43

Lock Performance In Linux

Background D]

The AIM7 fserver workload* scales poorly on 8s/80core NUMA platform with a 2.6 based kernel

8-socket / 80-core HT-enabled 256G

400000
350000
300000
250000

200000

Jobs Per Minute

150000

100000

50000

40 S0 60 70 80 90 100 200 300 400 S00 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Simulated Users

* The workload was run with ramfs.

16 ©Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.

LinuxCon North America, Chicago, August 2014. 44

Why is Scaling Poor?

Analysis (1-2)

D |

invent

From the perf -g output, we find most of the CPU cycles are spent in file_move() and file_kill().

+

+

- _spin_lock
+50.36% lookup_mnt
+7.45% __d_lookup
+6.71% file_move
+5.16% file_kill
+ 2.46% handle_pte_fault

Proportion of file_move() + file+kill()

40 Users (4000 jobs)
9.40% reaim reaim []add_int
6.07% reaim libc-2.12.so0 [.] strncat

- 1.68% reaim [kernel.kallsyms] [k]_spin_lock

Proportion of file_move() =1.68% * 6.71%=0.11%
Proportion of file_kill() = 1.68%*5.16% =0.09 %

=0.20%

400 users (40,000 jobs)

- 79.53% reaim [kernel.kallsyms] [k]_spin_lock

- _spin_lock

+ 34.28% file_move

+34.20% file_kill

+19.94% lookup_mnt

+ 8.13% reaim [kernel.kallsyms] [k] mutex_spin_on_owner
+ 0.86% reaim [kernel.kallsyms] [k]_spin_lock_irgsave
+ 0.63% reaim reaim [.1add_long

Proportion of file_move() =79.53% * 34.28% = 27.26%
Proportion of file_kill() = 79.53% * 34.20% = 27.20%
Proportion of file_move() + file+kill) =54.46%

This is significant spinlock contention!

17 ©Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.
LinuxCon North America, Chicago, August 2014.

45

Why is Scaling Poor?

Analysis (2-2) A

We use the ORC tool to monitor the coherency controller results

(ORC is a platform dependent tool from HP that reads performance counters in the XNC node controllers)

Coherency Controller Transactions Sent to Fabric Link (PRETRY number)

Socket Agent 10users 40users 400users
0 0 17,341 36,782 399,670,585
0 8 36,905 45,116 294,481,463 PRETRY indicates the associated read needs to be re-
1 0 0 0 49,639 issued.
1 8 0 0 25,720
2 0 0 0 1,889 .
) ‘ 0 0 914 We can see that when users increase, PRETRY on
5 0 0 0 3020 socket O increases rapidly.
3 8 0 0 3,025
4 1 45 122 1,237,589 There is serious cache line contention on socket O with
4 9 0 110 1,224,815 400 users. Many jobs are waiting for the memory
5 1 0 0 26,922 location on Socket O which contains the spinlock.
5 9 0 0 26,914
2 ; 8 8 2 ;22 PRETRY number on socket O:
’ 400 users = 400M + 294M = 694M
7 1 0 0 6,971
7 9 0 0 6,897

18 ©Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.
LinuxCon North America, Chicago, August 2014. 46

MCS vs. Ticket Lock in Linux

invent

Removing Cache Line Contention A

- Code snippet from the 2.6 based kernel for file_move() and file_kill():

extern spinlock t files lock;
#define file list lock() spin_lock(&files lock);
#define file list unlock() spin_unlock(&files_lock);

void file move (struct file *file, void file kill(struct file *file)
struct list head *list) {
{ if (!list empty(&file->f u.fu list)) {
if (!list) return; file Iist lock () ; B B

file 1list lock();
list move(&file->f u.fu list, list);
file list unlock();

list del init(&file->f u.fu list);
file list unlock();

- |Contention on this global spinlock is the cause of all the cache line contention

- |We developed a prototype MCS/Queued spinlock to see its effect on cache line traffic
« MCS/Queued locks are NUMA aware and each locker spins on local memory rather than the lock word
* Implementation is available in the back-up slides

- |No efforts were made to make this a finer grained lock

19 © Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.
LinuxCon North America, Chicago, August 2014. 47

