
.

Topic 3Topic 3
Introduction to Trimaran(w/ Lab)Introduction to Trimaran(w/ Lab)



2

2

What is Trimaran?

• A compilation system
– A full-blown C compiler for the HPL-PD ISA
– A cycle-by-cycle machine simulator + cache simulator
– Analysis tools

• Uses HPL-PD a parameterized VLIW ISA.
– We will discuss this in detail in the next lecture

• Compiles for target architectures specified by a 
machine description language.
– Can compile optimized code for a variety of VLIW and 

Superscalar architectures
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Compiling a Program

Source Program 
(C, C++, Java, etc)

Assembler/
Linker

Executable Binary 
Program

System Libraries

Code 
Generation Generates assembly

Low-level 
Optimizations Scheduler/Register 

Allocation

High-level 
Optimizations

Scalar optimizations/
Loop optimizations

Front-End Parsing/semantic analysis

Intermediate
Representations

(IRs)

•Compiles programs for 
only one architecture

•All optimizations are 
tuned for the given 
target machine
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A Retargetable Compiler + Simulator

Source Program 
(C, C++, Java, etc)

Assembler/
Linker

Simulated 
Executable Binary 

Program

Code 
Generation

Low-level 
Optimizations

High-level 
Optimizations

Front-End

Intermediate
Representations

(IRs)

Machine
Description

(MDES)

System Libraries

•MDES influences 
optimizations and code 
generation

•Executing the binary 
performs cycle-by-cycle 
simulation based on 
MDES

Simulator Library



5

5

C program

To
IR

Modulo 
Scheduling

Acyclic 
Scheduling

Dependence
Graph 

Construction

Post-pass 
Scheduling. . . Region-based

Register Allocation Simulator

Execution
Statistics

Machine
Description

Trimaran System Organization

• A compiler researcher’s view of the system:

K&R/ANSI-C Parsing
Renaming & Flattening
Control-Flow Profiling
C Source File Splitting

Function Inlining

Classical Optimizations
Code Layout

Superblock Formation
Hyperblock Formation
ILP Transformations

IMPACT

Elcor/CAR

ReaCT-ILP



6

6

Trimaran Goal

• To provide a vehicle for  implementation and 
experimentation for state of the art research in 
compiler techniques for instruction-level parallel 
architectures.
– Currently, the infrastructure is oriented towards Explicitly 

Parallel Instruction Computing (EPIC) architectures.
– But can also support compiler research for Superscalar 

architectures.

– Primarily, “back-end” compiler research
– instruction scheduling, register allocation, and machine 

dependent optimizations.
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Terms and Definitions

• ILP (Instruction-Level Parallelism)
– more than one operation issued per clock cycle within a 

single CPU

• EPIC (Explicitly Parallel Instruction Computing)
– ILP under compiler control

– A single instruction may contain many operations
– Compiler determines operation dependences and specifies 

which operations may execute concurrently
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Trimaran Components

• Trimaran is composed of the following:
– A machine description language, HMDES, for describing 

ILP architectures.
– A parameterized ILP Architecture called HPL-PD

– Current instantiation in the infrastructure is as a EPIC 
architecture

– A compiler front-end for C, performing parsing, type 
checking, and a large suite of high-level (i.e. machine 
independent) optimizations.

– This is the IMPACT module (IMPACT group, University of Illinois)
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Trimaran Components (cont)

– A compiler back-end, parameterized by a machine 
description,  performing instruction scheduling, register 
allocation, and machine-dependent optimizations.

– Each stage of the back-end may easily be replaced or modified 
by a compiler researcher.

– Primarily implemented as part of the ELCOR effort by the CAR 
Group at HP Labs.

– Augmented with a scalar register allocator from the ReaCT-ILP 
group at NYU.
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Trimaran Components (cont)

– An extensible IR (intermediate program representation)
– Has both an internal and textual representation, with conversion

routines between the two. The textual language is called Rebel.
– Supports modern compiler techniques by  representing control 

flow, data and control dependence, and many other attributes.
– Easy to use in its internal representation (clear C++ object 

hierarchy) and textual representation (human-readable)
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Trimaran Components (cont)

– A cycle-level simulator of the HPL-PD architecture which is 
configurable by a machine description and provides run-
time information on execution time, branch frequencies, 
and resource utilization.

– This information can be used for profile-driven optimizations, as 
well as to provide validation of new optimizations.

– The HPL-PD simulator was implemented by the ReaCT_ILP 
group at NYU.



