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Abstract

We propose a simple generalization of Shephard’s interpolation to piecewise smooth,
convex closed curves that yields a family of boundary interpolants with linear pre-
cision. Two instances of this family reduce to previously known interpolants: one
based on a generalization of Wachspress coordinates to smooth curves and the other
an integral version of mean value coordinates for smooth curves. A third instance
of this family yields a previously unknown generalization of discrete harmonic co-
ordinates to smooth curves. For closed, piecewise linear curves, we prove that our
interpolant reproduces a general family of barycentric coordinates considered by
Floater, Hormann and Kós that includes Wachspress coordinates, mean value coor-
dinates and discrete harmonic coordinates.
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1 Introduction

Constructing a function that interpolates known values at a set of data sites
is a common problem in mathematics. Given a set of values fj specified at a

set of points pj , the problem reduces to constructing a function f̂ [v] such that

f̂ [pj] = fj . Perhaps the simplest known solution to this problem is Shepard’s
method [1]. This interpolant has the form

f̂ [v] =

∑

j wjfj
∑

j wj

(1)

where the weight wj = 1
|v−pj |

.

The resulting function f̂ [v] satisfies the interpolation conditions since wj → ∞
as v → pj . The final division by

∑

j wj ensures that the resulting interpolant

reproduces constant functions; i.e.; if the fj = 1 for all j, f̂ [v] = 1 for all v.
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In computer graphics, a common variant of this interpolation problem is to
specify the data f not at a finite set of sample points, but along an entire
closed curve P . For example, given a set of specified colors at the vertices of a
closed polygon, we extend those colors to the interior of the polygon using a
function that interpolates the specified colors at the vertices and is piecewise
linear along the edges of the polygon. More precisely, given a parameterization
p[x] for the closed curve P and a data value f [x] associated with each point
p[x] on P , we wish to construct a function f̂ [v] that interpolates f along P
(i.e.; f̂ [p[x]] = f [x] for all x) and behaves “reasonably” on the interior of P .

Interestingly, generalizing Shephard’s method to boundary interpolation is
quite straightforward. We simply replace the discrete sums of equation 1 by
their corresponding integrals,

f̂ [v] =
∫

f [x]

|p[x] − v|
dP/

∫

1

|p[x] − v|
dP. (2)

Again, f̂ interpolates f on P . In particular, f̂ [v] → f [x] as v → p[x] since
1

p[x]−v
approaches infinity. As in the discrete case, this interpolant reproduces

constant functions and, as a result, is affinely invariant.

Building coordinates using interpolants: Another important use of in-
terpolants arises in applications such as mesh parameterization [2–6] and de-
formation [7–11] where expressing a point v as a weighted combination of the
points pj is critical. These weights are often referred to as the coordinates of
v with respect to the pj.

One common technique for building coordinates is to construct an interpolant
that reproduces not only constant functions, but also reproduces linear func-
tions. A discrete interpolant f̂ [v] has linear precision if setting the data values
fj to be the data sites pj yields the identity function v̂ = v. In this case, the

weights wj satisfy v =

∑

j
wjpj

∑

j
wj

and thus form coordinates for v with respect to

the pj. Unfortunately, Shepard’s method is not suitable for constructing coor-

dinates: the interpolant f̂ [v] of equation 1 does not reproduce linear functions.

In particular, if we set wj = 1
|v−pj |

, the weight sum

∑

j
wjpj

∑

j
wj

does not reproduce

the point v.

Driven by the need for coordinates, there has been a large amount of research
on boundary interpolants that possess linear precision. Such methods have the
property that if f [x] = p[x] for all x, f̂ [v] = v for all v in P . The earliest work
on this boundary interpolation problem is due to Wachspress [12]. The result-
ing Wachspress coordinates (defined for convex polygons) have been the sub-
ject of numerous papers that generalize these coordinates to higher dimensions
and smooth convex shapes [13–15]. More recently, Floater [16] proposed an
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alternative set of coordinates for any closed polygon known as mean value co-
ordinates. Again, subsequent work has generalized these coordinates to higher
dimensions and smooth shapes [17,11]. Finally, a third class of coordinates,
discrete harmonic coordinates, have been used in several applications [18,19].
These coordinates arise from solving a simple variational problem involving
the harmonic functional over a convex polygon P . In the case where P is a
closed polygon, Floater et al. [20] have observed that all three of these coor-
dinate constructions are instances of a more general family of 2D coordinates
for closed polygons.

