
Trimaran: An Infrastructure for Research
in Instruction-Level Parallelism

Lakshmi-Narasimhan Chakrapani
Rodric M. Rabbah
Krishna V. Palem

Center for Research on Embedded Systems and Technology
Georgia Institute of Technology, Atlanta, GA

2

Introduction

3

What Is Trimaran ?
A parametric compilation and performance monitoring system

A full-blown C compiler for the HPL-PD instruction set architecture
(ISA)
A cycle-by-cycle parametric machine simulator + cache simulator
A suite of optimization and analysis tools

Uses HPL-PD a parameterized very long instruction word (VLIW)
ISA

Supports predication, control and data speculation and compiler
controlled management of the memory hierarchy

Compiles for target architectures specified by a machine
description language

Can compile optimized code for a variety of VLIW and Superscalar
architectures

4

Trimaran Goals
To provide a vehicle for implementation and experimentation for state of
the art research in compiler techniques

Consists of a full suite of analysis and optimization modules
Optimizations and analysis modules can be easily added, deleted or
bypassed, thus facilitating compiler optimization research

R. M. Rabbah and K. V. Palem. “Data remapping for design space optimization of
embedded memory systems.”, In ACM Transactions on Embedded Computing
Systems (TECS), 2(2), 2003

Study and evaluation of novel architectural features
Currently, the infrastructure is oriented towards Explicitly Parallel Instruction
Computing (EPIC) architectures

But can also support compiler research for Superscalar and other novel
architectures
S. Talla. “Adaptive Explicitly Parallel Instruction Computing.”, PhD thesis, New
York University, Department of Computer Science, 2000.

Study and evaluation of language features and architecture modeling
languages

S. P. Seng, K. V. Palem, R. M. Rabbah, W.-F.Wong, W. Luk, and P. Cheung.
“PD-XML: Extensible markup language for processor description.” In Proceedings
of the IEEE International Conference on Field-Programmable Technology
(ICFPT), Dec. 2002.

5

Trimaran Availability and Support
Developed through a collaborative effort

Compiler and Architecture Research Group at Hewlett Packard
Laboratories
IMPACT Group at the University of Illinois
Center for Research on Embedded Systems and Technology
(CREST) at the Georgia Institute of Technology

CREST was the ReaCT-ILP Laboratory at New York University

Result of many man-years of research and development
Distributed without charge for non-commercial use

http://www.trimaran.org

Website has instruction and installation manuals, reading lists of
compiler optimizations, an expanded version of this tutorial

Support includes forum for discussion, newsletters
Email questions, concerns, and comments support@trimaran.org

6

Trimaran Today
Trimaran for research

30+ research groups worldwide
Global Community

AC-Grenoble
Ghent University
Imperial College, England
Indian Institute of Science
Indian Institute of Information Technology
INRIA
National University of Singapore
Nanyang Technical University, Singapore
Politecnico di Milano
TATA Institute of Fundamental Research, India
Technical University of Madrid
Technical University of Munich
Universiteit Leiden, Netherlands
University of Alberta
University of Toronto
Weizmann Institute

U.S.A
Appalachian State
California State University
George Washington University
Georgia Institute of Technology
Massachusetts Institute of Technology
New York University
Pennsylvania State University
Princeton University
Rice University
Rutgers University
University of Texas
University of California, Berkley

Interest from Industry
Infineon
IPiTEC, Italy

University of California, Davis
University of California, Los Angeles
University of California, San Diego
University of Cincinnati
University of Deleware
University of Maryland
University of Massachusetts
University of Michigan
University of Montana
University of Southern California
University of Wisconsin, Madison
Yale University

Trimaran In the classroom
Georgia Institute of Technology, New York University, University of
Alberta, Politecnico di Milano, Appalachian State University, Indian
Institute of Information Technology

7

Quick Overview

8

Infrastructure Components
A machine description language, HMDES, for describing ILP
architectures.
A parameterized ILP Architecture called HPL-PD

Current instantiation in the infrastructure is as a EPIC architecture
A compiler front-end for C, performing parsing, type checking,
and a large suite of high-level (i.e. machine independent)
optimizations.

