
.

Topic 3Topic 3
Introduction to Trimaran(w/ Lab)Introduction to Trimaran(w/ Lab)

2

2

What is Trimaran?

• A compilation system
– A full-blown C compiler for the HPL-PD ISA
– A cycle-by-cycle machine simulator + cache simulator
– Analysis tools

• Uses HPL-PD a parameterized VLIW ISA.
– We will discuss this in detail in the next lecture

• Compiles for target architectures specified by a
machine description language.
– Can compile optimized code for a variety of VLIW and

Superscalar architectures

3

3

Compiling a Program

Source Program
(C, C++, Java, etc)

Assembler/
Linker

Executable Binary
Program

System Libraries

Code
Generation Generates assembly

Low-level
Optimizations Scheduler/Register

Allocation

High-level
Optimizations

Scalar optimizations/
Loop optimizations

Front-End Parsing/semantic analysis

Intermediate
Representations

(IRs)

•Compiles programs for
only one architecture

•All optimizations are
tuned for the given
target machine

4

4

A Retargetable Compiler + Simulator

Source Program
(C, C++, Java, etc)

Assembler/
Linker

Simulated
Executable Binary

Program

Code
Generation

Low-level
Optimizations

High-level
Optimizations

Front-End

Intermediate
Representations

(IRs)

Machine
Description

(MDES)

System Libraries

•MDES influences
optimizations and code
generation

•Executing the binary
performs cycle-by-cycle
simulation based on
MDES

Simulator Library

5

5

C program

To
IR

Modulo
Scheduling

Acyclic
Scheduling

Dependence
Graph

Construction

Post-pass
Scheduling. . . Region-based

Register Allocation Simulator

Execution
Statistics

Machine
Description

Trimaran System Organization

• A compiler researcher’s view of the system:

K&R/ANSI-C Parsing
Renaming & Flattening
Control-Flow Profiling
C Source File Splitting

Function Inlining

Classical Optimizations
Code Layout

Superblock Formation
Hyperblock Formation
ILP Transformations

IMPACT

Elcor/CAR

ReaCT-ILP

6

6

Trimaran Goal

• To provide a vehicle for implementation and
experimentation for state of the art research in
compiler techniques for instruction-level parallel
architectures.
– Currently, the infrastructure is oriented towards Explicitly

Parallel Instruction Computing (EPIC) architectures.
– But can also support compiler research for Superscalar

architectures.

– Primarily, “back-end” compiler research
– instruction scheduling, register allocation, and machine

dependent optimizations.

7

7

Terms and Definitions

• ILP (Instruction-Level Parallelism)
– more than one operation issued per clock cycle within a

single CPU

• EPIC (Explicitly Parallel Instruction Computing)
– ILP under compiler control

– A single instruction may contain many operations
– Compiler determines operation dependences and specifies

which operations may execute concurrently

8

8

Trimaran Components

• Trimaran is composed of the following:
– A machine description language, HMDES, for describing

ILP architectures.
– A parameterized ILP Architecture called HPL-PD

– Current instantiation in the infrastructure is as a EPIC
architecture

– A compiler front-end for C, performing parsing, type
checking, and a large suite of high-level (i.e. machine
independent) optimizations.

– This is the IMPACT module (IMPACT group, University of Illinois)

9

9

Trimaran Components (cont)

– A compiler back-end, parameterized by a machine
description, performing instruction scheduling, register
allocation, and machine-dependent optimizations.

– Each stage of the back-end may easily be replaced or modified
by a compiler researcher.

– Primarily implemented as part of the ELCOR effort by the CAR
Group at HP Labs.

– Augmented with a scalar register allocator from the ReaCT-ILP
group at NYU.

10

10

Trimaran Components (cont)

– An extensible IR (intermediate program representation)
– Has both an internal and textual representation, with conversion

routines between the two. The textual language is called Rebel.
– Supports modern compiler techniques by representing control

flow, data and control dependence, and many other attributes.
– Easy to use in its internal representation (clear C++ object

hierarchy) and textual representation (human-readable)

11

11

Trimaran Components (cont)

– A cycle-level simulator of the HPL-PD architecture which is
configurable by a machine description and provides run-
time information on execution time, branch frequencies,
and resource utilization.

– This information can be used for profile-driven optimizations, as
well as to provide validation of new optimizations.

– The HPL-PD simulator was implemented by the ReaCT_ILP
group at NYU.

12

12

Trimaran Components (cont)

– An Integrated graphical user interface (GUI) for configuring
and running the Trimaran system.