Contributions: In this paper, we propose a simple modification to the contin-
uous version of Shephard’s method (given in equation 2) that yields a family
of boundary interpolants with linear precision. For smooth boundary curves,
the interpolant is equivalent to the integral version of Wachspress coordinates
for smooth convex curves [14] when k = 0 and reproduces the mean value
interpolant proposed in [11] when k = 1. For k = 2, the interpolant yields
a previously unknown interpolant that generalizes discrete harmonic coordi-
nates to smooth curves. For piecewise linear curves, the integral version of
this interpolant reduces to a discrete sum. Based on the choice of a parameter
k, this discrete method can reproduce either Wachspress coordinates (k = 0),
mean value coordinates (k = 1) or discrete harmonic coordinates (k = 2). For
arbitrary k, the integral version reduces to the a family of discrete coordinates
described in [20].

2 A boundary interpolant for closed curves

The following section gives a simple modification to the continuous version
of Shephard’s method for closed shapes (given in equation 2) that has lin-
ear precision. While the exposition in this section is entirely 2D, the integral
construction extends to higher dimensions without difficulty.

2.1 The modified interpolant

Given a closed curve P with a parameterization p[x] and an associated scalar
function f [x], we desire a function f̂ [v] such that f̂ interpolates f (i.e.; f̂ [p[x]] =
f [x]) and f̂ reproduces linear functions. Our modification to the continuous
form of Shephard’s method is to perform the integrals of equation 2 with
respect to a curve P̄v instead of the original boundary curve P ,

f̂ [v] =
∫ f [x]

|p[x] − v|
dP̄v/

∫ 1

|p[x] − v
|dP̄v. (3)
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This auxiliary curve P̄v depends on both the boundary curve P and the point
of evaluation v. For a given v, we simply normalize each integrand by the
length of the differential dP̄v on P̄v as the parameter x varies over P . Sin3ce

1
|p[x]−v|

approaches infinity as p[x] → v, the modified interpolant f̂ [v] converges

to f [x] as v → p[x].

On the other hand, only certain special choices for P̄v cause the modified
interpolant to have linear precision. If we substitute f [x] = p[x] and f̂ [v] = v
into equation 3, we observe the interpolant has linear precision if and only if
the auxiliary curve dP̄v satisfies

∫ p[x] − v

|p[x] − v|
dP̄v = 0. (4)

In the next subsection, we construct a family of auxiliary curves P̄v for which
this integral is exactly zero.

2.2 A construction for the auxiliary curve

In this subsection, we give a general construction for a class of auxiliary curves
P̄v that satisfy equation 4. Given the closed boundary curve P and a point v,
we construct the auxiliary curve P̄v in two steps.

1. We translate P such that v is shifted to the origin and radially scale the
shifted curve by 1

av[x]
where av[x] is any non-negative scalar function. This new

curve Pv has a parameterization given by

pv[x] =
p[x] − v

av[x]
.

2. We construct the auxiliary curve P̄v by taking the polar dual of Pv [15].
This curve has a parameterization of the form

p̄v[x] = d[pv[x]]

where the operator d computes the following:

d[p[x]] =
p[x]⊥

p[x]⊥ · p[x]
. (5)

For curves, p[x]⊥ is the outward normal vector to the curve p[x] whose length
is equal to that of the tangent vector p′[x]. (In m dimensions, we define p[x]⊥
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Fig. 1. Dual of an ellipse with respect to the point shown. The top row shows Pv

for k = 0, 1, 2 (see section 3). The bottom row shows the dual of the shape above.

to the be outward normal vector formed by taking cross product of the m− 1
tangent vectors ∂p[x]

∂xi
.) Given that we have simply changed the integral in equa-

tion 2 to be with respect to the dual shape, we call our modified interpolant
the Dual Shepard’s interpolant or DS interpolant for short.

