
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Locks on Multicore and  
Multisocket Platforms

COMP 522 28 March 2019

!2

Context

• Last lecture: locks and barriers

• Lock synchronization on multicore platforms

• Upcoming
—transactional memory
—practical non-blocking concurrent objects

!3

Papers for Today

• Everything you always wanted to know about synchronization
but were afraid to ask. David Tudor, Rachid Guerraoui, and
Vasileios Trigonakis. In Proceedings of SOSP '13. ACM, New
York, NY, USA, 33-48.

• Lock cohorting: a general technique for designing NUMA
locks. David Dice, Virendra J. Marathe, and Nir Shavit. In
Proceedings PPoPP '12. ACM, New York, NY, USA, 247-256.
2012.

!4

Motivation for Studying Lock Performance

• There are many types of locks and architectures

• Does lock performance depend on architecture?

• How?

• Which lock is best?

!5

Locks

• Test and set (TAS)

• Test and test and set (TTAS) Ticket lock

• Array-based lock

• MCS lock

• CLH lock

• Hierarchical CLH lock (HCLH)

• Hierarchical Ticket lock (HTICKET)

• Hierarchical backoff lock

FIFO

!6

Locks

• Test and set (TAS)

• Test and test and set (TTAS) Ticket lock

• Array-based lock

• MCS lock

• CLH lock

• Hierarchical CLH lock (HCLH)

• Hierarchical Ticket lock (HTICKET)

• Hierarchical backoff lock

Queuing
Locks

!7

Locks

• Test and set (TAS)

• Test and test and set (TTAS) Ticket lock

• Array-based lock

• MCS lock

• CLH lock

• Hierarchical CLH lock (HCLH)

• Hierarchical Ticket lock (HTICKET)

• Hierarchical backoff lock

Locks we
haven’t

discussed

!8

CLH List-based Queue Lock

type qnode = record
 prev : ^qnode
 succ_must_wait : Boolean

type lock = ^qnode // initialized to point to an unowned qnode

procedure acquire_lock (L : ^lock, I : ^qnode)
 I->succ_must_wait := true
 pred : ^qnode := I->prev := fetch_and_store(L, I)
 repeat while pred->succ_must_wait

procedure release_lock (ref I : ^qnode)
 pred : ^qnode := I->prev
 I->succ_must_wait := false
 I := pred // take pred's qnode

!9

spin spin spin

CLH

has lock;
in critical
section

!10

CLH Queue Lock Notes

• Discovered twice, independently
—Travis Craig (University of Washington)

– TR 93-02-02, February 1993
—Anders Landin and Eric Hagersten (Swedish Institute of CS)

– IPPS, 1994

• Space: 2p + 3n words of space for p processes and n locks
—MCS lock requires 2p + n words

• Requires a local "queue node" to be passed in as a parameter

• Spins only on local locations on a cache-coherent machine

• Local-only spinning possible when lacking coherent cache
—can modify implementation to use an extra level of indirection

(local spinning variant not shown)

• Atomic primitives: fetch_and_store

Why Hierarchical Locks?

NUMA architectures

• Not all memory is equidistant to all cores
—each socket has its own co-located memory
—consequence of scaling memory bandwidth with processor count

• Today’s systems: system-wide cache coherence

• Access latency depends on the distance between the core
and data location
—memory or cache in local socket
—memory or cache in remote socket

• Multiple levels of locality
—0 hop, 1 hop, 2 hop, ...

!11

Locks on NUMA Architectures

• Problem:
—passing locks between threads on different sockets can be costly
—overhead from passing lock and data it protects  

—data that has been accessed on a remote socket produces long
latency cache misses

• Solution:
—design locks to improve locality of reference
—encourage threads with mutual locality to acquire a given lock

consecutively

• Benefits:
—reduce migration of locks between NUMA nodes
—reduce cache misses for data accessed in a critical section 

!12

!13

Hierarchical CLH

• Structure
—local CLH queue per cluster (socket)
—one global queue
—qnode at the head of the global queue holds the lock

• Operation: when a node arrives in the local queue …
—delay for a bit to let successors arrive
—move a batch from a socket queue to the global queue

– CAS local tail into global tail
– link local head behind previous global tail

Victor Luchangco, Dan Nussbaum, and Nir Shavit. A hierarchical CLH queue lock.
In Proceedings of Euro-Par '06, Wolfgang E. Nagel, Wolfgang V. Walter, and
Wolfgang Lehner (Eds.). Springer-Verlag, Berlin, Heidelberg, 801-810. 2006.