This is the IMPACT module (IMPACT group, University of Illinois)
A compiler back-end, parameterized by a machine description,
performing instruction scheduling, register allocation, and
machine-dependent optimizations

Each stage of the back-end may easily be replaced or modified by
a compiler researcher
Primarily implemented as part of the ELCOR effort by the CAR
Group at HP Labs
Augmented with a scalar register allocator from the CREST

9

Infrastructure Components
An extensible IR (intermediate program representation)

Has both an internal and textual representation, with conversion
routines between the two. The textual language is called REBEL
Supports modern compiler techniques by representing control flow,
data and control dependence, and many other attributes
Easy to use in its internal representation (clear C++ object
hierarchy) and textual representation (human-readable)

A cycle-level simulator of the HPL-PD, configurable by a MDES
and provides run-time information on execution time, branch
frequencies, and resource utilization

This information can be used for profile-driven optimizations, as
well as to provide validation of new optimizations
The HPL-PD simulator was implemented by the ReaCT_ILP group
at NYU

10

Infrastructure Components

An Integrated graphical user interface (GUI) for configuring and
running the Trimaran system

11

C program

To
IR

Modulo
Scheduling

Acyclic
Scheduling

Dependence
Graph

Construction

Post-pass
Scheduling. . . Region-based

Register Allocation Simulator

Execution
Statistics

Machine
Description

System Organization
A compiler researcher’s view of the infrastructure:

K&R/ANSI-C Parsing
Renaming & Flattening
Control-Flow Profiling
C Source File Splitting

Function Inlining

Classical Optimizations
Code Layout

Superblock Formation
Hyperblock Formation
ILP Transformations

IMPACT

Elcor/CAR

CREST

12

The Research Process
The infrastructure is used for designing, implementing, and
testing new compilation modules to be incorporated into the back
end

These phases may augment or replace existing ILP optimization
modules

New modules may be the result of research in scheduling,
register allocation, program analysis, profile-driven compilation,
etc.

For example, NYU has added a region-based register allocator

New Modules

Each phase is
an IR IR
transformation

13

HPL-PD
A Parameterized Research

Architecture

14

Overview of HPL-PD
HPL-PD is a parameterized ILP architecture

serves as a vehicle for processor architecture and compiler
optimization research.
Admits both EPIC and superscalar implementations

The HPL-PD parameter space includes:
Number and types of functional units
Number and types of registers (in register files)
Width of the instruction word (for EPIC)
Instruction latencies

15

Features of HPL-PD
Support for speculative execution

Data speculation (run-time address disambiguation)

Control speculation (eager execution)

Predicated (guarded) execution

Conditionally enable/disable instructions

Memory system

Compiler-visible cache hierarchy

Serial behavior of parallel reads/writes

16

Features of HPL-PD
Branch architecture

Architecturally visible separation of fetch and execute of branch
target

Unusual simultaneous write semantics

Hardware allows multiple simultaneous writes to registers

Software loop pipelining support

Rotating registers for efficient software pipelining of tight inner loops

Branch instructions with loop support (shifting the rotating register
window, etc)

17

Register Files are of various types
General purpose (GPR), Floating point (FPR), Predicate (PR),
Branch target (BTR)

Each register file may have a static and a rotating portion
The ith static register in file F is named Fi
The ith rotating register in file F is named F[i].
Indexed off the RRB, the rotating register base register.

F [i] =FR [(RRB + i) % size(FR)]

Register Files in HPL-PD

FR

FSF

size(FR)
RRB

18

Control Speculation Support
Control speculation is the execution of instructions that may not
have been executed in un-optimized code

Generally occurs due to code motion across conditional branches
e.g. An instruction in one branch is moved above the conditional
jump

This transformation is generally safe
If the effect of the speculative instruction can be ignored or undone
if the other branch is taken
eg. if a speculative instruction causes an exception, the exception
should not be raised if the other branch is taken
HPL-PD provides hardware support for this

19

Speculative Operations
Speculative operations are written identically to their non-
speculative counterparts, but with an “E” appended to the
operation name.

e.g. DIVE ADDE PBRRE

If an exceptional condition occurs during a speculative operation,
the exception is not raised

A bit is set in the result register to indicate that such a condition
occurred
More information (e.g. type of condition, IP of instruction) is stored
Not currently specified how or where

If a non-speculative operation has an operand with its
speculative bit set, an exception is raised

20

Speculative Operations
An example

The effect of the DIV latency is reduced
If a divide-by-zero occurs, an exception will be raised by ADD

. . .
v1 = DIV v1,v2
v3 = ADD v1,5

. . .