Figure 1 illustrates the case when the closed curve P is an ellipse with pa-
rameterization p[x] = (2 cos[x], sin[x]) and the sample point v has coordinates
(1, 0). The three curves in the upper part of the figure are Pv where the radial
scaling function av[x] is chosen to be |p[x] − v|k with k = 0, 1, 2, respectively.
The lower three curves are the polar duals P̄v of their corresponding upper
curve Pv. Observe that for k = 2, the radially scaled curve Pv is not convex
and as a result the polar dual P̄v has a self intersection. Each inflection point
of Pv corresponds to a cusp on P̄v.

Equation 5 gives an explicit formula for computing the dual. Note that the
dual curve also satisfies the following properties:

d[p[x]] · p[x] = 1, (6)

d[p[x]] ·
∂p[x]

∂xi

= 0. (7)

The dual d[p[x]] as defined in equation 5 trivially satisfies these properties

since p[x]⊥ · ∂p[x]
∂xi

= 0.

The function d[p[x]] is uniquely characterized by these equations as long as the

the vectors p[x] and ∂p[x]
∂xi

form a linearly independent basis, i.e; p[x] ·p[x]⊥ 6= 0.
Geometrically, this condition corresponds to requiring that the tangent space
to p[x] not pass through the origin. (If the tangent space does pass through
the origin at some parameter value x0, d[p[x]] goes to infinity as x → x0.)
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This observation leads to the following theorem.

Theorem: Given a curve p[x] whose tangent line does not pass through the
origin, the dual of the dual of p[x] is p[x]; that is, d[d[p[x]]] = p[x].

Proof: We first replace p[x] by d[p[x]] in equations 6 and 7. If d[d[p[x]] and
p[x] are identical, replacing d[d[p[x]] by p[x] in these two new equations should
also yield equality; that is,

p[x] · d[p[x]] = 1,

p[x] ·
∂d[p[x]]

∂xi

= 0.

The first equation follows directly from equation 6. The second equation is
verified by differentiating equation 6.

0 =
∂

∂xi

(d[p[x]] · p[x])

=
∂d[p[x]]

∂xi

· p[x] + d[p[x]] ·
∂p[x]

∂xi

Finally, we apply equation 7 to yield ∂d[p[x]]
∂xi

· p[x] = 0. QED

2.3 A proof of linear precision

We next show that the DS interpolant has linear precision. The key ingredient
is to show that equation 4 reduces to an instance of the divergence theorem
applied to P̄v. For the rest of the paper, we define p̄v[x] to be the parameteri-
zation of P̄v computed via d[pv[x]].

Theorem: If the radially scaled curve Pv is convex, the integral of expression 4
(with respect dP̄v) is identically zero.

Proof: If p̄v[x]⊥ is an outward normal to P̄v at p̄v[x], the integral of the
unitized version of this normal is exactly zero by the divergence theorem [21],
i.e.;

∫ p̄v[x]⊥

|p̄v[x]⊥|
dP̄v = 0
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Since iterating the dual operator d is the identity, the vectors pv[x] and p̄v[x]⊥

are also related via the formula

pv[x] = d[d[pv[x]]] = d[p̄v[x]] =
p̄v[x]⊥

p̄v[x]⊥ · p̄v[x]
. (8)

where p̄v[x]⊥ · p̄v[x] is a scalar. If Pv is convex, the polar dual P̄v is also
convex and this scalar expression is always non-negative. Therefore, the vectors
p[x] − v, pv[x] and p̄v[x]⊥ are all scalar multiples of each other. Thus, the
unitized versions of these vectors are all equal,

p[x] − v

|p[x] − v|
=

pv[x]

|pv[x]|
=

p̄v[x]⊥

|p̄v[x]⊥|
. (9)

Direct substitution of the left-hand side of this expression into the integral
yields the theorem. QED

When Pv is convex, p̄v[x]⊥ · p̄v[x] is always non-negative. However, when Pv is
not convex, p̄v[x]⊥ · p̄v[x] may change signs. These sign changes correspond to
cusps on P̄v where the winding of P̄v reverses with respect to the origin. (See
the lower right curve in figure 1.)

