
.

CS 514/ ECE 518: Designing CS 514/ ECE 518: Designing 
Embedded Computing Embedded Computing 

Environments (Overview)Environments (Overview)



2

2

Philosophy of this Course

• The evolution of core technologies enrich the class of 
applications and solutions

• We will be studying the key technologies that will be driving 
the growth of embedded systems in the next decade

Applications Solutions

Core
Technologies



3

3

What is computing?

• In the abstract, computing is realizing solutions to 
problems onto silicon

Solutions

Translated Programs

Silicon

ASICs

COTS FPG
A

sD
SP

s



4

4

The Virtual Machine

• The virtual machine provides an abstraction of the 
silicon to support the software layers

Silicon

ASICs

COTS FP
G

AsD
SP

s

Java



5

5

The Development Tools

• The development tools provide designers the 
vehicle for implementing their solutions

Silicon

ASICs

COTS FP
G

AsD
SP

s

Java

•CAD
•VLSI

•High-level 
languages
•Compilers



6

6

The State-of-the-Art for Tomorrow

• The embedded systems of tomorrow will leverage 
the evolving hardware and software technologies

Silicon

ASICs

COTS FP
G

AsD
SP

s

Java Silicon

ASICs

COTS FP
G

AsD
SP

s

Java

Future
Embedded Systems

Silicon
ASICs

COTS FP
G

A
sD

S
P

s

Java



7

7

Course Goals

• Provide a broad overview of the embedded 
computing space
– Hardware options
– Software solutions
– Putting it all together

• Provide an introduction to the challenges faced by 
the computing and engineering side of this field

• Provide a core set of knowledge that allows 
students to be active participants in developing 
these new computing engines.



8

8

Embedded Computing

Why ?

What ?

How ?



9

9

The Nature of Embedded Systems

Visible Computing View is of end application

(Hidden computing element)



10

10

• Supported by Moore’s (second) law
– Computing power doubles every eighteen months
Corollary: cost per unit of computing halves every eighteen months

• From hundreds of millions to billions of units

• Projected by market research firms (VDC) to be a 
50 billion+ space over the next five years

• High volume, relatively low per unit $ margin

Favorable Trends



11

11

Embedded Systems Desiderata

•Low Power
- High battery life

•Small size or footprint

•Real-time constraints

Performance 
comparable to or 

surpassing leading edge 
COTS technology

Rapid time-to-market



12

12

Timing Example

Predictable Timing Behavior Unpredictable Timing
Behavior

Video-On-Demand



13

13

Current Art

• Meet desiderata while overcoming Non-Recurring Engineering 
(NRE) cost hurdles through volume

• High migration inertia across applications
• Long time to market

Vertical application domains

Industrial 
Automation

Telecom

Select computational kernels

Application
Specific Integrated

Circuits
(ASIC)



14

14

Subtle but Sure Hurdles

• For Moore’s corollary to be true
– Non-recurring engineering (NRE) cost must be amortized 

over high-volume
– Else prohibitively high per unit costs

• Implies “uniform designs” over large workload 
classes
– (Eg). Numerical, integer, signal processing

• Demands of embedded systems
– “Non uniform” or application specific designs
– Per application volume might not be high
– High NRE costs infeasible cost/unit
– Time to market pressure



15

15

The Embedded Systems Challenge

• Sustain Moore’s corollary
– Keep NRE costs down

Multiple application domains
3D 

Graphics
Industrial 

Automation
Medtronics E-Textiles Telecom    

Rapidly changing application 
kernels in moderate volume

Custom computing solution 
meeting constraints



16

16

Responding Via Automation

Multiple application domains
3D 

Graphics
Industrial 

Automation
Medtronics E-Textiles Telecom    

Rapidly changing application 
kernels in low volume

Automatic
Tools

Power Timing

Size

Application specific design



17

17

Three Active Approaches

• Custom microprocessors

• Architecture exploration and synthesis

• Architecture assembly for reconfigurable computing



18

18

Custom Processor Implementation

• High performance implementation
• Customized in silicon for particular application domain
• O(months) of design time
• Once designed, programmable like standard processors

Proprietary
Tools

Proprietary ISA,
Architecture 
Specification

Application 
analysis

Fabricate 
Processor

Custom 
Processor

implementation

Application 
Language 

with custom
extensions

Compiler Binary
Proprietary 

ISA

Time Intensive

Tensilica, HP-ST Microelectronics approach



19

19

Architecture Exploration and Synthesis 

The PICO Vision
Program In

Automatic synthesis of
application specific

parallel / VLIW
ULSI microprocessors

And their compilers
for embedded computing

Chip Out
“Computer design for the masses”

“A custom system architecture in 1 week tape-out in 4 weeks”
B Ramakrishna Rau “The Era of Embedded Computing”, Invited talk, 
CASES 2000.(from HP Labs Tech report HPL-2000-115)



20

20

Custom Microprocessor Design

Application(s)
define workload

Optimizing
Compiler

Analyze

Define ISA extension
(eg) IA 64+

Define Compiler
Optimizations

Design 
Implementation

Microprocessor
(eg) Itanium +



21

21

Application Specific Design

Single
Application

Program Analysis

Analyze

Library of possible
implementations

(Bypass ISA)

Explore and
Synthesize 

implementations

VLIW Core +                            
Non programmable extension

Applications

Application specific processor 
runs single application

Extended EPIC 
Compiler 

Technology



22

22

The Compiler Optimization Trajectory

Frontend and Optimizer

Determine Dependences

Determine Independences

Bind Operations to Function Units

Bind Transports to Busses

Determine Dependences

Bind Transports to Busses

Execute

Superscalar

Dataflow

Indep. Arch.

