
ECE 514/CS 514
Lab 1 - Using Trimaran
All students must hand in an individual lab report by the due date. The reports are
considered as portion the lab grade.

Goals:
1. Understand how to launch the Trimaran compiler and simulator via the X-window

interface
2. Launching the compiler via shell script
3. Identify the phases of the compiler
4. Identify the files generated during the compilation process
5. Learn to read Rebel code well enough to match it with a simple C codeS

 % trimaran/bin/trimaran-gui &

NOTE: You should also open a few shell terminal windows(you may want to open an
editor like xemacs or kde's advanced editor). You will need these later in order to
examine files that are created by Triamaran.

5.If this is the first time you are running Trimaran, it will attempt to create a workspace
directory named trimaran-workspace in your home directory. You must have this
workspace in order to work with Trimaran.

6.Choose the Compile button from the Trimaran menu. You will see the following
window popping up:

Before your first compilation, you must give a name to your compilation project by going
down to Project-File sub-window and selecting New.

7. Now let's compile the mm benchmark. Go to the Benchmark sub-window and select
mm from the pull-down menu. mm is a matrix multiply benchmark. Now Click on the
Configure Stages of Compilation button. The following screen or one very simular will
show up.

The 3 major sections of this window correspond to the 3 major parts of Trimaran. Impact
is the front-end of the compilation system and performs most of the traditional front-end
features of any compiler. Elcor is the back-end optimizer of the system, and performs the
machine dependent back-end phases of the compiler. The simulator (SIMU + Dinero IV)
is the 3rd component that allows this system to generate performace data on any compiled
program.

Be sure that you are configured as above for Inlining and Basic Block Formation in the
Front-end, standard settings in Elcor, and you want the simulator to be executed.

Click Close and then select the Run Compilation button. Ascreen will pop up and scroll
by, don't worry about that now. We will show you where that is later.

8. After the compilation, identify the files created in the trimaran-workspace directory
during the compilation process.

1. Change directories to ~/trimaran-workspace/projects/ and look at the
contents of the directory. You should see a directory with the same name
as your project name. Change to that directory.

2. Now you will see a directory name like: hpl_pd_elcor_std.std.mm.b.#
where # is 1, 2, 3, etc. This name has a lot of meaning. The
hpl_pd_elcor_std is the name of the MDES file, the std is the name of the
parameter set used, the mm is the benchmark name, b is for basic block,
and # is the instance of compilation where none of the previous parms
have changed.

3. Change to a directory for one of your compilation instances. Examine this
directory. You will see the following:

1. compilation.log : a verbose recording of the compilation
(i.e. The info in the scrolling screen during compilation)

2. compile_script : a shell script that can be invoked
e.g. ./compile_script to execute this version again.

3. elcor_intermediate, simu_intermediate, and
impact_intermediate: These directories will contain
intermediate files created by Trimaran during the
compilation. Each stage/phase will have IR files, data files,
stats files, etc.

9. In the current directory for the mm run, locate the file compile_script. Execute it by
typing the following:

 % ./compile_script

What happens? Why would do you think this would be useful? What are the advantages
over using the GUI again to compile?

10. DELIVERABLE #1: By reading the log file compilation.log, we can see every
phase of the compilation process.

1. Determine which phase of Trimaran produce which file(s) in the intermediate
directories? For example, which command from the compilation produces the .tr
file.

2. Also, identify the work that is done in each of these phases. What is the
functionality of each phase i.e. is this a scheduling phase, a parsing phase, or an
scalar optimization phase just to name a few? Summarize all of this information

using an annotated flow chart. The flow chart should be annotated with input and
output files, phase names, and the functionality of the phase. You will be adding
other paths of compilation to the flow chart so make sure you leave room to
branch out.

Completing this deliverable means you should have a clear picture of how a program is
converted from a C program to a simulated executable within the context of the Trimaran
compilation system. It is not important that you know all of the details of each phase;
however, you should have a high-level understanding of the purpose of each phase.