In this situation, the DS interpolant of equation 3 still has linear precision
as long as dP̄v is treated as a signed quantity where sign of dP̄v corresponds
to the sign of p̄v[x]⊥ · p̄v[x]. Since this modification entails extra complexity,
we next consider an equivalent form of the DS interpolant that is easier to
evaluate.

2.4 A dx form of the DS interpolant

The integrals of equations 3 and 4 were taken with respect to dP̄v. To facilitate
evaluation of these integrals, we can rewrite the interpolant using integrals
taken with respect to dx. In particular, we can replace the function 1

|p[x]−v|

in equation 3 by a generic weight function wv[x] and construct an equivalent
form of interpolant in terms of integrals taken with respect to dx,

f̂ [v] =

∫

wv[x]f [x]dx
∫

wv[x]dx
.

To construct the desired weight function, we note that from equation 8

p[x] − v

av[x]
=

p̄v[x]⊥

p̄v[x]⊥ · p̄v[x]
.
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Now, the differential dx and dP̄v are related by the Jacobian of the parame-
terization p̄v[x] for P̄v. However, by construction, the Jacobian is exactly the
length of the normal vector p̄v[x]⊥. Thus, |p̄v[x]⊥|dx = dP̄v. Combining these
two expressions yields

dP̄v

|p[x] − v|
=

p̄v[x]⊥ · p̄v[x]

av[x]
dx.

Substituting this expression into equation 3 yields the desired form weight
function.

wv[x] =
p̄v[x]⊥ · p̄v[x]

av[x]
(10)

Note the DS interpolant may be undefined if v lies on the tangent space of
Pv for some x = x0. In this case, pv[x0] · pv[x0]

⊥ = 0 and p̄v[x0]
⊥ · p̄v[x0] is

unbounded. Also, if P̄v folds back on itself, it is possible that
∫ 1

|p[x]−v
|dP̄v = 0

leading to an undefined interpolant. In the case of the mean value interpolant
(see Sections 3 and 4), the DS interpolant is well-defined for all closed, non-
intersecting shapes.

Finally, due to the division by av[x], this construction is invariant under sim-
ilarity transformations (translation, rotation and uniform scaling) and not
under affine transformations. However, when av[x] = 1 (for Wachspress coor-
dinates in Sections 3 and 4), the construction gives full affine invariance.

3 Equivalence to previous smooth interpolants

Our DS interpolant reproduces two known interpolants for particularly simple
choices of av[x]. In particular, we consider radial scaling functions of the form

av[x] = |p[x] − v|k.

For k = 0, our interpolant reproduces a smooth interpolant first proposed in
[14] that generalizes the discrete interpolant associated with Wachspress co-
ordinates. For k = 1, our interpolant reproduces the mean value interpolant
first proposed in [11]. Finally, for k = 2, we show that our interpolant has an
interpretation in terms of minimizing a certain class of ruled surfaces with re-
spect to the harmonic functional and produces a continuous analog of discrete
harmonic coordinates.
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3.1 Mean value interpolation

In the process of extending mean value coordinates to 3D triangular meshes, Ju
et al. [11] introduced the concept of mean value interpolation. Given a closed
smooth curve P with a parameterization p[x] and associated data values f [x],
mean value interpolation computes f̂ [v] as the ratio of two integrals,

f̂ [v] =
∫

f [x]

|p[x] − v|
dSv/

∫

1

|p[x] − v
|dSv

where Sv is the unit circle centered at v.

In terms of our construction, when k = 1, the radially scaled curve Pv is
exactly the unit circle centered at origin. Likewise, the polar dual P̄v is the
unit circle centered at the origin (see figure 1 middle). Since Sv and P̄v are
simply translates of each other, the differentials dSv and dP̄v are identical and
the two interpolants agree.

