
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Parallel Depth-first (PDF)
Scheduling

COMP 522 Lecture 18 19 March 2019

Computation DAGs and Scheduling

!2

DAG Model for Computations

!3

DAG Scheduling

• Map a DAG computation onto P threads

• Determine what executes on each thread at each time step

• A schedule must obey the following constraints
—each node appears only once in a schedule
—all predecessors of a node must execute before a node executes

– node is ready at time step t if its ancestors executed at times ≤ t - 1
—any ready node may be scheduled

• Valid schedules must exist since computation graph is a DAG

!4

Dynamic DAGs and Online Scheduling

A DAG is incrementally revealed as execution proceeds

• When a node is scheduled, its outgoing edges are revealed

• When all its incoming edges are revealed, a node is revealed
and available for scheduling

• Online scheduling: based only on revealed nodes

!5

Greedy Scheduling

• Definition: At each step in an execution ...
—if P tasks are ready, then P execute
—if fewer than P tasks are ready, all execute

• Theorem
—for any multithreaded computation with work T1 and DAG depth

T∞, for any number P of processors, any greedy schedule
achieves TP ≤ T1/P + T∞

• Commentary

—generally, want linear speedup, i.e., TP = O(T1/P)

—greedy schedules achieve linear speedup when avg. parallelism,
defined as T1/T∞= Ω(P); namely T1/T∞ ≥ cP, or T1/P ≥ cT∞
– if # processors is ≤ average parallelism, there will be enough work to

keep the processors adequately busy for good speedup
– too many processors leads to idleness, which degrades speedup

!6

A Greedy Schedule on 3 Processors

!7

T1 = 17, T∞ = 5
Parallel execution time TP = 6 steps

T1/P + T∞ = 17/3 + 5 = 10.66 ≥ TP = 6

Schedule constraints
• Each node appears once in

the schedule
• Each node is scheduled

after all of its predecessors
• Each step consists of at

most P nodes

The Importance of Schedule Choice

Scheduling and space

• Consider matrix multiplication with fine-grain parallelism

• Computation DAG for n = 4

• Sequential schedule uses only O(n2) space

• Level-by-level parallel schedule would use O(n3) space
!8

lg n depth
sum reduction

What Schedules are Best?

• Greedy parallel schedules deliver good speedup
—good bound on the number of steps

• Which greedy schedules (if any) have good bounds on space?
—memory and cache

!9

Provably Efficient Scheduling for
Languages with Fine-grain Parallelism

Effectively Sharing a Cache
Among Threads

Space-efficient Scheduling of Nested
Parallelism

!10

NESL DAG Schedules

• Task structure is a dynamically unfolding series-parallel DAG

• Certain nodes can have arbitrary fan out or fan in
—fork or join nodes respectively
—more general than that of Blumofe and Leiserson

– fanout 2

!11

Motivation: Memory Footprint

• Single core system uses memory of size M

• For a multicore with P cores, do we need memory of size PM?

!12

CC

Msize = 2 * M?

C

Msize = M

Why Does Memory Footprint Matter?

Decrease in relative memory capacity per FLOP/second

!13

Peter Kogge and John Shalf.
2013. Exascale Computing
Trends: Adjusting to the "New
Normal"' for Computer
Architecture. Computing in
Science and Engineering. 15, 6
(November 2013), 16-26.

What about Cache Footprint?

• Single core system uses cache of size C1

• For a core with T HW threads, do we need cache of size TC1 ?

!14

T2T1

shared cachesize = 2 * C1

T1

cachesize = C1

Problem Formulation for Cache

• Consider a parallel execution of a computation DAG
—on a multithreaded core with T threads and a shared ideal cache

• How much extra cache is needed for same hit rate as 1
thread?

