Scheduling Multithreaded Computations by Work-Stealing [Blumofe and Leiserson, 1999]

Vu Phan - COMP 522 (Rice University)

Thu 2019-03-07

Vu Phan - COMP 522 (Rice University)

Thu 2019-03-07 1 / 42

- work-stealing scheduling method: idle processors steal threads from busy processors
- contribution: efficient randomized work-stealing algorithm for fully strict computations

challenge: efficiently executing a dynamic multithreaded computation on a MIMD computer

- parallelism not known in advance
 - dynamically growing and shrinking as computation unfolds
 - static scheduling: ill-suited
- threads depend on each other

scheduler goals:

- ensuring an appropriate number of threads are active at each step (keeping all processors busy)
- limiting memory usage of active threads

Contents

Introduction

- 2 A model of multithreaded computation
- The busy-leaves property
- 4 A randomized work-stealing algorithm

5 Atomic accesses

- 6 Analysis of the work-stealing algorithm
- Conclusion

Progess

1 Introduction

- 2 A model of multithreaded computation
- 3 The busy-leaves property
- 4 A randomized work-stealing algorithm
- 5 Atomic accesses
- 6 Analysis of the work-stealing algorithm
- Conclusion

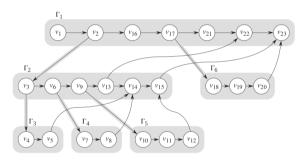
work-sharing:

- scheduler migrates threads to underutilized processors (even if processors are busy)
- more thread migration

work-stealing:

- idle processors steal threads
- less thread migration

Fully strict computations



fully strict (well-structured) computations include:

- backtrack search
- divide-and-conquer
- data flow

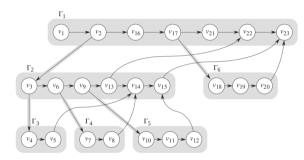
efficient randomized work-stealing algorithm for scheduling fully strict multithreaded computations:

- expected time: $T_1/P + O(T_\infty)$
 - T₁: serial time
 - P: number of processors
 - \mathcal{T}_∞ : time with ∞ processors
- space: S_1P
 - S₁: serial space

Introduction

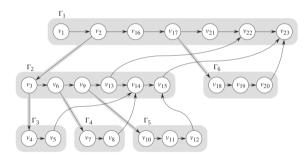
- 2 A model of multithreaded computation
- 3 The busy-leaves property
- 4 A randomized work-stealing algorithm
- 5 Atomic accesses
- 6 Analysis of the work-stealing algorithm
- 7 Conclusion

Multithreaded computation: continue-edges



- v_1 : instruction
- (v₁, v₂): continue-edge (horizontal)
- Γ_6 : thread
 - activation frame
 - alive
 - dead

Multithreaded computation: spawn-edges

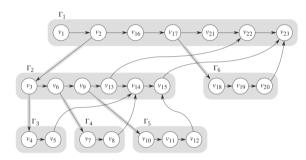


• (v_2, v_3) : spawn-edge (shaded)

• spawn-tree:

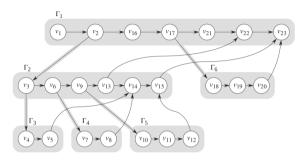
- Γ_1 : root thread
- Γ_3 : leaf thread

Multithreaded computation: join-edges



- (v_5, v_{14}) : join-edge (curved)
- thread Γ_2 :
 - ready after v₂
 - stalled at v₁₄ (join-depenency)
 - enabled by v₅ and v₈ (resolved join-depenency)

Multithreaded computation: execution schedule



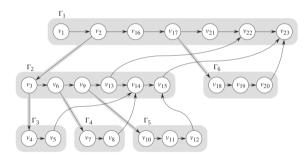
2-processor execution schedule

			processor activity				
step	threa	d pool	p_1		p_2		
1			Γ_1 :	v_1			
2				v_2			
3			Γ_2 :	v_3	Γ_1 :	v_{16}	
4		Γ_2	Γ_3 :	v_4		v_{17}	
5	$\mathbf{\Gamma}_1$	$\mathbf{\Gamma}_2$		v_5	Γ_6 :	v_{18}	
6	Γ_1		Γ_2 :	v_6		v_{19}	
7	Γ_1	Γ_2	Γ_4 :	v_7		v_{20}	
8		Γ_2		v_8	Γ_1 :	v_{21}	
9	Γ_1		Γ_2 :	v_9			
10	Γ_1		Γ_5 :	v_{10}	Γ_2 :	v_{13}	
11	Γ_1			v_{11}		v_{14}	
12		Γ_2		v_{12}	Γ_1 :	v_{22}	
13	Γ_1		Γ_2 :	v_{15}			
14			Γ_1 :	v_{23}			

A model of multiplement

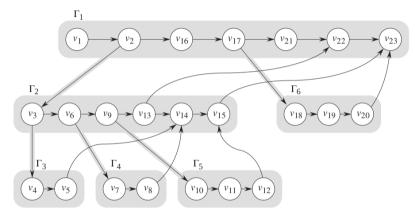
Vu Phan - COMP 522 (Rice University)

