Scheduling Multithreaded Computations by Work-Stealing

[Blumofe and Leiserson, 1999]

Vu Phan — COMP 522 (Rice University)

Thu 2019-03-07

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 1/42

Abstract

@ work-stealing scheduling method: idle processors steal threads from busy processors

@ contribution: efficient randomized work-stealing algorithm for fully strict computations

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 2/ 42

Overview

challenge: efficiently executing a dynamic multithreaded computation on a MIMD computer
@ parallelism not known in advance
o dynamically growing and shrinking as computation unfolds
o static scheduling: ill-suited
@ threads depend on each other
scheduler goals:

@ ensuring an appropriate number of threads are active at each step
(keeping all processors busy)

@ limiting memory usage of active threads

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 3/42

© Introduction

© A model of multithreaded computation
© The busy-leaves property
@ A randomized work-stealing algorithm

© Atomic accesses

@ Analysis of the work-stealing algorithm

@ Conclusion

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 4 /42

Progess

© Introduction

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 5/ 42

Scheduling paradigms

work-sharing;:
@ scheduler migrates threads to underutilized processors (even if processors are busy)
@ more thread migration

work-stealing:
@ idle processors steal threads

@ less thread migration

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 6 /42

Fully strict computations

fully strict (well-structured) computations
include:

@ backtrack search

o divide-and-conquer

@ data flow

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07

Contribution

efficient randomized work-stealing algorithm for scheduling fully strict multithreaded
computations:

@ expected time: T1/P + O(Tx)

e Ti: serial time

e P: number of processors

o T time with oo processors
@ space: 5;1P

o Si: serial space

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 8 /42

© A model of multithreaded computation

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 9 /42

Multithreaded computation: continue-edges

@ vi: instruction
@ (v1,w): continue-edge (horizontal)
o [4: thread
e activation frame
o alive

o dead

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 10 / 42

Multithreaded computation: spawn-edges

e (v, v3): spawn-edge (shaded)
@ spawn-tree:
o I'1: root thread

o [3: leaf thread

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 11 / 42

Multithreaded computation: join-edges

o (vs,vi4): join-edge (curved)
@ thread INs:
o ready after v»

o stalled at vi4
(join-depenency)

o enabled by v5 and vg
(resolved join-depenency)

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 12 / 42

Multithreaded computation: execution schedule

2-processor execution schedule

processor activity

step ‘ thread pool ‘ p1 Da
1 r;: un
2 Vg
3 Ly vs | SR
4 F2].—‘31 V4 U7
5 Iy r, Vs Te: g
6 F1 I‘g: Ve V19
7| Iy r, | VR Va0
8 I, Ug | ISR
9 I Ly vy
10 Iy I's: v | TP
11 Iy U11 V14
12 F2 V12].—‘1: V29
13 I | IPH P
14 | ISR I

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 13 / 42

Multithreaded computation: (full) strictness

@ strict: each join-edge ends at an ancestor

o fully strict (well-structured): each
join-edge ends at the parent

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 14 / 42

Multithreaded computation: work (T1), span (T)

@ work: number of instructions (23)

@ span (critical-path length): number of instructions in longest path (10)

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 15 / 42

notations:

@ P: number of processors

@ X: P-processor execution schedule

e T(X): execution time of X

e Tp =minx T(X): least execution time with P processors over all execution schedules X
observations:

@ T; = work (number of instructions)

@ T = span (length of longest path)

Q@ Tp>T,/P

QO Tp>Tx

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 16 / 42

Greedy execution schedule

greedy P-processor execution schedule:
o if at least P instructions are ready, P instructions are executed (complete step)

@ otherwise, all ready instructions are executed (incomplete step)

If a P-processor execution schedule X is greedy, then T(X) < T1/P + T.

T(X) = # CompleteSteps + #lIncompleteSteps
<Ti/P + Too

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 17 / 42

Linear speedup

P-processor execution schedule X achieves linear speedup when T(X) = O(T1/P)
o if X is greedy:
o linear speedup is achieved when parallelism 71/ T, = Q(P)

o using Theorem 1: T(X) < T1/P+ T

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 18 / 42

Linear space expansion

stack depth of thread: sum of sizes of
activation frames of the thread and its
ancestors

stack depth of computation: max
stack depth across all threads in the
computation

S1: space usage with 1 processor (equal
to stack depth of computation)

S(X): space usage of P-processor
execution schedule X

X exhibits linear space expansion if
S5(X) = O(5:1P)

Vu Phan — COMP 522 (Rice University)

Thu 2019-03-07 19 / 42

Progess

© The busy-leaves property

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 20 / 42

Busy-leaves property

@ given execution schedule X:

o at time step t, leaf thread I in the
spawn-subtree is busy if some
processor in X is working on '

o X has busy-leaves property if: at
every time step, all leaf threads in
the spawn-subtree are busy

spawn-subtree at time step t: alive threads
of spawn-tree

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 21/ 42

Busy-leaves property implying linear space expansion

If a P-processor execution schedule X has busy-leaves property, then S(X) < 51 P.
e S(X): space usage of X
@ S;: serial space usage (stack depth of computation)

© by busy-leaves property: at every time step, the spawn-subtree has at most P leaf threads
@ for each such leaf thread, the space used by the thread and its ancestors is S;
© at every time step, the total space used by all threads is S; P

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 22 /42

Busy-leaves property implied by strict computation

in a strict computation:

@ after a thread I is spawned and until I

dies, the subcomputation rooted at I can
be finished by 1 processor

@ no leaf thread can stall

observation: if a computation is strict, then it

has an execution schedule with busy-leaves
property

Vu Phan — COMP 522 (Rice University)