MCS vs. Ticket Lock in Linux

Prototype Benchmark Results QD)

Comparing the performance of the new kernel (blue line) vs. the original kernel (red line)

8-socket / 80-core HT-enabled Xeon

‘\/\-\/\%\//\ o
350000 |
2
.g 250000 1 /
=
E 200000 1
8
8 ——
150000
. ,) ‘ Sirﬁulated Users‘ ‘) ‘
2.4x improvement in throughput with the MCS/Queued spinlock prototype!
20 ©Copyright 2014 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.
Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements. 48

LinuxCon North America, Chicago, August 2014.

Lock Cohorting

49

Lock Cohorting

Idea: use two levels of locks
—global locks
—Ilocal locks, one for each socket or cluster (NUMA node)

First in socket to acquire local lock

—acquire socket lock then the global lock
—pass local lock to other waiters in the local node
—eventually relinquish global lock to give other nodes a chance

Recipe for NUMA-aware locks without special algorithms
Cohorting can compose any kind of lock into a NUMA lock
—augments properties of cohorted locks with locality preservation

Benefits

—reduces average overhead of lock acquisition
—reduces interconnect traffic for lock and protected data

50

Global and Local Locks for Cohorting

e Global lock G

—thread-oblivious: acquiring thread can differ from releasing
thread

—qglobally available to all nodes of the system

e Locallock S

—supports cohort detection
— areleasing thread can detect if other threads waiting

—records last state of release as global or local

e Once S is acquired
—local release — proceed to critical section
—qglobal release — try to acquire G

e Upon release of S

—if NOT (may_pass_local OR alone) — release globally
—else — release locally
o1

Global and Local Locks for Cohorting

e C-BO-BO lock

—Global backoff (BO) lock and local backoff locks per node
—requires additional cohort detection mechanism in local BO lock

o C-TKT-TKT lock
—Global ticket lock and local ticket (TKT) locks per node

e C-BO-MCS lock
—qglobal backoff lock and local MCS lock

e C-MCS-MCS lock
e C-TKT-MCS lock

e Use of abortable locks in cohort designs needs extra features
to limit aborting while in a cohort
—A-C-BO-BO lock
—A-C-BO-CLH lock (queue lock of Craig, Landin, & Hagersten)
52

Experiments

Microbenchmark LBench is used as a representative workload
LBench launches identical threads

Each thread loops as follows

—acquire central lock

—access shared data in critical section
—release lock

—~4ms of non-critical work

Run on Oracle T5440 series machine

—256 hardware threads
—4 NUMA clusters

Evaluation shows that cohort locks outperform previous locks
by at least 60%

53

Throughput/sec

Average Throughput vs. # of Threads

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06 -}

i MCS - C-TKT-TKT

HBO * C-BO-MCS

HCLH * C-TKT-MCS

- FC-MCS C-MCS-MCS
C-BO-BO

1 16 32 64

96 128 160
of Threads

192

224

256

54

Conclusions: Cohorting is Useful

e Useful design methodology

—no special locks required

—can be extended to additional levels of locality
— e.g., tile based systems where locality is based on grid position

— multiple levels of lock cohorts

e Cohort locks improve performance over previous NUMA
aware lock designs

e Performance scaling with thread count is better with locality-
preserving cohort locks

95

New Work: Adaptive HMCS Lock

* Tree of MCS locks to exploit multiple levels of locality

e Fast path: directly acquire root if lock is available

e Hysteresis: adaptively select at which level to compete

Done
A

Y

Hysteresis-driven
adaptation

A
A}
A}
A}

Root-level lock

: Committed
Fast-path RN
- Speculatively > .
execute -

‘Aborted -

’
v !
'
4
¢ e
L4
¢"
L4
L Ed
‘.N
A -~
. A)

Slow-path---,
- ‘ ------ » Leaf-level lock

HMCS lock tree

HMCS<1> —¢—

HMCS<2>

3.4E+07

8.4E+06(

4.2E+06

Throughput (locks/second)

1.7E+07

2.1E+06 -

3.4E+07

4.2E+06

2.1E+06

Throughput (locks/second)

