
.

Topic 1Topic 1
Evolution of ILP in MicroprocessorsEvolution of ILP in Microprocessors

The slides used for this lecture were contributed

by Prof. B. Narahari, George Washington University

2

2

Where Superscalar vs VLIW Takes
Place

• The innermost circle represents the various types of
architectures: VLIW and Superscalar

Silicon

ASICs

COTS FP
G

AsD
SP

s

Java

3

3

Introduction to ILP

• What is ILP?
– Processor and Compiler design techniques that speed up

execution by causing individual machine operations to
execute in parallel

• ILP is transparent to the user
– Multiple operations executed in parallel even though the

system is handed a single program written with a
sequential processor in mind

• Same execution hardware as a normal RISC
machine
– May be more than one of any given type of hardware

4

4

Why ILP for Embedded Processors?

• Current state-of-art leverages RISC pipeline
technology e.g. ARM

• Next logical progression for increased performance
is some level of parallelism
– Constraints of embedded systems prohibit multiprocessor

solutions I.e. power and size constraints
– Instruction level parallelism is feasible and offers improved

performance

• Some current embedded applications use ILP
processor technology in application specific domains
I.e. DSP

5

5

Example Execution

Functional Unit Operations Performed Latency
Integer Unit 1 Integer ALU Operations

Integer Multiplication
Loads
Stores

1
2
2
1

Integer Unit 2 /
Branch Unit

Integer ALU Operations
Integer Multiplication
Loads
Stores
Test-and-branch

1
2
2
1
1

Floating-point Unit 1
Floating-point Unit 2

Floating Point Operations 3

6

6

Example Execution

Sequential Execution

ILP Execution

7

7

Early History of ILP

• 1940s and 1950s
– Parallelism first exploited in the form of horizontal

microcode
– Wilkes and Stringer, 1953 - “In some cases it may be possible for

two or more micro-operations to take place at the same time”

• 1960s - Transistorized computers
– More gates available than necessary for a general-purpose

CPU
– ILP provided at machine-language level

8

8

Early History of ILP

• 1963 - Control Data Corporation delivered the CDC
6600
– 10 functional units
– Any unit could begin execution in a given cycle even if

other units were still processing data-independent earlier
operations

• 1967 - IBM delivered the 360/91
– Fewer functional units than the CDC 6600
– Far more aggressive in its attempts to rearrange the

instruction stream to keep functional units busy

9

9

References

• “Instruction-Level Parallel Processing: History,
Overview and Perspective”, B. Ramakrishna Rau
and Joseph A. Fisher, October 1992

• “Instruction-Level Parallel Processing”, Joseph A.
Fisher and B. Ramakrishna Rau, January 1992

10

10

Recent History of ILP

• 1970s - Specialized Signal Processing Computers
– Horizontally microcoded FFTs and other algorithms

• 1980s - Speed Gap between writeable and read-
only memory narrows
– Advantages of read-only control store began to disappear
– General purpose microprocessors moved toward RISC

concept.
– Specialized processors provided writeable control memory,

giving users access to ILP
– called Very Long Instruction Word (VLIW)

11

11

Recent History of ILP

• 1990s - More silicon than necessary for
implementation of a RISC microprocessor
– Virtually all designs take advantage of the available real

estate by providing some form of ILP
– Primarily in the form of superscalar capability
– Some have used VLIWs as well

12

12

ILP Processors

Parallelism

Pipelining
(Vertical)

Superscalar, VLIW
(Horizontal)

13

13

Instruction Level Parallel(ILP)
Processors

• Early ILP - one of two orthogonal concepts:
– Pipelining(RISC)
– Multiple (non-pipelined) units

• Progression to multiple pipelined units
• Instruction issue became bottleneck, led to

– Superscalar ILP processors
– Very Large Instruction Word (VLIW)

• Embedded systems exploit ILP to improve
performance

14

14

ILP Processors

• Whereas pipelined processors work like an
assembly line

• VLIW and Superscalar processors operate basically
in parallel, making use of a number of concurrently
working execution units (EU)

• There is a natural progression from pipelined
processors to VLIW/Superscalar processors in the
embedded systems community.

15

15

Questions Facing ILP System Designers

• What gives rise to instruction-level parallelism in conventional,
sequential programs and how much of it is there?

• How is the potential parallelism identified and enhanced?
• What must be done in order to exploit the parallelism that has

been identified?
• How should the work of identifying, enhancing and exploiting

the parallelism be divided between the hardware and the
compiler?

• What are the alternatives in selecting the architecture of an
ILP processor?

16

16

ILP Architectures

• Between the compiler and the run-time hardware,
the following functions must be performed
– Dependencies between operations must be determined
– Operations that are independent of any operation that has

not yet completed must be determined
– Independent operations must be scheduled to execute at

some particular time, on some specific functional unit, and
must be assigned a register into which the result may be
deposited.

