
John Mellor-Crummey

Department of Computer Science
Rice University

johnmc@rice.edu

Performance Analysis of
Multithreaded Programs

COMP 522 26 February 2019

Papers for Today
• The Cilkview scalability analyzer. Yuxiong He, Charles E.

Leiserson, and William M. Leiserson. In Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms and
architectures (SPAA '10). 2010. ACM, New York, NY, USA,
145-156.

• A new approach for performance analysis of OpenMP
programs. Xu Liu, John Mellor-Crummey, and Michael Fagan. In
Proceedings of the 27th ACM International conference on
supercomputing (ICS '13). ACM, New York, NY, USA, 69-80.

• The Cilkprof Scalability Profiler. Tao B. Schardl, Bradley C.
Kuszmaul, I-Ting Angelina Lee, William M. Leiserson, and Charles
E. Leiserson. 2015. In Proceedings of the 27th ACM on
Symposium on Parallelism in Algorithms and Architectures (SPAA
'15). ACM, New York, NY, USA, 89-100.

!2

Cilkview

!3

Four Reasons for Scaling Losses in Cilk
• Insufficient parallelism

— e.g. serial code sections

• Scheduling overhead
— work is too fine grained to be distributed productively

• Insufficient data bandwidth
— contention for cache or memory bandwidth

• Contention
— for locks, false sharing

!4

Cilk Execution DAG

!5

vertex = strand
edge = ordering dependencies

Upper Bounds on Speedup
• Background

— work law
– Tp ≥ T1 / P

— span law
– Tp ≥ T∞

• Bounds on speedup
— work bound

– T1 / Tp ≤ P
— span bound

– T1 / Tp ≤ T1 / T∞

!6

Burdened DAG Model

!7

• Performance determined not just by intrinsic parallelism, but
also by the overhead of the scheduler
— thread migration by a steal is not free

• Model cost of potential thread migration by charging 15K
cycles for each continuation and return edge

squares on return and continuation edges
represent potential migration overhead

Cilkview Approach
• Use Pin binary instrumentation tool

• Insert instrumentation into the program to measure
— number instructions along edges (work)
— number of syncs
— number of spawns
— estimate addition to the critical path due to costs associated with

steals along continuation and return edges
– assume each steal may cost 15K instructions

• Perform measurements in a serial execution of the DAG

• Use projections to estimate parallel performance under a
range of conditions

!8

Performance Metrics
• Measured metrics

— Work
— Span

– longest path through the DAG
— Burdened span

– longest path through the burdened DAG
— Spawns
— Syncs

• Derived metrics
— Parallelism

– Work / Span
— Burdened parallelism

– Work / (Burdened span)
— Average maximal strand

– Work / (1 + 2 * Spawns + Syncs)

!9

Expected Speedup
Theorem: Let T1 be the work of an application, and let Tb be its
burdened span. Then, a work-stealing scheduler running on P
processors can execute the application in expected time

 Tp ≤ T1 / P + 2 𝛅 Tb,

where 𝛅 is the span coefficient.

See the paper for the proof.

The proof considers the additional cost of the burden for the
number of steals in the expected case and adds that to the
work.

!10

Cilkview Output for Quicksort (10M numbers)

!11

Case Study: A Stencil Computation - I

!12

Case Study: A Stencil Computation - II

!13

• Parallelism ~119

• Large difference between 
span and burdened span

• Burdened parallelism ~.87
— slowdown likely!

• Low burdened parallelism  
indicates that dynamic load  
balancing cost may swamp  
benefit of exploiting available  
parallelism Parallelizing outer loop rather  

than inner loop would help

Limitations of Cilkview
• Analyzes the performance of the whole program

• Can analyze the performance of a region by inserting “start”
and “stop” points in a program
— cumbersome
— error prone for large and complex code bases

• Tuning is equivalent to “guess and check”

!14

Performance analysis of OpenMP

!15

Challenge for OpenMP Tools
Typically, large gap between  

OpenMP source and implementation

!16

Calling context for code in
parallel regions and tasks
executed by worker threads
is not readily available

Difficulty: OpenMP Context is Distributed
Problem: full calling context may be distributed among threads