!14

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ LK

!15

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

pause

LK

!16

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

pause

LK

spin

!17

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

pause

LK

spin pause

!18

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

pause spin spin pause spin

LK

!19

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin pause spin

LK

linking

!20

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin

pause spin

LK

linking

!21

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin

pause spin

LK

spin

!22

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin

linking spin

LK

spin

!23

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin

linking spin

LK

spin

pause

!24

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin linking spin

LK

spin

pause

!25

G

spin spinhas lock;
in critical
section

Hierarchical CLH in Action

Socket J Socket K LJ

spin spin spin

LK

spin

pause

spin

!26

Hierarchical Ticket
• Two levels of ticket locks

—global
—local: one per socket

• Two-level ticket lock (cohorting version by Dice et al.)
—acquire

– acquire local ticket
– if flag “global granted” is set, proceed
– else acquire global ticket lock

—release
– if successors available in local lock, set “global granted” for local

lock and increment local ticket
– otherwise, clear “global granted” for local lock and increment global

ticket

• “Everything…” paper used a more complex version
—https://github.com/tudordavid/libslock/blob/master/src/htlock.c

Hierarchical Backoff Lock

• Test-and-test-and-set lock with back off scheme to reduce
cross node contention of a lock variable

• Use thread locality to tune backoff delay
—when acquiring a lock

– assign thread ID to lock state
—when spin waiting

– compare thread ID with lock holder and back off proportionally

• Limitations:
—reduce lock migration only probabilistically
—lots of invalidation traffic: costly for NUMA

!27

Z. Radovic and E. Hagersten. Hierarchical Backoff Locks for
Nonuniform Communication Architectures. In HPCA-9,
pages 241–252, Anaheim, California, USA, Feb. 2003.

!28

Systems with Different Characteristics

• Opteron: 4 x AMD Opteron 6172 (48 cores)
—directory based cache coherence
—directory located in LLC

• Xeon: 8 x Intel Xeon E7-8867L (80 cores; SMT disabled)
—broadcast snooping

• Niagara: SUN UltraSPARC-T2 (8 cores; 64 threads)
—coherence via shared L2 cache on far side of chip

• Tilera: TILE-Gx CPU (36 cores)
—coherence via distributed, shared L2 cache

Opteron Platform

• Opteron: 4 x AMD Opteron 6172 (48 cores)

• Each chip contains two 6-core dies

• MOESI protocol, directory based cache coherence
—directory located in LLC

• Average distance: 1.25 hops

!29
Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

Xeon Platform

• Xeon: 8 x Intel Xeon E7-8867L (80 cores; SMT disabled)
—broadcast snooping

• 10 cores per socket

• Average distance: 1.375 hops

!30
Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

Niagara

• Niagara: SUN UltraSPARC-T2 (8 cores; 64 threads)
—coherence via shared L2 cache on far side of chip

!31
Figure credit: Niagara: A 32-way Multithreaded SPARC Processor; P. Kongetira, K. Aingaran, K. Olukotun

Tilera

• Tilera: TILE-Gx CPU (36 cores)
—coherence via distributed, shared L2 cache

!32
Figure credit: http://www.tilera.com/sites/default/files/productbriefs/TILE-Gx8036_PB033-02_web.pdf

!33

Operation Latency Across Platforms

Latencies depend upon distance and (sometimes) state

Opteron: load latency independent of state

Xeon: load latency depends on state
Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

!34

Variation in Performance of Atomics

Observations
—relative performance of atomic primitives and cache operations

varies widely in the hardware
—varying performance of locks is in part due to varying

performance of atomic operations

Throughput: Higher is better

!35

Lock Performance vs. Platform

Observations
—throughput on multi-socket systems is lower than on single chips
—there is no universally best lock

Throughput: Higher is better

Lock Acquisition vs. Previous Owner

!36
Figure credit: Everything you always wanted to know about synchronization but were afraid to ask. D.
Tudor, R. Guerraoui, and V. Trigonakis. In Proceedings of SOSP '13. ACM, New York, NY, USA, 33-48.

Impact of Contention on Performance

!37

Study Conclusions
• Crossing sockets is expensive

— 2x to 7.5x slower than intra-socket
—hard to avoid cross-socket communication

— e.g., Opteron: incomplete cache directory (no sharer info)

• Loads, stores can be as expensive as atomic operations
—non-local access can be a bottleneck

• Intra-socket non-uniformity matters (e.g., Tilera vs. Niagara)
—hierarchical locks scale better on non-uniform systems

• Simple locks can be effective
—ticket lock performs best in many cases

• There’s no universally optimal lock
—optimal lock depends upon architecture and expected contention

!38

An Unwise Conclusion?