. . .
v3 = ADD v1,5

. . .

. . .
v1 = DIVE v1,v2

. . .

21

Predication in HPL-PD
In HPL-PD, most operations can be predicated

they can have an extra operand that is a one-bit predicate register.
r2 = ADD.W r1, r3 if p2
If the predicate register contains 0, the operation is not performed

The values of predicate registers are typically set by “compare-to-
predicate” operations

p1 = (CMPP.< r4, r5)

HPL-PD provides two-output CMPP instructions
p1,p2 = CMPP.W.<.UN.UC r1,r2

U means unconditional, N means normal, C means complement
There are other possibilities (conditional, or, and)

Predication, in its simplest form, has several uses
If-conversion
To aid code motion by instruction scheduler.

e.g. hyperblocks
Height reduction of control dependences

22

Use of Predication: An Example
In hyperblock formation, if-conversion is used to form larger
blocks of operations than the usual basic blocks

Tail duplication used to remove some incoming edges in middle of
block
if-conversion applied after tail duplication
larger blocks provide a greater opportunity for code motion to
increase ILP

Basic Blocks
Tail Duplication If-conversion to

form hyperblock

}Predicated Operations

23

Hyperblock Performance Comparison
Although the total number of operations executed increases, so
does the parallelism

with hyperblock formation
without hyperblock formation

Total number
of operations
executed

Average number
of operations
executed per
cycle

24

The HPL-PD Memory Hierarchy
HPL-PD’s memory hierarchy is unusual in that it is visible to the
compiler

In store instructions, compiler can specify in which cache the data should be
placed
In load instructions, the compiler can specify in which cache the data is
expected to be found and in which cache the data should be left

This supports static scheduling of load/store operations with reasonable
expectations that the assumed latencies will be correct

Data prefetch
cache

CPU/regs

First-level
cache

Second-level
cache

Main Memory

C1

C2

C3

V1
data-prefetch cache

• Independent of the first-level
cache

• Used to store large amounts of
cache-polluting data

• Doesn’t require sophisticated
cache-replacement mechanism

25

Load/Store Instructions

Sample Load Instruction
r1 = L.W.C2.V1 r2

Sample Store Instruction
S.W.C1 r2,r3

Target Cache

Source Cache Operand register
(contains address)

Contains address

Target Cache Contains value to be stored

26

Run-time Memory Disambiguation
Here’s a desirable optimization (due to long load latencies):

However, this optimization is not valid if the load and store
reference the same location

i.e. if r2 and r3 contain the same address.
This cannot be determined at compile time

HPL-PD solves this by providing run-time memory
disambiguation

. . .
S r3, 4

r1 = L r2
r1 = ADD r1,7

r1 = L r2
. . .

S r3, 4
r1 = ADD r1,7

27

Run-time Memory Disambiguation
HPL-PD provides two special instructions that can replace a
single load instruction:
r1 = LDS r2 ; speculative load

initiates a load like a normal load instruction
A log entry is made in a table to store the memory location

r1 = LDV r2 ; load verify
checks to see if a store to the memory location has occurred since
the LDS
if so, the new load is issued and the pipeline stalls

Otherwise, it’s a no-op

. . .
S r3, 4

r1 = L r2
r1 = ADD r1,7

r1 = LDS r2
. . .