3.2 Wachspress interpolation

For k = 0, our DS interpolant reduces to a continuous interpolant first in-
troduced in Warren et al. [14]. This interpolant was developed in the context
of extending Wachspress coordinates for convex polygons to smooth convex
curves. For a closed shape P in m dimensions, Wachspress interpolation has
the form

f̂ [v] =

∫

wv[x]f [x]dP
∫

wv[x]dP
(11)

where wv[x] = κ[x]
(n[x]·(p[x]−v))m with κ[x] being the Gaussian curvature of P at

p[x] and n[x] being the outward unit normal to P at p[x].

As we now show, the choice of k = 0 (and thus av[x] = 1) for our modified
Shephard’s interpolant exactly reproduces Wachspress interpolation.

Theorem: Let av[x] = 1. The DS interpolant of equation 3 is equivalent to
the Wachspress interpolant of equation 11.

Proof: Note that the interpolant of equation 11 can be written in dx form
with a weight function

κ[x]|pv[x]⊥|

(n[x] · (p[x] − v))m
.
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Our task is show that this weight function is equivalent to the dx weight
function of equation 10.

Following DoCarmo [22], Gaussian curvature at point p[x] is the limit of the
ratio of the area of a patch on the Gauss sphere (the sphere defined by n[x])
to the area of a corresponding surface patch on P as the patch size approaches
zero. Mathematically, the Gaussian curvature κ[x] satisfies

κ[x] =
|n[x]⊥|

|p[x]⊥|
=

n[x] · n[x]⊥

|pv[x]⊥|
.

The second equality is true because n[x] is the unit normal to the sphere.

Recalling that p̄v[x] is exactly n[x]
n[x]·(p[x]−v)

by construction, we note that

p̄v[x] · p̄v[x]⊥ =
n[x]

n[x] · (p[x] − v)
·

(

n[x]

n[x] · (p[x] − v)

)⊥

=
n[x] · n[x]⊥

(n[x] · (p[x] − v))m
.

Here, the second equality holds by observing that the middle expression is a
determinant with each row having a factor of n[x] · (p[x] − v)⊥. Extracting
the m factors of this quantity from the determinant and simplifying yields the
expression on the right-hand side.

To complete the proof, we combine the definition of κ[x] with this equation
and eliminate the common expression of n[x] · n[x]⊥. This combination yields

κ[x]|pv[x]⊥|

(n[x] · (p[x] − v))m
= p̄v[x] · p̄v[x]⊥.

which is exactly the weight function associated with the dx form of our inter-
polant given in section 2.4. QED

3.3 Harmonic interpolation

For k = 0 and k = 1, our DS interpolant reproduces known smooth inter-
polants that themselves were developed as generalizations of known discrete
interpolants for closed polygons. For k = 2, we know of no equivalent smooth
interpolant. However, the corresponding discrete interpolant for k = 2 is based
on discrete harmonic coordinates [18].

These coordinates are referred to as harmonic since the value of their as-
sociated interpolant can be defined as the result of minimizing a harmonic
functional. Given a convex polygon P , linear boundary data f on the edges
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of P and an interior point v, consider a piecewise linear function form by ra-
dially triangulating the interior of P from v and that interpolates f on the
edges of P . The value of the harmonic interpolant is now the height value of
this piecewise linear surface at v that minimizes the integral of the harmonic
functional of this piecewise linear function taken over P .

In this subsection, we observe that our DS interpolant has a similar inter-
pretation in terms of harmonic minimization. Given a smooth closed p[x], an
associated scalar function f [x] and an interior point v, consider a ruled sur-
face formed by connecting the boundary curve (p[x], f [x]) to the interior point
(v, f∗) where f∗ is an arbitrary height at v. We can parameterize this surface
via (p[x, t], f [x, t]) where

p[x, t] = p[x](1 − t) + vt,

f [x, t] = f [x](1 − t) + f∗t.