17

17

ILP Architecture Classifications

• Sequential Architectures
– The program is not expected to convey any explicit

information regarding parallelism

• Dependence Architectures
– The program explicitly indicates dependencies between

operations

• Independence Architectures
– The program provides information as to which operations

are independent of one another

18

18

Sequential Architecture

• Program contains no explicit information regarding
dependencies that exist between instructions

• Dependencies between instructions must be
determined by the hardware
– It is only necessary to determine dependencies with

sequentially preceding instructions that have been issued
but not yet completed

• Compiler may re-order instructions to facilitate the
hardware’s task of extracting parallelism

19

19

Sequential Architecture Example

• Superscalar processor is a representative ILP
implementation of a sequential architecture
– For every instruction issued by a Superscalar processor,

the hardware must check whether the operands interfere
with the operands of any other instruction that is either

– Already in execution
– Have been issued but are waiting for the completion of

interfering instructions that would have been executed earlier in
a sequential program

– Is being issued concurrently but would have been executed
earlier in the sequential execution of the program

20

20

Sequential Architecture Example

• Superscalar processors attempt to issue multiple
instructions per cycle
– However, essential dependencies are specified by

sequential ordering so operations must be processed in
sequential order

– This proves to be a performance bottleneck that is very
expensive to overcome

• Alternative to multiple instructions per cycle is
pipelining and issue instructions faster

21

21

Dependence Architecture

• Compiler or programmer communicates to the
hardware the dependencies between instructions
– Removes the need to scan the program in sequential order

(the bottleneck for superscalar processors)

• Hardware determines at run-time when to schedule
the instruction

22

22

Dependence Architecture Example

• Dataflow processors are representative of
Dependence architectures
– Execute instruction at earliest possible time subject to

availability of input operands and functional units
– Dependencies communicated by providing with each

instruction a list of all successor instructions
– As soon as all input operands of an instruction are

available, the hardware fetches the instruction
– The instruction is executed as soon as a functional unit is

available

• Few Dataflow processors currently exist

23

23

Independence Architecture

• By knowing which operations are independent, the
hardware needs no further checking to determine
which instructions can be issued in the same cycle

• The set of independent operations is far greater
than the set of dependent operations
– Only a subset of independent operations are specified

• The compiler may additionally specify on which
functional unit and in which cycle an operation is
executed
– The hardware needs to make no run-time decisions

24

24

Independence Architecture Example

• VLIW processors are examples of Independence
architectures
– Specify exactly which functional unit each operation is

executed on and when each operation is issued
– Operations are independent of other operations issued at

the same time as well as those that are in execution
– Compiler emulates at compile time what a dataflow

processor does at run-time

25

25

Independence Architecture Example

• Horizon
– Encodes an integer H with each operation and guarantees

that the next H operations are data-independent of the
current operation

– The hardware simply insures that no more than H
subsequent operations will be released before the current
operation completes

26

26

ILP Architecture Comparison

Sequential
Architecture

Dependence
Architecture

Independence
Architecture

Additional information
required in the program

None Complete specification
of dependencies
between operations

Minimally, a partial list of
independencies. Typically,
a complete specification of
when and where each
operation is to be executed

Typical ILP Processor Superscalar Dataflow VLIW

Analysis of dependencies
between operations

Performed by
hardware

Performed by compiler Performed by compiler

Analysis of independent
operations

Performed by
hardware

Performed by hardware Performed by compiler

Final operation scheduling Performed by
hardware

Performed by hardware Typically, performed by
compiler

Role of compiler Rearranges code to
make the analysis and
scheduling hardware
more successful

Replaces some analysis
hardware

Replaces virtually all the
analysis and scheduling
hardware

27

27

What does this mean for Embedded
Systems?

• ASICs and DSPs have been typically designed with
RISC and VLIW characteristics.

• Embedded systems are moving away from
pipelined RISC architectures to improve
performance.

• Microprocessor technology is offering superscalar
and VLIW as solutions for embedded systems.

28

28

VLIW and Superscalar

• Basic structure of VLIW and superscalar consists of
a number of EUs, capable of parallel operation on
data fetched from a register file

• VLIW and superscalar processors require highly
multiported register files
– limit on register ports places inherent limitation on

maximum number of EUs

29

29

Contrasting VLIW & Superscalar

• Presentation of instructions:
– VLIW receive multi-operation instructions
– Superscalar receive traditional sequential stream

• VLIW needs very long instructions in order to
specify what each EU should do

• Superscalar parallelize a sequential stream of
conventional instructions

30

30

Contrasting VLIW & Superscalar

• VLIW processors expect dependency free code on
each cycle whereas superscalars do not
– Superscalars cope with dependencies using hardware

(dynamic instruction scheduling)
– VLIW lets the compiler cope with dependencies (static

instruction scheduling)

• Decode and Issue unit in superscalar processors
issue multiple instructions for the EUs per cycle

31

31

Superscalar Processors

• Runtime or dynamic tasks:
– parallel decoding
– superscalar instruction issue
– parallel instruction execution