S r3, 4
r1 = LDV r2
r1 = ADD r1,7

28

The HPL-PD Branch Architecture
HPL-PD replaces conventional branch operations with two
operations

Prepare-to-Branch operations (PBRR, etc)
Loads target address into a branch target register
Initiates prefetch of the branch target instruction to minimize branch
delay
Contains field specifying whether the branch is likely to be taken
Must precede any branch instruction

Branch operations (BRU, etc)
Branches to address contained in a branch target register
There are branch instructions for function calls, loops, software
pipelining, and conditional branch related to memory
disambiguation

29

Software Pipelining Support
Software Pipelining is a technique for exploiting parallelism
across iterations of a loop

Iterations are overlaid

HPL-PD’s rotating registers support a form of software pipelining
called Modulo Scheduling

Rotating registers provide automatic register renaming across
iterations
The rotating base register, RRB, is decremented by the BRLC
instruction.
Thus, r[i] in one iteration is referenced as r[i+1] in the next iteration

30

Modulo Scheduling Example
Initial C code

Non-pipelined code (r and s are GPR registers)

for(i = 0; i < N; i++)
a[i] += M;

LC = MOV N-1
s = MOV a
b1 = PBRR Loop,1

Loop:
r = L s
r = ADD r,M

S s,r
s = Add s,4

BRLC b1

31

We can overlay the iterations…..

….and take a slice to be executed as a single EPIC instruction:
s[0] = Add s[1],4 ; increment i
S s[4],r[3] ; store a[i-3]
r[2] = Add r[2],M ; a[i-2]= a[i-2]+M

r[0] = L s[1] ; load a[i]

Modulo Scheduling Example

r = L s

r = Add r,M

S s,r
s = Add s,4

L r,s

r = Add r,M
S s,r

s = Add s,4

L r,s

r = Add r,M
S s,r

s = Add s,4

L r,s

r = Add r,M
S s,r

s = Add s,4

L r,s

r4 = Add r,M
S s,r

s = Add s,4

32

Only the shaded part, the
loop kernel, involves
executing the full width of
the EPIC instruction.

The loop prolog and
epilog contain only a
subset of the instructions
“ramp up” and “ramp
down” of the parallelism

Modulo Scheduling
With rotating registers, we can overlay iterations of the loop.

e.g. r[j] in one iteration was r[j-1] in the previous iteration, r[j-2] in
the iteration before that, and so on
thus a single EPIC instruction could conceivably contain an
operation from each of the n previous iterations

where n is the size of the rotating portion of a register file

Loop Prolog and Epilog

Epilog

Kernel

Prolog

33

We can also view the overlay of iterations as

Where the loop kernel is executed in every iteration, but with the
undesired instructions disabled by predication

Supported by rotating predicate registers

Modulo Scheduling With Predication

Disabled by predication

34

Modulo Scheduling Performance (Matmult)

Speedup of 2.2 due to Modulo scheduling

Without modulo scheduling
80608 cycles

With modulo scheduling
35008 cycles

Total number of cycles

Matmult

35

Summary
HPL-PD is a flexible ILP architecture

Encompassing both superscalar and EPIC machine classes

HPL-PD is a very interesting target for compiler optimizations
Many useful, novel features
Increased opportunities for instruction scheduling

Predication, speculative instructions

Other optimizations

36

The Elcor Intermediate
Representation

37

Factors Motivating the Design
Global scheduling is key to exploiting ILP

We are moving towards bigger and complex regions

Frequency-based regions have more complex structure than
traditional structure-based regions

Even a trace is multiple-entry multiple-exit region

Many of the ILP enhancing techniques, e.g., height reduction,
rely on estimates of height and resource usage

Such estimates may be helpful even in earlier phases

Analysis like memory disambiguation are expensive
Need to represent and maintain their results accurately

38

Factors motivating the design
Flexibility in phase ordering

Because we don't fully understand the right phase order

Flexibility and ability to grow

In many cases, we don't fully understand the requirements

IR highly optimized for a specific purpose may not be the right one

Put general mechanism to support various policies

Well defined interfaces to modules and encapsulation

Uniformity

Easy to build software, modify and grow

39

IR Features
Multi-state IR

Provides mechanism for
representing

Traditional control flow
graph
Control dependences
Data dependences for both
registers and memory in various
forms
Various forms of register usage –
single assignment, multiple
assignments
Expanded virtual registers (EVRs)
Predicated execution

Data section
Global symbols, arrays, etc.