Given this parameterization, we define the value of the (smooth) harmonic
interpolant f̂ [v] as

f̂ [v] = min
f∗

∫

P

(
∂f [x, t]

∂v1

)2 + (
∂f [x, t]

∂v2

)2dv1dv2. (12)

We hypothesize that our DS interpolant reproduces the harmonic interpolant
of equation 12 for k = 2. To support this hypothesis, we make two crucial
observations. First, the ruled surface (p[x, t], f [x, t]) in our definition of the
harmonic interpolant reduces to the graph of the piecewise linear function
used in the traditional construction of discrete harmonic coordinates when P
is a closed polygon. Second, as, we shall show in the next section, our DS
interpolant (with k = 2) reproduces discrete harmonic coordinates for closed
polygons. Furthermore, we have numerically verified that our coordinates sat-
isfy equation 12 for our elliptical test case in figure 2.

Figure 2 shows three examples of the DS interpolant applied to our ellipse from
figure 1. The upper left figure shows a 3D view of the space curve (p[x], f [x])
where the scalar function f [x] is 4 cos[x]2−sin[x]2. The remaining three figures
shows a graph generated by applying DS interpolation to interior of the ellipse.
In the case of Wachspress interpolation and harmonic interpolation, the inter-
polant was computed by evaluating the integral of equation 2 in closed form
using Mathematica for a undetermined point v and evaluating the resulting
expression for grid of values of v.
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Fig. 2. Examples of interpolants created for an ellipse with a height function v2
1 −v2

2

specified on the boundary. The interpolants correspond to k = 0 on the top row
and k = 1, 2 on the bottom row.

4 Equivalence to previous discrete interpolants

In this section we investigate the behavior of the DS interpolant when the
curve P as well as the associated function f are piecewise linear. Let P
be a 2D polygon with vertices {p0, p1, . . . , pn = p0} and function values
{f0, f1, . . . , fn = f0}. Furthermore, associated with each point parameter val-
ues {x0, x1, . . . , xn = x0} such that

p[x] = (xi−x)pi−1+(x−xi−1)pi

xi−xi−1
for xi−1 ≤ x ≤ xi

f [x] = (xi−x)fi−1+(x−xi−1)fi

xi−xi−1
for xi−1 ≤ x ≤ xi.

(13)

Our goal is to reduce our interpolant to the discrete form f̂ [v] =
∑

i
wifi

∑

i
wi

where the weights wi depend on v. In particular, we show that our integral
construction reproduces a family of barycentric coordinates first described in
Floater et al. [20].

4.1 Structure of the dual

We first consider the structure of the dual P̄v for piecewise linear shapes. To
construct the polar dual of a shape with normal discontinuities, we treat a
point on the curve that exhibits this discontinuity as an infinite collection of
points at the same location but with smoothly varying normals. Let pv[x

−
i ]⊥

and pv[x
+
i ]⊥ be the normal vectors of pv[xi] on its left and right curve segments

(see figure 3). Interestingly, by representing pv[xi] as an infinite collection of
points with normals varying continuously from pv[x

−
i ]⊥ to pv[x

+
i ]⊥, the polar

dual of pv[xi] forms a straight line segment with end points at
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Fig. 3. Convex (a) and concave (b) vertices of Pv (dark) and their corresponding
pieces on P̄v (gray and dashed). The vertices li and ri of P̄v correspond to the two
distinct normals to Pv at pv[xi].

li =
pv[x

−
i ]⊥

pv[x
−
i ]⊥ · pv[xi]

ri =
pv[x

+
i ]⊥

pv[x
+
i ]⊥ · pv[xi]

When pv[xi] forms a concave corner, the location of li and ri with respect to
pi may be reversed as shown in figure 3 (b). Figure 4 shows a discrete version
of the ellipse from figure 1 sampled at intervals of π

3
. The top row illustrates

Pv for different values of k while the bottom row shows the corresponding
dual P̄v. When k 6= 0, Pv is curved as is the dual P̄v. Notice that when Pv is
not convex, P̄v may fold back and self-intersect as shown in the bottom-right
corner.