Thu 2019-03-07 23 /42

Busy-leaves algorithm: linear speedup and linear space expansion

given a strict computation, the busy-leaves algorithm finds a P-processor execution schedule
X such that:

o X is greedy
o T(X)< T1/P+ T (Theorem 1)
o excluding algorithm's time to find schedule X

@ X has busy-leaves property

o S(X) < 5P (Lemma 2)

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 24 / 42

Busy-leaves algorithm: overview

@ online algorithm:
e only using information from the subcomputation revealed so far
e no knowledge of:
e instructions not yet executed
o threads not yet spawned
@ global pool of alive threads
e processors take ready threads from this pool

e processors return stalled threads to this pool

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 25 / 42

Busy-leaves algorithm: part 1

@ root thread is put in global thread pool
o for each step:
e each idle processor attempts to take a ready thread from the global thread pool
o each busy processor executes the next instruction in a thread, until the thread:
© spawns
Q stalls
© dies

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 26 / 42

Busy-leaves algorithm: part 2

each busy processor p executes the next © thread ', dies:
instruction in a thread [;, until:

@ thread I'; spawns a child thread: o [''s parent is some thread [,

eturns [, to the thread pool
° pretur ? ' P e if 'y has no alive child and no

o p works on the child thread in the processor is working on ['p, then p
next step takes I, from the thread pool and

@ thread T, stalls: works on [y, in the next step
a ;

o p returns [, to the thread pool e otherwise, p becomes idle in the

o p becomes idle in the next step next step

27 / 42

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07

Busy-leaves algorithm: example

processor activity thread pool:
step thread pool p1 P2
1 | SE o ready threads are in boldface
2 Vo
3 Ly vs T o o stalled threads are not
4 F2 Fgf Vg V17
) F1].—‘2 U5 F(,'I V18
6 Iy Ly g V19
7 ry Iy Ly oy Vg
8 | g Ui vy
9 Fl FZ Vo
10 Iy Ls: vy | PR P
11 T, V11 V14
12 F2 V12 F1: V92
13 I I, V15
14 Li: w3

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 28 / 42

Busy-leaves algorithm: linear speedup and linear space expansion, revisited

for every strict computation, the busy-leaves algorithm computes a P-processor execution
schedule X such that:

@ X uses time T(X) < T1/P+ T
o T7: work
o T span (critical-path length)
(X is greedy)
@ X uses space S(X) < 5P
o Si: serial space

(X has busy-leaves property)

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 29 / 42

Progess

@ A randomized work-stealing algorithm

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 30/

each processor p maintains a ready deque of threads
@ other processors steal threads from the top of p's ready deque
@ p inserts threads to the bottom of p's ready deque

@ p removes threads from the bottom of p's ready deque

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 31/ 42

Work-stealing algorithm

each processor p works on a thread [,, until: © [, dies: same as when [, stalls
© I, spawns some thread I: © [, enables some thread Ip: ', becomes
p: inserts [, at the bottom of p's ready the bottom-most thread in p's ready
deque, and starts working on 'y, deque
Q [, stalls:

o if p's ready deque has some thread
Fb:
p: removes [, from p's ready
deque, and starts working on [y,

o otherwise:
p: steals the top-most thread Iy, of
a randomly chosen processor, and
starts working on [,

Thu 2019-03-07 32 /42

Vu Phan — COMP 522 (Rice University)

for every fully strict computation, the work-stealing algorithm needs at most S; P space
@ 5;p: serial space
@ P: number of processors

(the work-stealing algorithm find execution schedules with busy-leaves property)

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 33 /42

Progess

© Atomic accesses

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 34 /42

Atomic-access model

atomic-access model:
@ parallel computer with P processors
@ concurrent accesses to the same data are serially queued by an adversary

o the adversary tries to maximize the total delay
(sum of numbers of outstanding access requests over all steps)

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 35/ 42

Total delay proportional to number of access requests

The total delay incurred by M random access requests made by P processors is:
Q@ OM+ PInP — Plne), with probability at least 1 — ¢, for every 0 < e < 1
@ at most M (expected)

very rough proof sketch:

@ tracking the delay of an access request
(number of steps in which the request is waiting to be serviced)

@ linearity of expectation

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 36 / 42

Progess

@ Analysis of the work-stealing algorithm

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 37/

Time usage

for every fully strict computation with work T7 and span T, the work-stealing algorithm has
time usage:

@ T1/P+ O(To + InP —Ine¢), with probability at least 1 — ¢, for every 0 < e < 1
@ T1/P+ O(Tw) (expected)
very rough proof sketch:

e summand T;/P: Tj instructions executed in parallel by P processors

e summand O(T): scheduling overhead
(time for steal attempts to wait before being satisfied)

e overhead is high if many steal attempts are made

o a large number of steal attempts can occur only with low probability

Thu 2019-03-07

Vu Phan — COMP 522 (Rice University)

Progess

@ Conclusion

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 39 /42

C-based language Cilk:
@ runtime system employs work-stealing algorithm
@ guaranteed performance to user applications

o with high probability, linear speedup is achieved (Tp = O(T1/P)),
if parallel slackness T1/(PT) is large

@ applications:
o protein folding
o graphic rendering
o backtrack search

e chess

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07

References

Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM (JACM), 46(5):720-748, 1999.

John Mellor-Crummey. Personal Communication, 2019.

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 41 / 42

efficient randomized work-stealing algorithm for scheduling fully strict multithreaded
computations:

@ expected time: T1/P + O(Tx)

e Ti: serial time

e P: number of processors

o T time with oo processors
@ space: 5;1P

o Si: serial space

Vu Phan — COMP 522 (Rice University) Thu 2019-03-07 42 / 42

	Introduction
	A model of multithreaded computation
	The busy-leaves property
	A randomized work-stealing algorithm
	Atomic accesses
	Analysis of the work-stealing algorithm
	Conclusion