Multithreaded computation: (full) strictness



- strict: each join-edge ends at an ancestor
- **fully strict** (well-structured): each join-edge ends at the parent

Multithreaded computation: work (T_1) , span (T_{∞})



- work: number of instructions (23)
- span (critical-path length): number of instructions in longest path (10)

notations:

- P: number of processors
- X: P-processor execution schedule
- T(X): execution time of X
- $T_P = \min_X T(X)$: least execution time with P processors over all execution schedules X

observations:

- $T_1 =$ work (number of instructions)
- 2 $T_{\infty} = \text{span} (\text{length of longest path})$
- $T_P \geq T_1/P$
- $T_P \geq T_\infty$

Greedy execution schedule

greedy *P*-processor execution schedule:

- if at least *P* instructions are ready, *P* instructions are executed (complete step)
- otherwise, all ready instructions are executed (incomplete step)

Theorem (1)

If a P-processor execution schedule X is greedy, then $T(X) \leq T_1/P + T_{\infty}$.

Proof.

$$T(X) = #CompleteSteps$$

 $\leq T_1/P$

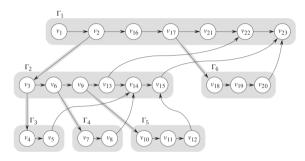
+ #IncompleteSteps + T_{∞}

Vu Phan - COMP 522 (Rice University)

Thu 2019-03-07 17 / 42

- *P*-processor execution schedule X achieves **linear speedup** when $T(X) = O(T_1/P)$
 - if X is greedy:
 - linear speedup is achieved when **parallelism** $T_1/T_\infty = \Omega(P)$
 - using Theorem 1: $T(X) \leq T_1/P + T_\infty$

Linear space expansion



- stack depth of thread: sum of sizes of activation frames of the thread and its ancestors
- stack depth of computation: max stack depth across all threads in the computation
- S₁: space usage with 1 processor (equal to stack depth of computation)
- *S*(*X*): space usage of *P*-processor execution schedule *X*
- X exhibits linear space expansion if $S(X) = O(S_1P)$

Introduction

2 A model of multithreaded computation

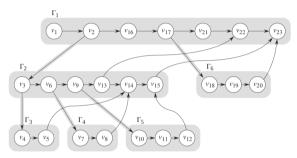
The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

Conclusion



spawn-subtree at time step *t*: alive threads of spawn-tree

- given execution schedule X:
 - at time step t, leaf thread Γ in the spawn-subtree is **busy** if some processor in X is working on Γ
 - X has **busy-leaves property** if: at every time step, all leaf threads in the spawn-subtree are busy

Lemma (2)

If a P-processor execution schedule X has busy-leaves property, then $S(X) \leq S_1 P$.

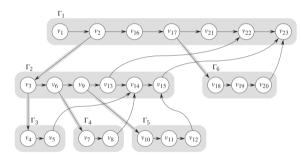
- S(X): space usage of X
- S₁: serial space usage (stack depth of computation)

Proof.

 \bigcirc by busy-leaves property: at every time step, the spawn-subtree has at most P leaf threads

- 2 for each such leaf thread, the space used by the thread and its ancestors is S_1
- \bigcirc at every time step, the total space used by all threads is S_1P

Busy-leaves property implied by strict computation



in a strict computation:

- after a thread Γ is spawned and until Γ dies, the subcomputation rooted at Γ can be finished by 1 processor
- no leaf thread can stall

observation: if a computation is strict, then it has an execution schedule with busy-leaves property

given a strict computation, the **busy-leaves algorithm** finds a P-processor execution schedule X such that:

- X is greedy
 - $T(X) \leq T_1/P + T_\infty$ (Theorem 1)
 - excluding algorithm's time to find schedule X
- X has busy-leaves property
 - $S(X) \leq S_1 P$ (Lemma 2)

- online algorithm:
 - only using information from the subcomputation revealed so far
 - no knowledge of:
 - instructions not yet executed
 - threads not yet spawned
- global pool of alive threads
 - processors take ready threads from this pool
 - processors return stalled threads to this pool

- root thread is put in global thread pool
- for each step:
 - each idle processor attempts to take a ready thread from the global thread pool
 - each busy processor executes the next instruction in a thread, until the thread:
 - spawns
 - Istalls
 - dies

Busy-leaves algorithm: part 2

each busy processor p executes the next instruction in a thread Γ_a , until:

- thread Γ_a spawns a child thread:
 - p returns Γ_a to the thread pool
 - *p* works on the child thread in the next step
- **2** thread Γ_a stalls:
 - p returns Γ_a to the thread pool
 - p becomes idle in the next step

3 thread Γ_a dies:

- Γ_a 's parent is some thread Γ_b
- if Γ_b has no alive child and no processor is working on Γ_b, then p takes Γ_b from the thread pool and works on Γ_b in the next step
- otherwise, *p* becomes idle in the next step