Now we can describe the structure of the polar dual P̄v in relation to the
polygon P . As shown in figure 3 (a), P̄v is composed of two types of segments:
curved segments between {ri−1, li} corresponding to each edge {pi−1, pi} and
straight segments {li, ri} corresponding to each vertex pi. In order to param-
eterize P̄v, we let li and ri correspond to parameters x−

i and x+
i , that is,

li = p̄v[x
−
i ] and ri = p̄v[x

+
i ]. Using this structure of the dual and equation 13,

we can rewrite the numerator of equation 3 in the form

∑

i

x−

i
∫

x+

i−1

fi−1(1 − t) + fit

|p[x] − v|
dP̄v +

∑

i

x+

i
∫

x−

i

fi

|p[x] − v|
dP̄v (14)
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Fig. 4. Examples of duals of a ellptical hexagon with respect to the point shown.
The top row shows Pv for k = 0, 1, 2. The bottom row shows the dual of the shape
above.

where t =
x−x+

i−1

x−

i
−x+

i−1

.

We then use this piecewise definition of the interpolant f̂ [v] to rewrite the

integral equation as a discrete sum f̂ [v] =
∑

i
wifi

∑

i
wi

where wi = αi + βi + γi and

αi =
∫ x−

i+1

x+

i

1−t
|p[x]−v|

dP̄v βi =
∫ x−

i

x+

i−1

t
|p[x]−v|

dP̄v γi =
∫ x+

i

x−

i

1
|p[x]−v|

dP̄v.

4.2 Equivalence to Wachspress

To give more intuition about the shape of the auxiliary curve P̄v, we first look
at the special case when av[x] is the identity function and pv[x] = p[x] − v.
Notice that the normal vectors pv[x

−
i ]⊥ and pv[x

+
i ]⊥ now become the outward

unit normals of the edges {pi−1, pi} and {pi, pi+1}. Furthermore, by applying
the definition of the dual from equation 5 to this piecewise linear shape, we
find that ri−1 = li. As a result, the polar dual P̄v consists solely of straight
segments {li, ri} as shown in figures 4(left) and 5.

Since x+
i = x−

i+1, αi = βi = 0. γi is also easy to calculate because 1
|p[x]−v|

= 1
|pi−v|

over {x−
i , x+

i }. Therefore, γ = |li−ri|
|pi−v|

, which is proportional to the area of the

14



vpxp iiv −=][

vpxp iiv −= −− 11][ vpxp iiv −= ++ 11][

O

1+= ii lr1−= ii rl

vpxp iiv −=][

vpxp iiv −= −− 11][ vpxp iiv −= ++ 11][

O

1+= ii lr1−= ii rl

Fig. 5. The dual for Wachspress coordinates is a piecewise linear shape where li = ri.
The discrete weight for these coordinates is proportional to the area of the shaded
wedge on the dual.

shaded wedge in figure 5. This relation to the area of the dual is exactly
the same as the discrete definition of Wachspress coordinates given by Ju et
al. [15].

4.3 Equivalence to Floater’s family of coordinates

Floater et al. [20] considers a general family of barycentric coordinates for 2D
polygons with weights wi of the form

wi =
ci−1

Ai−1
+

ci+1

Ai

−
ciBi

Ai−1Ai

where Ai is the signed area of the triangle {v, pi, pi+1}, Bi is the signed area
of the triangle {v, pi−1, pi+1} and ci is an arbitrary scalar associated with the
vertex pi as shown in figure 6. Furthermore, the authors show that given any
set of weights w′

i that are barycentric coordinates, there exists choices of ci

such that wi = w′
i. In other words, this family of coordinates can reproduce

all possible discrete barycentric coordinates. In particular, if ci = |pi − v|k,
these coordinates reproduce Wachspress coordinates when k = 0, mean value
coordinates when k = 1 and discrete harmonic coordinates when k = 2.

Theorem: The DS interpolant of equation 3 reproduces Floater’s family of
coordinates if av[xi] = ci.

Proof: We begin by using the properties of the dual to relate vertices of P̄v to
the vertices P using αi, βi, γi. To do so, we overload the ⊥ operator to apply
to vectors as well as functions. If z is a vector in 2D from the origin, we define
z⊥ to be the vector z rotated counter-clockwise by π

2
radians.
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1+ip

ip

1−ip

ip

1+ip1−ip

iB

iA1−iA

v v

iθ1−iθ

)(a )(b

1+ip

ip

1−ip

ip

1+ip1−ip

iB

iA1−iA

v v

iθ1−iθ

)(a )(b

Fig. 6. The areas of triangles formed by the vertices of P and v for Floater’s family
of barycentric coordinates.

