
Scheduling Multithreaded Computations by Work-Stealing
[Blumofe and Leiserson, 1999]

Vu Phan – COMP 522 (Rice University)

Thu 2019-03-07

Vu Phan – COMP 522 (Rice University) Work-Stealing Thu 2019-03-07 1 / 42



Abstract

work-stealing scheduling method: idle processors steal threads from busy processors

contribution: efficient randomized work-stealing algorithm for fully strict computations

Vu Phan – COMP 522 (Rice University) Work-Stealing Thu 2019-03-07 2 / 42



Overview

challenge: efficiently executing a dynamic multithreaded computation on a MIMD computer

parallelism not known in advance

dynamically growing and shrinking as computation unfolds

static scheduling: ill-suited

threads depend on each other

scheduler goals:

ensuring an appropriate number of threads are active at each step
(keeping all processors busy)

limiting memory usage of active threads

Vu Phan – COMP 522 (Rice University) Work-Stealing Thu 2019-03-07 3 / 42



Contents

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) Work-Stealing Thu 2019-03-07 4 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) Introduction Thu 2019-03-07 5 / 42



Scheduling paradigms

work-sharing:

scheduler migrates threads to underutilized processors (even if processors are busy)

more thread migration

work-stealing:

idle processors steal threads

less thread migration

Vu Phan – COMP 522 (Rice University) Introduction Thu 2019-03-07 6 / 42



Fully strict computations

fully strict (well-structured) computations
include:

backtrack search

divide-and-conquer

data flow

Vu Phan – COMP 522 (Rice University) Introduction Thu 2019-03-07 7 / 42



Contribution

efficient randomized work-stealing algorithm for scheduling fully strict multithreaded
computations:

expected time: T1/P + O(T∞)

T1: serial time

P: number of processors

T∞: time with ∞ processors

space: S1P

S1: serial space

Vu Phan – COMP 522 (Rice University) Introduction Thu 2019-03-07 8 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 9 / 42



Multithreaded computation: continue-edges

v1: instruction

(v1, v2): continue-edge (horizontal)

Γ6: thread

activation frame

alive

dead

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 10 / 42



Multithreaded computation: spawn-edges

(v2, v3): spawn-edge (shaded)

spawn-tree:

Γ1: root thread

Γ3: leaf thread

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 11 / 42



Multithreaded computation: join-edges

(v5, v14): join-edge (curved)

thread Γ2:

ready after v2

stalled at v14
(join-depenency)

enabled by v5 and v8
(resolved join-depenency)

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 12 / 42



Multithreaded computation: execution schedule

2-processor execution schedule

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 13 / 42



Multithreaded computation: (full) strictness

strict: each join-edge ends at an ancestor

fully strict (well-structured): each
join-edge ends at the parent

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 14 / 42



Multithreaded computation: work (T1), span (T∞)

work: number of instructions (23)

span (critical-path length): number of instructions in longest path (10)

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 15 / 42



Execution time

notations:

P: number of processors

X : P-processor execution schedule

T (X ): execution time of X

TP = minX T (X ): least execution time with P processors over all execution schedules X

observations:

1 T1 = work (number of instructions)

2 T∞ = span (length of longest path)

3 TP ≥ T1/P

4 TP ≥ T∞

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 16 / 42



Greedy execution schedule

greedy P-processor execution schedule:

if at least P instructions are ready, P instructions are executed (complete step)

otherwise, all ready instructions are executed (incomplete step)

Theorem (1)

If a P-processor execution schedule X is greedy, then T (X ) ≤ T1/P + T∞.

Proof.