– preserving sequential consistency of exception processing

32

32

Superscalar: Parallel Decoding

• Scalar processor decodes one instruction/cycle
• Superscalar decodes multiple instructions per cycle
• Check for dependencies

– With respect to instructions currently executing
– With respect to candidate instructions for issue
– Since more instructions are in execution, more

comparisons to be performed

• Requires complex HW to support the dynamic
scheduling

33

33

Superscalar: Parallel Execution

• When instructions are executed in parallel they might finish
out of program order
– unequal execution times

• Specific means needed to preserve logical consistency
– preservation of sequential consistency

• Exceptions during execution
– preserve sequential consistency of exception processing

• Finishing out of order can be avoided with multiple EU -- how
?
– delay result delivery to visible registers

• Superscalar hardware is power-inefficient compared to VLIW!
– Of great concern to embedded systems design

34

34

VLIW Processors

• Length (number of bits) of VLIW instruction
depends on two factors:
– Number of EUs and
– Lengths required for controlling each of the EUs

• Static scheduling removes burden of instruction
scheduling from processor
– Reduces complexity of processor at a greater than linear

rate
– Lesser complexity can be exploited either by increasing

the clock rate or degree of parallelism
– Helps sustain Moore’s Law

35

35

VLIW Tradeoffs

• Compiler takes full responsibility for dependency
resolution and parallelism

• This implies architecture has to be exposed in some
detail to compiler
– Number and types of EU, their latencies, memory load-use

delays etc.
– Compiler has to be aware of technology dependent

parameters like latencies!

36

36

VLIW Tradeoffs - Cont’d

• Mispredicted memory latencies lead to cache
misses
– Compiler must take into account worst case delay values
– This leads to performance degradation

• VLIW uses long instruction words
– Some of the fields in the instruction word may not be used
– No-ops
– Wasted memory space and memory bandwidth

37

37

Summary

Embedded
Processors

38

38

Instruction Scheduling

• dependencies must be detected and resolved
• instructions that are not dependent on each other

must be scheduled
• static: accomplished by compiler which avoids

dependencies by rearranging code
• dynamic: detection and resolution performed by

hardware. processor typically maintains issue
window (prefetched inst) and execution window
(being executed). check for dependencies in issue
window.

39

39

More Hardware Features to Support ILP

• Pipelining
– Advantages

– Relatively low cost of implementation - requires latches within
functional units

– With pipelining, ILP can be doubled, tripled or more

– Disadvantages
– Adds delays to execution of individual operations
– Increased latency eventually counterbalances increase in ILP

40

40

• Additional Functional Units
– Advantages

– Does not suffer from increased latency bottleneck

– Disadvantages
– Amount of functional unit hardware proportional to degree of

parallelism
– Interconnection network and register file size proportional to

square of number of functional units

Hardware Features to Support ILP

41

41

• Instruction Issue Unit
– Care must be taken not to issue an instruction if another

instruction upon which it is dependent is not complete
– Requires complex control logic in Superscalar processors
– Virtually trivial control logic in VLIW processors
– Big savings in power

Hardware Features to Support ILP

42

42

• Speculative Execution
– Little ILP typically found in basic blocks

– a straight-line sequence of operations with no intervening
control flow

– Multiple basic blocks must be executed in parallel
– Execution may continue along multiple paths before it is known

which path will be executed

Hardware Features to Support ILP

43

43

• Requirements for Speculative Execution
– Terminate unnecessary speculative computation once the

branch has been resolved
– Undo the effects of the speculatively executed operations

that should not have been executed
– Ensure that no exceptions are reported until it is known

that the excepting operation should have been executed
– Preserve enough execution state at each speculative

branch point to enable execution to resume down the
correct path if the speculative execution happened to
proceed down the wrong one.

Hardware Features to Support ILP

44

44

• Speculative Execution
– Expensive in hardware
– Alternative is to perform speculative code motion at

compile time
– Move operations from subsequent blocks up past branch

operations into proceeding blocks

– Requires less demanding hardware
– A mechanism to ensure that exceptions caused by speculatively

scheduled operations are reported if and only if flow of control is
such that they would have been executed in the non-speculative
version of the code

– Additional registers to hold the speculative execution state

– Not power friendly

Hardware Features to Support ILP

45

45

Conclusions

• In Superscalar processors
– architecture is “self-managed”
– notably instruction dependence analysis and scheduling

done by hardware

• In EPIC/VLIW processors
– compiler manages hardware resources
– synergy between compiler and architecture is key
– some compiler optimizations will be covered in depth
– The technology for embedded processors

46

46

Implications to Embedded Systems

• VLIW architectures are simpler designs offering the ability to
reduce power requirements

• VLIW architectures allow the compiler to statically schedule
instructions
– Timing of the schedule can be controlled

– Real-Time Applications

– Power consumption can be controlled
– The ordering of the instructions in the schedule have power implications

• VLIW balances power, area, and performance that makes it
attractive for embedded processing