Registers carry values, edges
represent dependences

A uniform, edge-based
representation of control flow
and data dependences

Supports threading of data
dependences

dependence flow graphs

Hierarchical non-overlapping
region structure (a tree)

40

Internal vs. Textual Representation

Each component of the graph data structure is a C++ object
All modules of the Elcor use this IR
Optimization are simply IR-to-IR transformations

There is an ASCII intermediate representation, called Rebel
Phases of Elcor may communicate using Rebel
A reader procedure is provided that reads Rebel and constructs
the corresponding internal program representation
A writer procedure is provided for generating Rebel from the
internal representation

41

Program Representation
A program unit is represented by a graph of operations
connected by edges

Control flow is represented explicitly and at the operation level

A region structure over the operation graph (a tree)
The root of the tree is the program unit, e.g. a procedure
The leaf nodes of the tree are operations

Operation graph elements
Op(eration) class
Operand class
Edge class

42

Op class
Represents an operation

Machine operation
Compiler operations (e.g.,CONTROL_MERGE, PRED_CLEAR)

Has source and destination operands including guarding
predicate (their number is determined by MDES)

dest1, ..., destm = opcode(src1, ..., srcn) if p
May have implicit sources and destinations

e.g., parameter passing registers for BRL
Memory dependence "sources" and "destinations"

Memory dependences are encoded as "def" and "use" of special
variables
<$a> r3 = load (r4)
store(r1, r2) <$a, $b, ...>

Simplifies dependence graph construction
Set of input edges and set of output edges
Schedule time, latency queries for sources/destinations

43

Mem_vr

Reg

VR_name

Macro_reg

Int_lit
Pred_lit
Float_lit

Double_lit
String_lit

Label_lit

Cb_operand
Undefined

Base_operand

Operand

Operand Class Hierarchy

Operand class is a wrapper for all operand types.
Provides Boolean methods for class type testing
Provides access methods to class specific fields
Provides comparison operators
Manages symbol table

44

Extended Virtual Registers
EVRs allow multiple values from a
sequence of assignments to be live
at the same time

An EVR is a linearly ordered set of
VRs

Elements are referenced using the
notation t[0], t[1], etc.

A special remap operation to "shift"
reference coordinates

t = 0; // t means t[0]

remap(t); // Previous
value

// of t is now
t[1]

t = 1;

remap (t);

t = t[1] + t[2] // t = 0
+ 1

EVRs allow

Accurate representation of value flow
across zero or more iterations of a
loop

Representation of results of analysis
and transformation without unrolling
or unnecessary copies

E.g., The use of the value loaded in
previous previous iteration as t[2]

Representation in dynamic single
assignment form to eliminate inter-
iteration anti- and output
dependences

Use of EVRs in IR doesn't imply use
of rotating registers in hardware

Code can be unrolled at a later stage
if rotating registers are not supported

45

Edge Class
Edges Represents dependence constraints between operations
Edges do not represent value-flow like data flow graphs

Edge types:
Control (sequential control flow, control dependence)
Flow, anti and output dependences on registers
Flow, anti and output memory dependences classified as "certain"
or "maybe"

An edge has pointers to source and destination ops
An edge also contains more detailed reason for dependence

Represented in terms of "Port" for source and destination operands

e.g., register flow edge from DEST1 of op1 to SRC2 of op2

Latency setting and querying functions

46

Edge

Reg_anti

Mem

Reg_outReg_flow

Control

Edge Class Hierarchy
The hierarchy is based on how latency for an edge is
computed

47

Region Class Hierarchy
Region class is an abstract base class
Compound regions can contain other regions in the region tree

Region

BB HB LoopBody Procedure

OpCompound_region

48

IR Attributes
The intermediate representation allows annotations on Regions
and Edges

Used for module specific purposes
Used when the information is sparse

There are two kinds of attributes
Heavy weight

Type safe
Can be represented in ASCII form of IR (can be printed and parsed in)
If the object it is attached to is deleted the attributes are deleted

Light weight
Stored and retrieved using string keys
Not type safe

49

void check_region_hierarchy(Region* r)
{

// Iterator over subregions
Region_subregions subreg_iter;

if (r->is_op()) return;
Compound_region* cr = (Compound_region*) r;

for(subreg_iter(cr) ; subreg_iter!=0 ; subreg_iter++) {
Region* current_subregion = (*subreg_iter);

assert(current_subregion->parent() == r);
check_region_hierarchy(current_subregion);

}
}

Using the IR iterators

Current item, please

Move to next

Initialize iterator

We aren’t done, are we?