VLIW

TTA

Compiler Hardware

Determine Independences

Bind Operations to Function Units

B. Ramakrishna Rau and Joseph A. Fisher. Instruction-level parallel: History overview, and perspective. 
The Journal of Supercomputing, 7(1-2):9-50, May 1993.



23

23

What Is the Compiler’s Target ``ISA’’?

• Target is a range of 
architectures and their building 
blocks

• Compiler reaches into a 
constrained space of silicon

• Explores architectural 
implementations

• O(days – weeks) of design 
time

• Exploration sensitive to 
application specific hardware  
modules

• Fixed function silicon is the 
result

• Verification NRE costs still 
there

• One approach to overcoming 
time to market 

Frontend and Optimizer

Determine Dependences

Determine Independences

Bind Operations to Function Units

Bind Transports to Busses

Determine Dependences

Bind Transports to Busses

Execute

Superscalar

Dataflow

Indep. Arch.

VLIW

TTA

Compiler Hardware

Determine Independences

Bind Operations to Function Units

B. Ramakrishna Rau and Joseph A. Fisher. 
Instruction-level parallel: History overview, and 
perspective. The Journal of Supercomputing, 
7(1-2):9-50, May 1993.



24

24

Choices of Silicon

High level
design/synthesis

(EDIF) Netlist

Fixed silicon implementation
Standard cell design etc.

Emulated i.e. 
Reconfigurable target



25

25

Reconfigurable Computing



26

26

FPGAs As an Alternative Choice for Customization

• Frequent (re)configuration and hence frequent 
recustomization

• Fabrication process is steadily improving

• Gate densities are going up

• Performance levels are acceptable

• Amortize large NRE investments by using COTS 
platform



27

27

Adaptive EPIC

Adaptive Explicitly Parallel Instruction Computing
Surendranath Talla
Department of Computer Science, New York University
PhD Thesis, May 2001 
Janet Fabri award for outstanding dissertation.

Adaptive Explicitly Parallel Instruction Computing
Krishna V. Palem and Surendranath Talla, Courant Institute of 
Mathematical Sciences; Patrick W. Devaney, Panasonic AVC American 
Laboratories Inc.
Proceedings of the 4th Australasian Computer Architecture Conference, 
Auckland, NZ. January 1999



28

28

CompilerCompiler

ISA

ADD
format

semantics

LD
format
semantics

Compiler-Processor Interface
Source

program

Executable

Registers
Exceptions..



29

29

CompilerCompiler

Redefining Processor-Compiler Interface

Let compiler determine the 
instruction sets (and their realization on chip)

Let compiler determine the 
instruction sets (and their realization on chip)

ISA

mysub
format
semantics

myxor format
semantics

ExecutableExecutable

Source
program



30

30

Record of execution

EPIC execution model

ILP

Functional units



31

31

Reconfigure datapath

Adaptive EPIC execution model

Record of execution

ILP-2

ILP-1

Configured
Functional 

units



32

32

Placing in Perspective



33

33

The Space for these Technologies

ASIC

CMP NP

COTS
PROCESSOR

PICO

Software 
programmable

Designed with 
EDA Tools

Custom 
Microprocessor

CMP:

Network 
processor

NP:

Speed to market

Pe
rf

or
m

an
ce

Krishna V. Palem, Lakshmi N. B. Chakrapani, Sudhakar Yalamanchili, “A Framework For Compiler Driven 
Design Space Exploration For Embedded System Customization”, In Proceedings of the Ninth Asian 
Computing Science Conference, December 2004.



34

34

Course Lecture/Tutorial

• Course Page: http://www.cs.rice.edu/~kvp1/
follow the “Teaching” link

• Lectures will be posted weekly(prior to the week 
they are given)

• Lab assignments will be posted on the web page



35

35

Topics of the Course

• ISAs, Microprocessor ISAs, DSP ISAs, etc.
• EPIC Computing
• VHDL & FPGAs
• System-On-Chip
• Real-Time OS Design
• Communications and Network Solutions
• HW/SW Co-design
• Putting it all together

– Adaptive EPIC
– Flexible Instruction Processors
– Architecture Synthesis
– Architecture Assembly

• The course will provide coverage over a wide range of current 
technologies for the purpose of exploiting them in new & 
improved computing engines and will also involve guest 
lectures from specialists.



36

36

Textbook, Additional Reading and 
Supplements

• Computers as components: Principles of Embedded 
Computing System Design by Wayne Wolf. Morgan 
Kaufmann publication. ISBN 1-55860-541-X

• Engineering a Compiler by Keith Cooper and Linda 
Torczon, ISBN-10: 155860698X

• Embedded Computing: A VLIW Approach to 
Architecture, Compilers and Tools by Joseph A. 
Fisher, Paolo Faraboschi, Cliff Young. ISBN-10: 
1558607668

• Optimizing Compilers for Modern Architectures: A 
Dependence-based Approach by Randy Allen and 
Ken Kennedy, ISBN-10: 1558602860

• Supplements will be in electronic form and posted 
on the web page



37

37

Lab/HW

• Homeworks will be a set of questions/problems to 
solve

• Labs contain a hands-on component and some 
high-level programming skills and will be based on 
the Trimaran system
– The lab work could be completed during the lab time

• Homework is typically due a week from the day it is 
assigned

• All materials will be posted on the website



38

38

Grading

• Labs and homeworks: 30 % 
• Term reports and Project:   50 %
• Final examination:   20 %