11. Now you have a good picture of what Triamaran has to do to compile a program and
simulate it. Now we want you to identify things that are different when you change the
Region Formation types. Change the Region Formation option to Super Block Fomation
and repeat the compilation.

APPEND TO DELIVERABLE #1: Identify the differences between Basic Block
Formation and Super Block Formation in terms of the compilation phases and
intermediate files. Update your flow chart with the alternative paths/steps/annotations.

12. Repeat (8) for Hyper Block Formation.S

13. Now you need to update the simulator, by adding cache simulation. On the webpage,
there is a dowload link called "Simu + Cache Addon". The file you download will be
a .tgz file. Save the file to your trimaran/simu directory.

1. cd to your trimaran/simu directory (should be "~/trimaran/")
2. cd src/Emulib/static_lib
3. mv libequals.a libequals.a.old
4. cd ../../../
5. tar xzvf cache-sim-dinero.tgz

This will unpack to files (one is a symlink to the other). Compile and simulate an
benchmark. Check the simu_intermediate directory for this execution. Verify that the file
PD_STATS was generated. In addition see that SMACHS_GSTATS.sg file was
generated; this file will contain cache statistics.

Reading Rebel files

Some of the files found in the intermediate directories are Rebel files. Rebel is the ascii
representation of the Elcor IR. Over the next week or 2 in class you will be introduced to
HPL-PD and Rebel. This acts as an introduction to how Rebel will play a role in
Trimaran, and how the many ways that Triamaran will allow you to explore Rebel. If you
closed you Trimaran process, launch trimaran-gui. You will see the following window
popping up:

1. 1. Compile the fact2 benchmark using any of the settings you used for mm before.

2. 2. Lets take a look at the source file. With your favorite editor, open the fact2.c
file located in the ~/trimaran-workspace/benchmarks/fact2/src directory.
Examine the source code.

• Compare the location of the printf statements and the output that you can
find in the compilation.log file.

• Leave this source file open so that you can compare with the IR views.

3. Choose the "View IR" from the above menu. You will see the following pop-up
screen.

This is the main window for where you can browse the IR from many different views. All
of these options require you to load an Elcor .el file from the elcor_intermediate directory.

Using the "Browse" option, open the fact2.O_el file(follow the directory
structure). (checkpoint) At what point in your flow chart is this file generated?

4. Try each of the following views of the IR, i.e. "Region Hierarchy", "Program
Dependency Graph", "Control Flow", "Cycle-by-Cycle Schedule" and "Execution
Profile".

• Start with the Execution Profile to get a feel for where the program spends a lot of
its time.

• Use the Control Flow view to find the area where the work is being done.
• Map this are of the control flow back to the C program. For example, where is the

loop, the system calls, and the if statement.
• Which basic block #'s correspond with which C code constructs i.e. using the

viewer, identify the basic blocks in the source code.

5. DELIVERABLE #2: Identify an appropriate part of the program (i.e. not too small to
be uninteresting nor too big to be messy). Using the information you looked at in step 14
describe the information being represented by the Region Hierarchy, Program
Dependency Graph, Control Flow, Cycle-by-Cycle Schedule, and Execution Profile. In
some cases, you may have to consider the whole program to have any reasonable results.
This is left up to your discretion. When you have completed this deliverable, you should
be comfortable with the different views of a program, and how these views relate to each
other and the source code.

Tracing Rebel Code
Rebel operations have the same semantics as described in the HPL-PD ISA. At this time,
you are being asked to trace some Rebel code using the semantics of the HPL-PD ISA.
Generate a BB version of the eight benchmark. Trace the Rebel code, and determine
what it is doing in the 1st 4 iterations of the main loop.

DELIVERABLE #3: You will submit the following:

• A table that shows a mapping of variable names found in the source code and the
registers that are used to hold the values of those variables.

• A table that shows the execution of each op in the 1st and 4th iterations (Please do
not submit all 4 iterations)

o Each row of this table should contain the op #, opcode, src and dest
registers and their corresponding values.

• A table that summarizes the state at the end of the 4th iteration; it contains the
registers used and their contents.

--- End of Lab ---