Consider the quantity αi(pi−v)+βi+1(pi+1−v). Based on the definition of αi

and βi+1 in terms of integrals (as well as equation 13), this quantity is exactly

αi(pi − v) + βi+1(pi+1 − v) =

x−

i+1
∫

x+

i

p[x] − v

|p[x] − v|
dP̄v.

Now, as shown in section 2.3, the right-hand side of this expression is exactly
the integral of the outward unit normal of P̄v restricted to the interval [x+

i , x−
i+1]

(i.e; the dotted curve from ri to li+1 in figure 7(a)). If we apply the divergence
theorem to the shaded wedge in figure 7(a), this integral itself is exactly equal
to difference of the vectors l⊥i+1 and r⊥i . So, in summary, we have derive an
equation relating the vector pi − v to the vectors li and ri.

αi(pi − v) + βi+1(pi+1 − v) = l⊥i+1 − r⊥i . (15)

Using a similar argument, we can show that

γi(pi − v) = r⊥i − l⊥i .

We can solve for αi in closed form by dotting both sides of equation 15 with
(pi+1 − v)⊥ and dividing the result by (pi − v) · (pi+1 − v)⊥ = 2Ai,

αi =
l⊥i+1 · (pi+1 − v)⊥ − r⊥i · (pi+1 − v)⊥

(pi − v) · (pi+1 − v)⊥
=

av[xi+1] − r⊥i · (pi+1 − v)⊥

2Ai

,

where Ai is defined as in figure 6. The second equality is due to the identity
l⊥i+1 · (pi+1 − v)⊥ = li+1 · (pi+1 − v) = p̄v[x

+
i+1] · (pv[xi+1]av[xi+1]) = av[xi+1].
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⊥
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⊥
− − )( 1 vpi

⊥
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⊥
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⊥
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1+il
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O
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iril
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O
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ir⊥
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⊥
− − )( 1 vpi

⊥
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⊥
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⊥
ir

)(a )(b

1+il
ir

Fig. 7. The dual P̄v in relation to P . l⊥i and r⊥i are the corresponding vectors rotated
counter-clockwise by π

2 radians.

Similarly, we can solve for βi and γi.

βi = av [xi−1]−li·(pi−1−v)⊥

2Ai−1

γi =
(r⊥

i
−l⊥

i
)·(pi−v)

|pi−v|2

To find the weight wi = αi + βi + γi we use the above equalities and apply
trigonometric identities to obtain

αi + βi + γi =
av[xi−1]

2Ai−1
+

av[xi+1]

2Ai

−
av[xi](cos[θi−1] sin[θi] + cos[θi] sin[θi−1])

|pi − v|2 sin[θi] sin[θi−1]

=
av[xi−1]

2Ai−1

+
av[xi+1]

2Ai

−
av[xi]Bi

2Ai−1Ai

Since we chose av[xi] = ci, this completes the proof of equivalence to Floater’s
family of coordinates. QED

Figure 8 shows three examples of DS interpolant applied to the elliptical
hexagon of figure 2.

5 Conclusion and future work

The main usefulness of the Dual Shephard interpolant proposed here is that it
gives a simple conceptual framework for understanding a range of interpolants
developed for generating 2D coordinates. This interpolant readily generalizes

17



Fig. 8. Examples of interpolants created for a discrete piecewise linear elliptical
hexagon with height values specified at the vertices. The interpolants correspond to
k = 0 on the top row and k = 1, 2 on the bottom row.

to higher dimensions and, in future work, we intend to investigate the useful-
ness of this interpolant in constructing coordinates for closed 3D shapes. For
example, we may be able to develop coordinates for closed, piecewise poly-
nomial curves and surfaces. In this case, we believe that computing closed
form solutions to the integral of equation 3 should be possible. Such an ex-
tension would allow curved shapes to be used as control meshes for defining
deformations (as done in [11] for triangular meshes).
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