Developer view

Implementation view

!17

Additional Obstacles for Tools
• Differences in OpenMP implementations

— static vs. dynamic linking
– Oracle’s collector interface for tools supports only dynamic linking
– static linking is often preferred for supercomputers

— threads
– Intel: extra shepherd thread
– IBM: none

— call stack
– GOMP: master calls outlined function from user code
– Intel and IBM: master calls outlined function from runtime
– PGI: cactus stack

• No standard API for runtime inquiry

!18

OMPT: An OpenMP Tools API
• Goal: a standardized tool interface for OpenMP

— prerequisite for portable tools for debugging and performance
analysis

— missing piece of the OpenMP language standard

• Design objectives
— enable tools to measure and attribute costs to application source

and runtime system
– support low-overhead tools based on asynchronous sampling
– attribute to user-level calling contexts
– associate a thread’s activity at any point with a descriptive state

— minimize overhead if OMPT interface is not in use
– features that may increase overhead are optional

— define interface for trace-based performance tools
— don’t impose an unreasonable development burden

– runtime implementers
– tool developers

!19

Major OMPT Functionality
• State tracking

— threads maintain state at all times (e.g., working, waiting, idle)
— a tool can query this state at any time (async signal safe)

• Call stack interpretation
— inquiry functions enable tools to reconstruct application-level

call stacks from implementation-level information
– identify which frames on the call stack belong to the runtime system

• Event notification callbacks for predefined events
— mandatory callbacks for threads, parallel regions, and tasks
— optional callbacks for identifying idleness and attributing blame
— optional callbacks for tracing activity for all OpenMP constructs

• Target device monitoring
— collect event trace on target
— inspect, process, and record target events on host

!20

OMPT Callbacks

!21

OMPT Callback API Requirements

!22

OMPT Introspection API

!23

Understanding Call Stacks of OpenMP

!24

Case Study: LLNL’s LULESH with RAJA
Livermore Unstructured Lagrangian  

Explicit Shock Hydrodynamics

• Implementation using RAJA portability model

• Compiled with high optimization
— icpc -g -O3 -msse4.1 -align -inline-max-total-size=20000 -inline-

forceinline -ansi-alias -std=c++0x -openmp -debug inline-debug-
info -parallel-source-info=2 -debug all

• Linked with OMPT-enabled LLVM OpenMP runtime

• Data collection
— hpcrun -e REALTIME@1000 ./lulesh-RAJA-parallel.exe

– implicitly uses the OMPT performance tools interface, which is
enabled in our OMPT-enhanced version of the Intel LLVM OpenMP
runtime

!25

 Case Study: LLNL’s LULESH with

!26

Notable features:
Seamless global view

Inlined code
“Call” sites
Demangled “callees"

Loops in context

2 18-core Haswell
72+1 threads

Blame-shifting: Analyze Thread Performance
• Two flavors

• Directed blame shifting

• Undirected blame shifting
—problem: a thread is idle waiting for work
—approach: apportion blame for idleness among working

threads for not shedding sufficient parallelism to keep all
threads busy

Problem Approach

Undirected  
Blame  

Shifting1,3

A thread is idle  
waiting for work

Apportion blame
among working
threads for not

shedding enough
parallelism to keep all

threads busy

Directed  
Blame  

Shifting2,3

A thread is idle  
waiting for a mutex

Blame the thread  
holding the mutex for

idleness of threads
waiting for the mutex

1Tallent & Mellor-Crummey: PPoPP 2009
2Tallent, Mellor-Crummey, Porterfield: PPoPP 2010
3Liu, Mellor-Crummey, Fagan: ICS 2013 !27

Blame-shifting Metrics for OpenMP

• OMP_IDLE
– attribute idleness to insufficiently-parallel code being executed

by other threads
• OMP_MUTEX

– attribute waiting for locks to code holding the lock
• attribute to the lock release as a proxy

• Measuring these metrics requires sampling using using a
time-based sample source
– REALTIME, CPUTIME, cycles

!28

HPCToolkit’s Support for OMPT & OpenMP
Simplified sketch

• Initialization: install callbacks
— mandatory: thread begin/end, parallel region & task begin/end
— blame shifting: wait begin/end, mutex release