12

12

Trimaran Components (cont)

– An Integrated graphical user interface (GUI) for configuring 
and running the Trimaran system.
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Introduction to Simulator Support in 
Trimaran
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The Framework

• The goals of the HPL-PD simulation framework are
– Emulate the execution of the generated REBEL code on a 

virtual HPL-PD processor
– Have the ability to adapt to changes in the machine 

description
– Generate accurate run-time information

– Execution clock cycles
– Dynamic control flow and call trace
– Address trace
– Average number of operations executed per cycle
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IMPACT ⇒ ELCOR

C Source REBEL

Code Processor
CODEGEN

Simulator: Overview

• The code processor translates the REBEL input to a C
equivalent

• The output of CODEGEN is a collection of pseudo-executable 
low-level C files

.c
MDES
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IMPACT ⇒ ELCOR

C Source REBEL

Code Processor
CODEGEN

Simulator: Overview

• A native compiler (i.e. GCC) is used to generate the 
equivalent machine code
– Collection of .o files

.c
MDES

Native Compiler
i.e. GCC

.o
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IMPACT ⇒ ELCOR

C Source REBEL

Code Processor
CODEGEN

Simulator: Overview

• The object files are linked with the Simulation Library
and any other native libraries

.c
MDES

Native Compiler
i.e. GCC

.o

Simulation
Library
EMULIB

C libraries and other 
object code

Native Code

Native linker
i.e. ld
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IMPACT ⇒ ELCOR

C Source REBEL

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

Simulator: Overview

• The resultant executable is run on the host platform to generate
statistics and dynamic profile information

.c

C libraries and other 
object code

Native Compiler and LinkerExecution 
Statistics

MDES

Native Code
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Simulator: Codegen

• Codegen
– Input: REBEL code that is generated by Elcor
– Output (one for each function of the benchmark): 

– Benchmark.simu.c file wrapper functions for emulating the 
assembly code

– Benchmark.simu.c.tbls file for declaring the tables of assembly 
operations

– Benchmark.simu.c.inc file contains global declarations and the 
statistics tracking data structures

• The .tbls and .inc files are #included into the .c file.
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Simulator: Compilation

• EMULIB
– Collection of files 

corresponding to operation 
types:

– PD_load_store_ops.c
– PD_move_ops.c
– PD_int_arith_ops.c
– Etc.

– These files contain a function 
for each variation of the HPL-
PD operations.

– These functions emulate the 
operation during the simulation

– Other files support the register 
files, function call mechanics, 
statistics collection, etc.

Simulation
Library
EMULIB

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

.c

C libraries and other 
object code

Native Compiler and Linker

Native Code
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Target Machine Description

• Trimaran includes an advanced Machine Description facility, called 
Mdes, for describing a wide range of ILP architectures.

• It consists of
– A high-level language, Hmdes2, for specifying machine features precisely

– functional units, register files, instruction set, instruction latencies, etc.
– Human writable and readable

– A translator converting Hmdes2 to Lmdes2, an optimized low-level 
machine representation.

– A query system, mQS, used to configure the compiler and simulator 
based on the specified machine features.
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Target Machine Configuration

• Generally, it is expected that Trimaran users will 
make modest changes to the target machine 
configurations
– within the HPL-PD architecture space
– using the Trimaran graphical user interface (GUI) to modify 

an existing machine description rather than write a new 
one from scratch.

– Very easy to change 
– number and types of functional units
– number of types of register files
– instruction latencies



24

24

Machine Descriptions

• There are two issues that a researcher must 
consider:
– How can the features of a target machine be modified so 

that the changes are reflected in the code generated by the 
compiler and in the machine being simulated during 
execution?

– Most common features can be changed via the GUI
– Extensive modifications can be specified via an Hmdes2 

description.

– How can a new compiler module, implemented by a 
researcher, determine the features of the target machine?

– The mdes Query System, mQS
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Choose a machine
configuration Modify the machine

configuration

Create a new machine
configuration based on an

existing one

Using the Trimaran GUI to configure 
an HPL-PD machine

• The Trimaran system is delivered with a full Mdes description of 
several machines in the HPL-PD architecture space.

– Machine features within the HPL-PD space are easily modified using the 
Trimaran GUI.

– Functional units, register files, instruction latencies
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This portion of the file 
specifies the number 
of static and rotating 

registers in the 
various register files.

Using the Trimaran GUI to configure 
an HPL-PD machine (cont)

• When the Edit button is clicked, an Emacs window opens a 
configuration file for editing.

– This file is read by the Hmdes2 preprocessor and  translator to create a 
new Lmdes2 machine description.

• Changes to the configuration file are reflected in the target machine 
when the Make button is clicked.
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Using the Trimaran GUI to configure 
an HPL-PD machine (cont)

• With a few keystrokes, the configuration of functional units is changed
– From an essentially sequential machine (very few functional units)
– To a highly parallel machine.
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Using the Trimaran GUI to configure 
an HPL-PD machine (cont)

• The machine configuration changes via the GUI can be quite detailed.
– In this case, the precise latencies of operations can be modified.

– When the input registers are sampled.
– When the value in the output register is available.
– Etc.
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Describing a Machine Using Hmdes2

• If more extensive changes to a machine need to be made than 
can be handled in the GUI, the user can describe the machine 
using Hmdes2.
– High-level machine description language

• There is a limit, however, to the extent that a machine can be 
modified and still be the target for the Trimaran compiler, and 
be simulated using the Trimaran simulator.
– The machine must remain in the HPL-PD architecture space.
– The instruction set cannot be significantly changed.

• The GUI is the recommended method for modifying the target 
machine.
– However, Hmdes2 is a very interesting mechanism…