!39

Locks in Linux

!40

Non-scalable Locks are Dangerous

!41
Non-scalable locks are dangerous Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and  

Nickolai Zeldovich. In the Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

ticket + proportional backoff
IBM’s variant of MCS lock

lower is better

Linux Benchmarks

!42
Non-scalable locks are dangerou Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and  
Nickolai Zeldovich. In the Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

MCS vs. Ticket Lock in Linux

!43

0.8% (165)

7% (121)73% (92)

7% (350)

Non-scalable locks are dangerous Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris, and  
Nickolai Zeldovich. In the Proceedings of the Linux Symposium, Ottawa, Canada, July 2012.

higher
is

better

Lock Performance In Linux

!44
Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.  

LinuxCon North America, Chicago, August 2014.

Why is Scaling Poor?

!45
Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.  

LinuxCon North America, Chicago, August 2014.

Why is Scaling Poor?

!46
Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.  

LinuxCon North America, Chicago, August 2014.

MCS vs. Ticket Lock in Linux

!47
Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.  

LinuxCon North America, Chicago, August 2014.

MCS vs. Ticket Lock in Linux

!48
Davidlohr Bueso and Scott Norton. An Overview of Kernel Lock Improvements.  

LinuxCon North America, Chicago, August 2014.

Lock Cohorting

!49

Lock Cohorting

• Idea: use two levels of locks
—global locks
—local locks, one for each socket or cluster (NUMA node)

• First in socket to acquire local lock
—acquire socket lock then the global lock
—pass local lock to other waiters in the local node
—eventually relinquish global lock to give other nodes a chance

• Recipe for NUMA-aware locks without special algorithms

• Cohorting can compose any kind of lock into a NUMA lock
—augments properties of cohorted locks with locality preservation

• Benefits
—reduces average overhead of lock acquisition
—reduces interconnect traffic for lock and protected data

!50

 Global and Local Locks for Cohorting

• Global lock G
—thread-oblivious: acquiring thread can differ from releasing

thread
—globally available to all nodes of the system

• Local lock S
—supports cohort detection

– a releasing thread can detect if other threads waiting
—records last state of release as global or local

• Once S is acquired
—local release → proceed to critical section
—global release → try to acquire G

• Upon release of S
—if NOT (may_pass_local OR alone) → release globally
—else → release locally  

!51

 Global and Local Locks for Cohorting

• C-BO-BO lock
—Global backoff (BO) lock and local backoff locks per node
—requires additional cohort detection mechanism in local BO lock

• C-TKT-TKT lock
—Global ticket lock and local ticket (TKT) locks per node

• C-BO-MCS lock
—global backoff lock and local MCS lock

• C-MCS-MCS lock

• C-TKT-MCS lock

• Use of abortable locks in cohort designs needs extra features
to limit aborting while in a cohort
—A-C-BO-BO lock
—A-C-BO-CLH lock (queue lock of Craig, Landin, & Hagersten)

!52

Experiments

• Microbenchmark LBench is used as a representative workload

• LBench launches identical threads

• Each thread loops as follows
—acquire central lock
—access shared data in critical section
—release lock
—~4ms of non-critical work

• Run on Oracle T5440 series machine
—256 hardware threads
—4 NUMA clusters

• Evaluation shows that cohort locks outperform previous locks
by at least 60%

!53

Average Throughput vs. # of Threads

!54

Conclusions: Cohorting is Useful

• Useful design methodology
—no special locks required
—can be extended to additional levels of locality

– e.g., tile based systems where locality is based on grid position
– multiple levels of lock cohorts

• Cohort locks improve performance over previous NUMA
aware lock designs

• Performance scaling with thread count is better with locality-
preserving cohort locks  

!55

New Work: Adaptive HMCS Lock

• Tree of MCS locks to exploit multiple levels of locality

• Fast path: directly acquire root if lock is available

• Hysteresis: adaptively select at which level to compete

!56

Performance of AHMCS on Power 4-Socket

!57Throughput: Higher is better

Dice and Kogan’s CNA Lock

!58Throughput: Higher is better

Dice and Kogan’s CNA Lock in Linux

!59Throughput: Higher is better

Dice and Kogan’s CNA Lock in Linux

!60Throughput: Higher is better

Dice and Kogan’s CNA Lock in Linux

!61Throughput: Higher is better