• When a profiling trigger fires
— if thread is waiting

– apply blame shifting to attribute idleness to working threads
— if thread is working

– accept undirected blame for idleness of others
– attribute work and blame to application-level calling context

• When a mutex release occurs
— accept directed blame charged to that mutex
— attribute blame to application-level calling context

!29

Attribute costs to application-level calling context
– unwind call stack
– elide OpenMP runtime frames using OMPT frame information
– use info about nesting of tasks & regions to reconstruct full context

Directed Blame Shifting

• Example:
— threads waiting at a lock are the symptom
— the cause is the lock holder

• Approach: blame lock waiting on lock holder

J
o
i
n

F
o
r
k

lockwait

acquire lock release lock

accumulate
samples in a global
hash table indexed
by the lock address

lock holder accepts
these samples

when it releases
the lock

Example: Directed Blame Shifting for Locks

 Blame a lock holder 
 for delaying waiting  
 threads

• Charge all samples  
that threads receive  
while awaiting a lock  
to the lock itself

• When releasing  
a lock, accept  
blame at  
the lock

all of  
the  
waiting
occurs  
here
(symptom)

almost all blame  
for the waiting is
attributed here
(cause)

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

— temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
— sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

!32

Time

Processes

Call
stack

Case Study: AMG2006

!33

2 18-core Haswell
4 MPI ranks
6+3 threads per rank

Case Study: AMG2006

!34

2 18-core Haswell
4 MPI ranks
6+3 threads per rank

Case Study: AMG2006

!35

2 18-core Haswell
4 MPI ranks
6+3 threads per rank

Case Study: AMG2006

!36

2 18-core Haswell
4 MPI ranks
6+3 threads per rank

Case Study: AMG2006

!37

12 nodes on Babbage@NERSC
24 Xeon Phi
48 MPI ranks
50+5 threads per rank

Case Study: AMG2006

!38

Slice
Thread 0 from each MPI rank

48 MPI ranks
55 threads per rank

12 nodes on Babbage@NERSC
24 Xeon Phi
48 MPI ranks
50+5 threads per rank

Case Study: AMG2006

!39

12 nodes on Babbage@NERSC
24 Xeon Phi
48 MPI ranks
50+5 threads per rank

Cilkprof

!40

Cilkprof
• Cilkprof uses compiler instrumentation to gather detailed

information about a Cilk program execution*
— measures how much work and span of the overall computation is

attributable to the subcomputation that begins when the function
invoked at that call site is called or spawned and that ends when
that function returns

— analysis enables a programmer to evaluate the scalability of that
call site — the scalability of the computation attributable to that
call site — and how it affects the overall computation’s
scalability

• Currently, the tool lacks a user interface: it merely dumps a
spreadsheet that relates costs to each call site

*Cilkview uses dynamic binary instrumentation with Pin to
measure work.

!41

Maintaining Work-Span Variables
For each function F, maintain work-span variables in shadow

stack alongside the function call stack

• Let u represent the spawn of F’s child with the longest span so
far. u is initialized to the beginning of F on entry to F.

• F.w: work
— work executed in the function so far

• F.p: prefix
— span of the trace starting from the first instruction of F and ending

with u
— F.p is guaranteed to be on the critical path of F

• F.l: longest-child
— span of the trace from the start of F through the return of the child

that F spawns at u

• F.c: continuation
— the span of the trace from the continuation of u through the most

recently executed instruction in F !42

Cilkprof Algorithm

!43

Performance Metrics
• A Cilkprof measurement for a call site s consists of the follow-

ing values for a set of invocations of s
— execution count

– the number of invocations of s accumulated in the profile
— call-site work

– the sum of the work of those invocations
— the call-site span

– the sum of the spans of those invocations

• Cilkprof additionally computes the parallelism of s as the ratio
of s’s call-site work and call-site span
— without recursive functions, Cilkprof could simply aggregate all

executions of each call site
— for recursive functions, must avoid overcounting the call-site

work and call-site span

!44

Space and Time Complexity
• For a Cilk program that

— executes in T1 time
— has stack depth D

• Cilkprof’s work-span algorithm
— runs in O(T1) time
— using O(D) extra storage

!45

Case Study with Quicksort

!46

Cilkprof Overhead

!47