T (X ) = #CompleteSteps + #IncompleteSteps

≤ T1/P + T∞

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 17 / 42



Linear speedup

P-processor execution schedule X achieves linear speedup when T (X ) = O(T1/P)

if X is greedy:

linear speedup is achieved when parallelism T1/T∞ = Ω(P)

using Theorem 1: T (X ) ≤ T1/P + T∞

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 18 / 42



Linear space expansion

stack depth of thread: sum of sizes of
activation frames of the thread and its
ancestors

stack depth of computation: max
stack depth across all threads in the
computation

S1: space usage with 1 processor (equal
to stack depth of computation)

S(X ): space usage of P-processor
execution schedule X

X exhibits linear space expansion if
S(X ) = O(S1P)

Vu Phan – COMP 522 (Rice University) A model of multithreaded computation Thu 2019-03-07 19 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 20 / 42



Busy-leaves property

spawn-subtree at time step t: alive threads
of spawn-tree

given execution schedule X :

at time step t, leaf thread Γ in the
spawn-subtree is busy if some
processor in X is working on Γ

X has busy-leaves property if: at
every time step, all leaf threads in
the spawn-subtree are busy

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 21 / 42



Busy-leaves property implying linear space expansion

Lemma (2)

If a P-processor execution schedule X has busy-leaves property, then S(X ) ≤ S1P.
S(X ): space usage of X
S1: serial space usage (stack depth of computation)

Proof.
1 by busy-leaves property: at every time step, the spawn-subtree has at most P leaf threads
2 for each such leaf thread, the space used by the thread and its ancestors is S1
3 at every time step, the total space used by all threads is S1P

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 22 / 42



Busy-leaves property implied by strict computation

in a strict computation:

after a thread Γ is spawned and until Γ
dies, the subcomputation rooted at Γ can
be finished by 1 processor

no leaf thread can stall

observation: if a computation is strict, then it
has an execution schedule with busy-leaves
property

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 23 / 42



Busy-leaves algorithm: linear speedup and linear space expansion

given a strict computation, the busy-leaves algorithm finds a P-processor execution schedule
X such that:

X is greedy

T (X ) ≤ T1/P + T∞ (Theorem 1)

excluding algorithm’s time to find schedule X

X has busy-leaves property

S(X ) ≤ S1P (Lemma 2)

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 24 / 42



Busy-leaves algorithm: overview

online algorithm:

only using information from the subcomputation revealed so far

no knowledge of:

instructions not yet executed

threads not yet spawned

global pool of alive threads

processors take ready threads from this pool

processors return stalled threads to this pool

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 25 / 42



Busy-leaves algorithm: part 1

root thread is put in global thread pool

for each step:

each idle processor attempts to take a ready thread from the global thread pool

each busy processor executes the next instruction in a thread, until the thread:

1 spawns

2 stalls

3 dies

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 26 / 42



Busy-leaves algorithm: part 2

each busy processor p executes the next
instruction in a thread Γa, until:

1 thread Γa spawns a child thread:

p returns Γa to the thread pool

p works on the child thread in the
next step

2 thread Γa stalls:

p returns Γa to the thread pool

p becomes idle in the next step

3 thread Γa dies:

Γa’s parent is some thread Γb

if Γb has no alive child and no
processor is working on Γb, then p
takes Γb from the thread pool and
works on Γb in the next step

otherwise, p becomes idle in the
next step

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 27 / 42



Busy-leaves algorithm: example

thread pool:

ready threads are in boldface

stalled threads are not

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 28 / 42



Busy-leaves algorithm: linear speedup and linear space expansion, revisited

for every strict computation, the busy-leaves algorithm computes a P-processor execution
schedule X such that:

X uses time T (X ) ≤ T1/P + T∞

T1: work

T∞: span (critical-path length)

(X is greedy)

X uses space S(X ) ≤ S1P

S1: serial space

(X has busy-leaves property)

Vu Phan – COMP 522 (Rice University) The busy-leaves property Thu 2019-03-07 29 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) A randomized work-stealing algorithm Thu 2019-03-07 30 / 42



Ready deque

each processor p maintains a ready deque of threads

other processors steal threads from the top of p’s ready deque

p inserts threads to the bottom of p’s ready deque

p removes threads from the bottom of p’s ready deque

Vu Phan – COMP 522 (Rice University) A randomized work-stealing algorithm Thu 2019-03-07 31 / 42



Work-stealing algorithm

each processor p works on a thread Γa, until:

1 Γa spawns some thread Γb:
p: inserts Γa at the bottom of p’s ready
deque, and starts working on Γb

2 Γa stalls:

if p’s ready deque has some thread
Γb:
p: removes Γb from p’s ready
deque, and starts working on Γb

otherwise:
p: steals the top-most thread Γb of
a randomly chosen processor, and
starts working on Γb

3 Γa dies: same as when Γa stalls

4 Γa enables some thread Γb: Γb becomes
the bottom-most thread in p’s ready
deque

Vu Phan – COMP 522 (Rice University) A randomized work-stealing algorithm Thu 2019-03-07 32 / 42



Space usage

for every fully strict computation, the work-stealing algorithm needs at most S1P space

S1: serial space

P: number of processors

(the work-stealing algorithm find execution schedules with busy-leaves property)

Vu Phan – COMP 522 (Rice University) A randomized work-stealing algorithm Thu 2019-03-07 33 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) Atomic accesses Thu 2019-03-07 34 / 42



Atomic-access model

atomic-access model:

parallel computer with P processors

concurrent accesses to the same data are serially queued by an adversary

the adversary tries to maximize the total delay
(sum of numbers of outstanding access requests over all steps)

Vu Phan – COMP 522 (Rice University) Atomic accesses Thu 2019-03-07 35 / 42



Total delay proportional to number of access requests

Lemma (6)

The total delay incurred by M random access requests made by P processors is:
1 O(M + P lnP − P ln ε), with probability at least 1− ε, for every 0 < ε < 1
2 at most M (expected)

very rough proof sketch:

1 tracking the delay of an access request
(number of steps in which the request is waiting to be serviced)

2 linearity of expectation

Vu Phan – COMP 522 (Rice University) Atomic accesses Thu 2019-03-07 36 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) Analysis of the work-stealing algorithm Thu 2019-03-07 37 / 42



Time usage

for every fully strict computation with work T1 and span T∞, the work-stealing algorithm has
time usage:

T1/P + O(T∞ + lnP − ln ε), with probability at least 1− ε, for every 0 < ε < 1

T1/P + O(T∞) (expected)

very rough proof sketch:

summand T1/P: T1 instructions executed in parallel by P processors

summand O(T∞): scheduling overhead
(time for steal attempts to wait before being satisfied)

overhead is high if many steal attempts are made

a large number of steal attempts can occur only with low probability

Vu Phan – COMP 522 (Rice University) Analysis of the work-stealing algorithm Thu 2019-03-07 38 / 42



Progess

1 Introduction

2 A model of multithreaded computation

3 The busy-leaves property

4 A randomized work-stealing algorithm

5 Atomic accesses

6 Analysis of the work-stealing algorithm

7 Conclusion

Vu Phan – COMP 522 (Rice University) Conclusion Thu 2019-03-07 39 / 42



Cilk

C-based language Cilk:

runtime system employs work-stealing algorithm

guaranteed performance to user applications

with high probability, linear speedup is achieved (TP = O(T1/P)),
if parallel slackness T1/(PT∞) is large

applications:

protein folding

graphic rendering

backtrack search

chess

Vu Phan – COMP 522 (Rice University) Conclusion Thu 2019-03-07 40 / 42



References

Robert D Blumofe and Charles E Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM (JACM), 46(5):720–748, 1999.

John Mellor-Crummey. Personal Communication, 2019.

Vu Phan – COMP 522 (Rice University) Conclusion Thu 2019-03-07 41 / 42



Summary

efficient randomized work-stealing algorithm for scheduling fully strict multithreaded
computations:

expected time: T1/P + O(T∞)

T1: serial time

P: number of processors

T∞: time with ∞ processors

space: S1P

S1: serial space

Vu Phan – COMP 522 (Rice University) Conclusion Thu 2019-03-07 42 / 42


	Introduction
	A model of multithreaded computation
	The busy-leaves property
	A randomized work-stealing algorithm
	Atomic accesses
	Analysis of the work-stealing algorithm
	Conclusion