Busy-leaves algorithm: example

			processor activity				
step	threa	d pool	p_1		p_2	:	
1			Γ_1 :	v_1			
2				v_2			
3			Γ_2 :	v_3	Γ_1 :	v_{16}	
4		Γ_2	Γ_3 :	v_4		v_{17}	
5	Γ_1	Γ_2		v_5	Γ_6 :	v_{18}	
6	Γ_1		Γ_2 :	v_6		v_{19}	
7	Γ_1	Γ_2	Γ_4 :	v_7		v_{20}	
8		Γ_2		v_8	Γ_1 :	v_{21}	
9	Γ_1		Γ_2 :	v_9			
10	Γ_1		Γ_5 :	v_{10}	Γ_2 :	v_{13}	
11	Γ_1			v_{11}		v_{14}	
12		Γ_2		v_{12}	Γ_1 :	v_{22}	
13	Γ_1		Γ_2 :	v_{15}			
14			Γ_1 :	v_{23}			

thread pool:

- ready threads are in boldface
- stalled threads are not

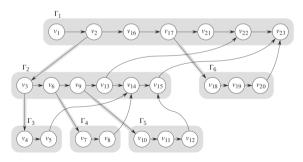


Image: A matrix

for every strict computation, the busy-leaves algorithm computes a P-processor execution schedule X such that:

- X uses time $T(X) \leq T_1/P + T_\infty$
 - T_1 : work
 - \mathcal{T}_{∞} : span (critical-path length)

(X is greedy)

- X uses space $S(X) \leq S_1 P$
 - S₁: serial space

(X has busy-leaves property)

Progess

Introduction

- 2 A model of multithreaded computation
- 3 The busy-leaves property
- 4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

each processor p maintains a ready deque of threads

- other processors steal threads from the **top** of *p*'s ready deque
- *p* inserts threads to the **bottom** of *p*'s ready deque
- *p* removes threads from the **bottom** of *p*'s ready deque

Work-stealing algorithm

each processor p works on a thread Γ_a , until:

Γ_a spawns some thread Γ_b:
p: inserts Γ_a at the bottom of p's ready deque, and starts working on Γ_b

2 Γ_a stalls:

 if p's ready deque has some thread Γ_b:

p: removes Γ_b from *p*'s ready deque, and starts working on Γ_b

• otherwise:

p: steals the top-most thread Γ_b of a randomly chosen processor, and starts working on Γ_b

- Γ_a dies: same as when Γ_a stalls
- Γ_a enables some thread Γ_b: Γ_b becomes the bottom-most thread in p's ready deque

for every fully strict computation, the work-stealing algorithm needs at most S_1P space

- S_1 : serial space
- *P*: number of processors

(the work-stealing algorithm find execution schedules with busy-leaves property)

Progess

Introduction

- 2 A model of multithreaded computation
- 3 The busy-leaves property
- A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

Conclusion

atomic-access model:

- parallel computer with P processors
- concurrent accesses to the same data are serially queued by an adversary
 - the adversary tries to maximize the **total delay** (sum of numbers of outstanding access requests over all steps)

Lemma (6)

The total delay incurred by M random access requests made by P processors is:

- **0** $O(M + P \ln P P \ln \epsilon)$, with probability at least 1ϵ , for every $0 < \epsilon < 1$
- at most M (expected)

very rough proof sketch:

- tracking the delay of an access request (number of steps in which the request is waiting to be serviced)
- Inearity of expectation

Progess

Introduction

- 2 A model of multithreaded computation
- 3 The busy-leaves property
- 4 A randomized work-stealing algorithm
- 5 Atomic accesses
- 6 Analysis of the work-stealing algorithm
- Conclusion

for every fully strict computation with work T_1 and span T_{∞} , the work-stealing algorithm has time usage:

- $T_1/P + O(T_\infty + \ln P \ln \epsilon)$, with probability at least 1ϵ , for every $0 < \epsilon < 1$
- $T_1/P + O(T_\infty)$ (expected)

very rough proof sketch:

- summand T_1/P : T_1 instructions executed in parallel by P processors
- summand O(T_∞): scheduling overhead (time for steal attempts to wait before being satisfied)
 - overhead is high if many steal attempts are made
 - a large number of steal attempts can occur only with low probability

Progess

Introduction

- 2 A model of multithreaded computation
- 3 The busy-leaves property
- 4 A randomized work-stealing algorithm
- 5 Atomic accesses
- 6 Analysis of the work-stealing algorithm

Conclusion

C-based language Cilk:

- runtime system employs work-stealing algorithm
- guaranteed performance to user applications
 - with high probability, linear speedup is achieved ($T_P = O(T_1/P)$), if **parallel slackness** $T_1/(PT_{\infty})$ is large
- applications:
 - protein folding
 - graphic rendering
 - backtrack search
 - chess

- Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work stealing. *Journal of the ACM (JACM)*, 46(5):720–748, 1999.
- John Mellor-Crummey. Personal Communication, 2019.

efficient randomized work-stealing algorithm for scheduling fully strict multithreaded computations:

- expected time: $T_1/P + O(T_\infty)$
 - T₁: serial time
 - P: number of processors
 - \mathcal{T}_∞ : time with ∞ processors
- space: S_1P
 - S₁: serial space