Elcor provides a collection of iterators to walk data structures

50

Textual Representation of the IR
Rebel is the ASCII representation of the IR
It is human-readable

Can be parsed by a recursive descent parser

It has the same structure and elements as the data structures of
IR

Region based
Sufficiently powerful to express program properties at various
stages of compilation

Before/after scheduling
Before/after register allocation

51

(
)s_opcode(addw.0) attr(lc ^52) flags(sched)

Region
Type

Region
Number

Operation
Name Operation

Destinations

op 7 ADD_W [br<11:i gpr 11>][br<27:i gpr 14> i<1>] p<t> s_time(3)

Operation
Sources

Operation
Predicate

Operation
Scheduling

Time

Operation
Opcode (link
to HMDES)

Operation
Attributes Operation

Flags

Operation in Rebel
Here is how an operation region looks in Rebel

52

Summary
Elcor Intermediate Representation is

Graph based with explicit representation of dependence and control
flow
Region based

There are two forms of the intermediate representation that a
researcher can use.

Internal representation
C++ object based
Used by all Elcor modules

Textual representation (Rebel)
Complete program representation
Easily parsed, readable

53

Trimaran
Machine Description System

54

Target Machine Description
Trimaran includes an advanced Machine Description facility,
called Mdes, for describing a wide range of ILP architectures

A high-level language, Hmdes2, for specifying machine features
precisely

functional units, register files, instruction set, instruction latencies,
etc.

Human writable and readable

A translator converting Hmdes2 to Lmdes2, an optimized low-
level machine representation

A query system, mQS, used to configure the compiler and
simulator based on the specified machine features

55

The goal: to minimize the number of assumptions built into the
compiler back-end regarding the target machine

The processor types have been served by mdes thus far
Cydrome: Cydra 5 (VLIW, complex, non-parametric)
HPL-PD (VLIW, simplified, parametric)
IMPACT: products (superscalar, complex, non-parametric)

Pre-processorPre-processor Optimizer &
Translator

Optimizer &
Translator

hc

Hmdes2Hmdes2 Hmdes2Hmdes2 Lmdes2Lmdes2

CustomizeCustomize

RU MapRU Map

Mdes
DB

Mdes
DB

mQS

schedulerscheduler

register
allocation

register
allocation

Compiler

mQS
interface

Mdes Overview

56

Information Required By The Compiler
For ILP code selection

I/O descriptor: source / destination register file constraints for
operations
Register file: the set of compatible register types

For edge drawing
Register: overlapping registers, i.e., that have at least one bit in
common

For edge delays
Latency descriptor: source sampling / result update times for
operations

To determine legality of scheduling at a given time with respect
to resource conflicts

Reservation table: resource usage over time for each operation
For lifetime calculation

Latency descriptor: register allocation and de-allocation times
To determine register allocation options

Register file: the set of legal registers for allocation

57

The Compiler/Machine Description Interface

The interface between the compiler and the machine description
is the mdes Query System, mQS

New modules implemented by researchers will need to use the
mQS

The compiler queries mQS via a set of C++ procedures
Each class of machine feature corresponds to a separate C++
procedure

RU MapRU Map

Mdes
DB

Mdes
DB

mQS

schedulerscheduler

register
allocation

register
allocation

Compiler

mQS
interface

58

Summary
Reconfiguring the target machine is quite easy

GUI speeds up the process substantially for modest changes.
Extensive changes can be made using Hmdes2

there are plenty of sample Hmdes2 files to look at

Adding new machine-dependent compilation modules is also
quite easy

mQS provides a clean interface between the compiler and the
machine description

59

Simulator Support in Trimaran

60

The Framework
The goals of the HPL-PD simulation framework are

Emulate the execution of the generated REBEL code on a virtual
HPL-PD processor
Have the ability to adapt to changes in the machine description
Generate accurate run-time information