13

13

Introduction to Simulator Support in
Trimaran

14

14

The Framework

• The goals of the HPL-PD simulation framework are
– Emulate the execution of the generated REBEL code on a

virtual HPL-PD processor
– Have the ability to adapt to changes in the machine

description
– Generate accurate run-time information

– Execution clock cycles
– Dynamic control flow and call trace
– Address trace
– Average number of operations executed per cycle

15

15

IMPACT ⇒ ELCOR

C Source REBEL

Code Processor
CODEGEN

Simulator: Overview

• The code processor translates the REBEL input to a C
equivalent

• The output of CODEGEN is a collection of pseudo-executable
low-level C files

.c
MDES

16

16

IMPACT ⇒ ELCOR

C Source REBEL

Code Processor
CODEGEN

Simulator: Overview

• A native compiler (i.e. GCC) is used to generate the
equivalent machine code
– Collection of .o files

.c
MDES

Native Compiler
i.e. GCC

.o

17

17

IMPACT ⇒ ELCOR

C Source REBEL

Code Processor
CODEGEN

Simulator: Overview

• The object files are linked with the Simulation Library
and any other native libraries

.c
MDES

Native Compiler
i.e. GCC

.o

Simulation
Library
EMULIB

C libraries and other
object code

Native Code

Native linker
i.e. ld

18

18

IMPACT ⇒ ELCOR

C Source REBEL

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

Simulator: Overview

• The resultant executable is run on the host platform to generate
statistics and dynamic profile information

.c

C libraries and other
object code

Native Compiler and LinkerExecution
Statistics

MDES

Native Code

19

19

Simulator: Codegen

• Codegen
– Input: REBEL code that is generated by Elcor
– Output (one for each function of the benchmark):

– Benchmark.simu.c file wrapper functions for emulating the
assembly code

– Benchmark.simu.c.tbls file for declaring the tables of assembly
operations

– Benchmark.simu.c.inc file contains global declarations and the
statistics tracking data structures

• The .tbls and .inc files are #included into the .c file.

20

20

Simulator: Compilation

• EMULIB
– Collection of files

corresponding to operation
types:

– PD_load_store_ops.c
– PD_move_ops.c
– PD_int_arith_ops.c
– Etc.

– These files contain a function
for each variation of the HPL-
PD operations.

– These functions emulate the
operation during the simulation

– Other files support the register
files, function call mechanics,
statistics collection, etc.

Simulation
Library
EMULIB

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

.c

C libraries and other
object code

Native Compiler and Linker

Native Code

.

Configuring the Target MachineConfiguring the Target Machine

22

22

Target Machine Description

• Trimaran includes an advanced Machine Description facility, called
Mdes, for describing a wide range of ILP architectures.

• It consists of
– A high-level language, Hmdes2, for specifying machine features precisely

– functional units, register files, instruction set, instruction latencies, etc.
– Human writable and readable

– A translator converting Hmdes2 to Lmdes2, an optimized low-level
machine representation.

– A query system, mQS, used to configure the compiler and simulator
based on the specified machine features.

23

23

Target Machine Configuration

• Generally, it is expected that Trimaran users will
make modest changes to the target machine
configurations
– within the HPL-PD architecture space
– using the Trimaran graphical user interface (GUI) to modify

an existing machine description rather than write a new
one from scratch.

– Very easy to change
– number and types of functional units
– number of types of register files
– instruction latencies

24

24

Machine Descriptions

• There are two issues that a researcher must
consider:
– How can the features of a target machine be modified so

that the changes are reflected in the code generated by the
compiler and in the machine being simulated during
execution?

– Most common features can be changed via the GUI
– Extensive modifications can be specified via an Hmdes2

description.

– How can a new compiler module, implemented by a
researcher, determine the features of the target machine?

– The mdes Query System, mQS

25

25

Choose a machine
configuration Modify the machine

configuration

Create a new machine
configuration based on an

existing one

Using the Trimaran GUI to configure
an HPL-PD machine

• The Trimaran system is delivered with a full Mdes description of
several machines in the HPL-PD architecture space.

– Machine features within the HPL-PD space are easily modified using the
Trimaran GUI.

– Functional units, register files, instruction latencies

26

26

This portion of the file
specifies the number
of static and rotating

registers in the
various register files.

Using the Trimaran GUI to configure
an HPL-PD machine (cont)

• When the Edit button is clicked, an Emacs window opens a
configuration file for editing.

– This file is read by the Hmdes2 preprocessor and translator to create a
new Lmdes2 machine description.

• Changes to the configuration file are reflected in the target machine
when the Make button is clicked.

27

27

Using the Trimaran GUI to configure
an HPL-PD machine (cont)

• With a few keystrokes, the configuration of functional units is changed
– From an essentially sequential machine (very few functional units)
– To a highly parallel machine.

28

28

Using the Trimaran GUI to configure
an HPL-PD machine (cont)

• The machine configuration changes via the GUI can be quite detailed.
– In this case, the precise latencies of operations can be modified.

– When the input registers are sampled.
– When the value in the output register is available.
– Etc.

29

29

Describing a Machine Using Hmdes2

• If more extensive changes to a machine need to be made than
can be handled in the GUI, the user can describe the machine
using Hmdes2.
– High-level machine description language

• There is a limit, however, to the extent that a machine can be
modified and still be the target for the Trimaran compiler, and
be simulated using the Trimaran simulator.
– The machine must remain in the HPL-PD architecture space.
– The instruction set cannot be significantly changed.

• The GUI is the recommended method for modifying the target
machine.
– However, Hmdes2 is a very interesting mechanism…