!15

size = ? shared cache

T2T1

Outline

• Efficient parallel DAG schedules

• Cache miss rate bounds

• Practical issues when implementing PDF schedules

• Value of PDF schedules

• Space-efficient scheduling of nested parallelism

• Summary

!16

Toward Space-efficient Parallel Schedules

• Greedy parallel schedules evaluate nodes out of order with
respect to a sequential execution

• Poor choice of schedule may require excessive space
—see the parallel matrix multiply example

• Three key ideas for space-efficient scheduling
—define a class of parallel schedules based on sequential ones
—focus on nodes scheduled “prematurely” ahead of their position

in normal sequential order
—bound number of premature nodes to establish bounds on space

!17

DAG Scheduling Strategies

• 1DF schedule
—schedule one ready node per time step
—schedule in depth first order

– simple using stack of ready nodes

• PDF schedule
—schedule up to P ready nodes per time step
—bias towards the 1DF ordering

– if u precedes v in 1DF schedule, both are scheduled, neither are
scheduled, or only u is scheduled

!18

1DF Schedule

 for each v in G (in any order)
 if v is ready (i.e., indegree == 0)

 push(v, stack)

 while (v = pop(stack) != null)
 if v has not already been scheduled

 schedule(v)
 for each ready child u of v

 push(u, stack)

!19

DAG Scheduling

!20

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!21

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!22

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!23

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!24

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!25

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!26

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!27

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!28

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!29

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!30

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!31

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!32

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!33

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!34

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!35

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!36

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!37

1 DF Schedule PDF Schedule for p=3

PDF Schedule

• Let R be a vector containing only the root node

• Schedule the first min(P, |R|) nodes from R with the ith node in
R assigned to processor i

• Replace each newly scheduled node in by its ready children,
in left to right order, in place in R

!38

DAG Scheduling

!39

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!40

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!41

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!42

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!43

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!44

1 DF Schedule PDF Schedule for p=3

DAG Scheduling

!45

1 DF Schedule PDF Schedule for p=3

7 steps

PDF Schedule Properties

• Each time step completes
work on the critical path

• Only (P - 1) processors
available for “other work”

• At most (P - 1) * d nodes are
“premature”
—ahead of 1DF order

• Premature node bound
leads to cache miss bound

!46

PDF Schedules vs. Work Stealing

• PDF schedule uses only S1 + O(DP) space
—S1 is the space required to execute the computation serially

—D is depth of the computation

• Bound is asymptotically lower than the previous bound of
S1P for work stealing when D = o(S1), which is true for parallel
computations that have a sufficient degree of parallelism
—Example: a simple algorithm to multiply two n x n matrices has

depth D = ϴ(log n) and serial space S1 = ϴ(n2), giving space
bounds of O(n2 + P log n) instead of O(n2 P)

• How?
—have parallel computation follow an order as close as possible to

the serial execution

!47

Coordinating a PDF Schedule

• Uses constant # of prefix-sums per scheduling round

• Time complexity O(T1/P + d * lg P)

• Reducing scheduling overhead
—maintaining R can exceed space bound

– maintain parents instead of kids ... see paper for details
—reducing time overhead

– approach
 schedule multiple tasks per processor per round

 use a parallel DFT with wider width than P
– impact

 increases additive term in time and space complexities
 ensures work is within constant factor of optimal

!48

arises from prefix sum complexity

Ideal Cache Miss Bounds

• Ideal cache = fully associative, optimal replacement policy

• For ideal cache, if Cp ≥ (C1 + (P - 1) * D), then Mp ≤ M1
—size of shared cache size for P threads only needs to be P*d

larger than the cache for a single thread for same miss rate

• Intuition
—at most (P - 1) * d nodes can be executed prematurely
—cache is (P - 1) * d blocks larger

– premature nodes have space for them in the cache
—cache is ideal, won’t cause extra evictions until cache is full
—there is a 1-1 correspondence between bad and good nodes

– bad node incurs a hit in 1DF schedule but a miss in PDF schedule
– good node incurs a miss in 1DF schedule but a hit in PDF schedule

!49

LRU Cache Miss Bounds

• Tarjan and Sleator show that an ideal cache of size C1 can be
simulated with an LRU cache of size 2 * C1

• Use this result to extend previous bound to LRU caches
—for an LRU cache, if Cp ≥ 2 * (C1 + (P - 1) * d), then Mp ≤ M1

!50

Value of PDF Schedules

• Shows that PDF schedules can manage shared cache
effectively for multiple cores
—provides upper and lower bounds on cache misses