Execution clock cycles
Dynamic control flow and call trace
Address trace
Average number of operations executed per cycle

61

IMPACT ⇒ ELCOR

C Source REBEL

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

Simulator: Overview

The resultant executable is run on the host platform to generate
statistics and dynamic profile information

.c

C libraries and other
object code

Native Compiler and LinkerExecution
Statistics

MDES

Native Code

62

Simulator: Codegen
Codegen

Input: REBEL code that is generated by Elcor
Output (one for each function of the benchmark):

Benchmark.simu.c file wrapper functions for emulating the assembly
code
Benchmark.simu.c.tbls file for declaring the tables of assembly
operations
Benchmark.simu.c.inc file contains global declarations and the
statistics tracking data structures

The .tbls and .inc files are #included into the .c file.

63

Simulator: EMULIB
Collection of files corresponding
to operation types:

PD_load_store_ops.c
PD_move_ops.c
PD_int_arith_ops.c
Etc.

These files contain a function
for each variation of the HPL-
PD operations
These functions emulate the
operation during the simulation
Other files support the register
files, function call mechanics,
statistics collection, etc.

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

.c

C libraries and other
object code

Native Compiler and Linker

Native Code

64

Customizing and Running the
Trimaran System

65

The Trimaran GUI

The Trimaran system is configured and run via a Graphical User
Interface

Choose program to compile
Configure target machine
Configure compilation stages
View graphical program representations at various stages of
compilation
View execution statistics (graphs, pie charts, etc.)
View extensive on-line help and documentation

If desired, the system can also be run from the command line
and be invoked from shell scripts

66

The Control Panel
The GUI is operated from this main control panel.

Compiler
options

Target Machine
Configuration

Compiler and
Simulator
Parameters

Viewing
Execution
Statistics

Viewing
Program
Intermediate
Representation

Organize
Collections of
Programs, Machines,
Parameter Sets, etc.

GUI settings
and defaults

67

The Compiler Panel
The compiler panel allows you to choose

Benchmark program to compile
you can add your own as well.

Target machine configuration
Parameter set (for the compiler and simulator)
Project file

68

Choosing a Benchmark and Machine

Choosing a Benchmark Choosing a Machine

69

Configuring the Compiler

Front end
features

Back end
features

Simulator
on/off

70

On-line Documentation
On-line documentation
is available for each
component of Trimaran

this is the on-line help
for the compiler panel.

71

The Machine Panel
The machine panel is used create new target machines and modify
existing ones

72

Modifying Parameters

Upon clicking ‘open’, the parameters are displayed
Here, the compiler front end parameters are displayed, along with their
current values
Clicking a ‘?’ button opens a help window for that parameter

Parameters can also be modified by editing text files, if desired

73

Parameters for the Back End
The compiler back end has the largest number of parameters
The parameters are organized into groups according to their use

Analysis
Optimizations
Register Allocation
Etc.

74

The Statistics Panel

The statistics panel allows you to choose what statistics are
displayed for the programs in one’s project file

Function level execution profile
Region level profile
Instruction usage
Etc.

75

Viewing Statistics
For each program in the project
file, a separate graph is
displayed

Here, pie charts show the
dynamic instruction
distribution.

76

The View IR Panel
The IR viewer provides five kinds of
views of a program.

The program regions
(hyperblocks, loops, etc.)

Dependence Graph

Control Flow Graph (CFG)

ILP Instruction Schedule

Profile Information

77

Control Flow View
Here is a portion of the control flow
graph for a program.
The user can specify a portion of
the program to display.
The viewer has zoom in, zoom out,
scroll, etc.

other IR views are also present

78

Summary
The Trimaran GUI provides a natural interface for configuring
and running the Trimaran system

Lowers barrier to entry for new user
No learning makefiles, searching parameter files, etc.

Provide interface to powerful visualization tools
IR viewer, execution statistics

79

http://www.trimaran.org