1.0E+06
1

2 4 8 16 32 64 128
Number of threads

(a) 1 cache line

1.7E+07

8.4E+06 |1

1.0E+06
1

2 4 8 16 32 64 128
Number of threads

(c) 4 cache lines

Performance of AHMCS on Power 4-Socket

HMCS<3> —S—FP-HMCS<3> —¥—

3.4E+07
1.7E+07 |

8.4E+06(

T

4.2E+06

T

2.1E+06

Throughput (locks/second)

1.0E+06
1

2 4 8 16 32 64 128
Number of threads

(b) 2 cache lines

1.0E+06

2.6E+05

1.3E+05

Throughput (locks/second)

5.2E+05

T

Throughput: Higher is better

6.6E+04 1

2 4 8 16 32 64 128
Number of threads

(d) 64 cache lines

S7

Dice and Kogan’s CNA Lock

©» 5.5

-

. 5

8‘ 4.5

- 4

o 3.5

= 3

= 2.5 |

= 2 |

o 1.5 |

C

= 1 | | |

— 1 2 4 8 18 36 70
threads

Figure 6. Total throughput for the key-value map mi-
crobenchmark.

Throughput: Higher is better 5g

Dice and Kogan’s CNA Lock in Linux

11

10 —e— stock
| Benchmark | Contended spin locks] Call sites . CN”/\‘*‘
_-alloc_fd {

[0

_e— stock
CNA

IS

.5
5
g ; ' ——l
lock1_threads | fil file_lock 2 s / g% i |
Q. Q. 3
ock1_threads 1les_struct.file_loc fentl_setlk S 4 I s 2 y \/‘\
lock2_threads | file_lock_context.flc_lock posix_lock_inode 2o 1;@/’
alloc f‘d 1 2 4 8 18 36 70 1 2 4 8 18 36 70
fi .fi - -
openl_threads iles_struct.file_lock __close. fd # threads # threads
dput (a) lock1_threads (b) lock2_threads
d_alloc 1.8 1.8
lockref. lock - .. —e— stock - ., —e— stock
lockref_get_not_zero » CV\ ! i CI:JV/' \
lockref_get_not_dead S 12 S 12 |
. . __alloc_fd 2 1 / 2 1 4
open2_threads files_struct.file_lock S o S o /
__close_fd o6 : os |
Table 1. Contention in the will-it-scale benchmarks. . e s s s . e s w
threads # threads
(c) openl_threads (d) open2_threads

Figure 15. Performance results for the will-it-scale benchmarks.

Throughput: Higher is better ggq

Dice and Kogan’s CNA Lock in Linux

Benchmark

Contended spin locks

Call sites

lock1_threads

files_struct.file_lock

__alloc_fd
fcntl_setlk

lock2_threads

file_lock_context.flc_lock

posix_lock_inode

openl_threads

files_struct.file_lock

__alloc_fd
__close_fd

lockref. lock

dput
d_alloc
lockref_get_not_zero
lockref_get_not_dead

open2_threads

files_struct.file_lock

__alloc_fd
__close_fd

Table 1. Contention in the will-it-scale benchmarks.

Throughput: Higher is better g

ops/us

ops/us

11
10

(o]

HFNWSHAEOOON®

[S =

A O © B N b O ©®

Dice and Kogan’s CNA Lock in Linux

T

—e— Stock '
CNA

| 4.

1 \’N 3.

—e— Stock
CNA

ops/us

A

[\
AON WO A OO
‘\
I/
{
{)

1.5 @
2 4 8 18 36 70 1 2 4 8 18 36 70
threads # threads
(a) lock1_threads (b) lock2_threads
1.8
—e— Stock . —eo— Stock
CV\ - 1.6 CNV/.\“
1.4 p
m -
S5 1.2
- ,
/ a ! /
o © 9.8)
0.6 -
0.4 ¢
2 4 8 18 36 70 1 2 4 8 18 36 70
threads # threads
(c) openl_threads (d) open2_threads

Figure 15. Performance results for the will-it-scale benchmarks.

Throughput: Higher is better

61