• For computations based on nested data parallelism, the size
of memory and cache need not grow linearly with number of
cores and threads in manycore designs

!51

Space-efficient Implementation of Nested Parallelism

• Problem: PDF scheduler tightly controls space, but has too
many expensive scheduling steps

• Goal: allow threads to execute non-preemptively and
asynchronously to improve locality and reduce scheduling
overhead

• Approach: allocate a pool of a constant K units of memory to
each thread when it starts up, and allow a thread to execute
non-preemptively until it runs out of memory from that pool
(and reaches an instruction that requires more memory), or
until it suspends
—instead of preallocating a pool of K units of memory for each

thread, assign it a counter that keeps track of its net memory
allocation. We call this runtime, user-defined constant K the
memory threshold for the scheduler

!52

AsyncDF Scheduler Sketch

• When the scheduler forks (creates) child threads, insert them
into R (priority Q of ready threads) immediately to the left of
their parent thread
—maintain the invariant that the threads in R are always in the

order of increasing 1DF-numbers of their leading nodes

• At every scheduling step, P ready threads whose leading
nodes have the smallest 1DF-numbers are moved to Qout
(FIFO of ready threads removed from R)
—every time a ready thread is picked from Qout and scheduled on a

worker processor, it may allocate space from a global pool in its
first action

—a thread must preempt itself before any subsequent action that
requires more space

• Child threads are forked only when they are to be added to
Qout, that is, when they are among the leftmost P ready
threads in R

!53

AsyncDF Scheduler Result

Theorem

Let S1 be the space required by a 1DF-schedule for a
computation with work W and depth D, and let Sa be the total
space allocated in the computation.  
 
The parallelized scheduler with a memory threshold of K
units, generates a schedule on P processors that requires  
S1 + O(KDP log P) space and O(W/P + Sa/PK + D log P) time to
execute

!54

AsyncDF vs. Work Stealing: Speedup

!55

Girija J. Narlikar and Guy E. Blelloch. 1999. Space-efficient scheduling
of nested parallelism. ACM TOPLAS. 21, 1 (January 1999), 138-173

AsyncDF vs. Work Stealing: Space

!56
Girija J. Narlikar and Guy E. Blelloch. 1999. Space-efficient scheduling
of nested parallelism. ACM TOPLAS. 21, 1 (January 1999), 138-173

Summary

• PDF schedules have the same number of asymptotic time
steps as work stealing schedulers, though there they incur
log P scheduling overhead at each step

• PDF schedules use asymptotically smaller space than work
stealing

• PDF scheduling overhead can be reduced by letting
processors operate asynchronously within a bounded amount
of memory

• PDF space bounds can be maintained by having
asynchronous processors coordinate when they hit a local
space bound to ensure that the collection of processors
achieve the desired global asymptotic bound

!57

Differences

• Data storage
—Blumofe and Leiserson allows for only stack allocation
—PDF scheduling results allow for arbitrary heap allocation/

deallocation, both in the case that it is explicitly handled by the
programmer and when it is implicitly handled by a garbage
collector.

• Scheduling
—Blumofe and Leiserson use distributed “work stealing”. As long

as each processor has tasks to execute, no overheads are
incurred.

—PDF scheduling is a centralized, parallel approach

• Communication
—Blumofe and Leiserson’s work-stealing scheduler is shown to

provide good bounds on the total amount of interprocessor
communication for the task model they consider.

!58

References

• Provably efficient scheduling for languages with fine-grained
parallelism. Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias,
Y. 1995. In Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures (Santa Barbara,
California, United States, June 24 - 26, 1995). SPAA '95. ACM
Press, New York, NY, 1-12.

• Space-efficient implementation of nested parallelism. Girija J.
Narlikar and Guy E. Blelloch. In Proceedings of the 6th ACM
SIGPLAN symposium on Principles and Practice of Parallel
Programming (PPOPP '97). ACM, New York, NY, USA, 25-36.

• Effectively sharing a cache among threads. Guy E. Blelloch and
Phillip B. Gibbons. In Proceedings of the sixteenth annual ACM
symposium on Parallelism in algorithms and architectures (SPAA
'04). ACM, New York, NY, USA, 235-244.

!59

