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Introduction
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What Is Trimaran ?
A parametric compilation and performance monitoring system

A full-blown C compiler for the HPL-PD instruction set architecture 
(ISA)
A cycle-by-cycle parametric machine simulator + cache simulator
A suite of optimization and analysis tools

Uses HPL-PD a parameterized very long instruction word (VLIW) 
ISA

Supports predication, control and data speculation and compiler 
controlled management of the memory hierarchy 

Compiles for target architectures specified by a machine 
description language

Can compile optimized code for a variety of VLIW and Superscalar
architectures
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Trimaran Goals
To provide a vehicle for implementation and experimentation for state of 
the art research in compiler techniques

Consists of a full suite of analysis and optimization modules
Optimizations and analysis modules can be easily added, deleted or 
bypassed, thus facilitating compiler optimization research 

R. M. Rabbah and K. V. Palem. “Data remapping for design space optimization of 
embedded memory systems.”, In ACM Transactions on Embedded Computing 
Systems (TECS), 2(2), 2003

Study and evaluation of novel architectural features
Currently, the infrastructure is oriented towards Explicitly Parallel Instruction 
Computing (EPIC) architectures

But can also support compiler research for Superscalar and other novel 
architectures
S. Talla. “Adaptive Explicitly Parallel Instruction Computing.”, PhD thesis, New 
York University, Department of Computer Science, 2000.

Study and evaluation of language features and architecture modeling 
languages

S. P. Seng, K. V. Palem, R. M. Rabbah, W.-F.Wong, W. Luk, and P. Cheung. 
“PD-XML: Extensible markup language for processor description.” In Proceedings 
of the IEEE International Conference on Field-Programmable Technology 
(ICFPT), Dec. 2002.
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Trimaran Availability and Support
Developed through a collaborative effort

Compiler and Architecture Research Group at Hewlett Packard 
Laboratories
IMPACT Group at the University of Illinois
Center for Research on Embedded Systems and Technology 
(CREST) at the Georgia Institute of Technology

CREST was the ReaCT-ILP Laboratory at New York University

Result of many man-years of research and development
Distributed without charge for non-commercial use

http://www.trimaran.org

Website has instruction and installation manuals, reading lists of 
compiler optimizations, an expanded version of this tutorial

Support includes forum for discussion, newsletters
Email questions, concerns, and comments support@trimaran.org
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Trimaran Today
Trimaran for research

30+  research groups worldwide
Global Community

AC-Grenoble
Ghent University
Imperial College, England
Indian Institute of Science
Indian Institute of Information Technology
INRIA
National University of Singapore
Nanyang Technical University, Singapore
Politecnico di Milano
TATA Institute of Fundamental Research, India
Technical University of Madrid
Technical University of Munich
Universiteit Leiden, Netherlands
University of Alberta
University of Toronto
Weizmann Institute

U.S.A
Appalachian State
California State University
George Washington University
Georgia Institute of Technology
Massachusetts Institute of Technology
New York University
Pennsylvania State University
Princeton University
Rice University
Rutgers University
University of Texas
University of California, Berkley

Interest from Industry
Infineon
IPiTEC, Italy

University of California, Davis
University of California, Los Angeles
University of California, San Diego
University of Cincinnati
University of Deleware
University of Maryland
University of Massachusetts
University of Michigan
University of Montana
University of Southern California
University of Wisconsin, Madison
Yale University

Trimaran In the classroom
Georgia Institute of Technology, New York University, University of 
Alberta, Politecnico di Milano, Appalachian State University, Indian 
Institute of Information Technology
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Quick Overview
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Infrastructure Components
A machine description language, HMDES, for describing ILP 
architectures.
A parameterized ILP Architecture called HPL-PD

Current instantiation in the infrastructure is as a EPIC architecture
A compiler front-end for C, performing parsing, type checking, 
and a large suite of high-level (i.e. machine independent) 
optimizations.

This is the IMPACT module (IMPACT group, University of Illinois)
A compiler back-end, parameterized by a machine description,  
performing instruction scheduling, register allocation, and 
machine-dependent optimizations

Each stage of the back-end may easily be replaced or modified by 
a compiler researcher
Primarily implemented as part of the ELCOR effort by the CAR 
Group at HP Labs
Augmented with a scalar register allocator from the CREST
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Infrastructure Components
An extensible IR (intermediate program representation)

Has both an internal and textual representation, with conversion
routines between the two. The textual language is called REBEL
Supports modern compiler techniques by  representing control flow, 
data and control dependence, and many other attributes
Easy to use in its internal representation (clear C++ object 
hierarchy) and textual representation (human-readable)

A cycle-level simulator of the HPL-PD, configurable by a MDES 
and provides run-time information on execution time, branch 
frequencies, and resource utilization

This information can be used for profile-driven optimizations, as 
well as to provide validation of new optimizations
The HPL-PD simulator was implemented by the ReaCT_ILP group 
at NYU



10

Infrastructure Components

An Integrated graphical user interface (GUI) for configuring and
running the Trimaran system
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C program

To
IR

Modulo 
Scheduling

Acyclic 
Scheduling

Dependence
Graph 

Construction

Post-pass 
Scheduling. . . Region-based

Register Allocation Simulator

Execution
Statistics

Machine
Description

System Organization
A compiler researcher’s view of the infrastructure:

K&R/ANSI-C Parsing
Renaming & Flattening
Control-Flow Profiling
C Source File Splitting

Function Inlining

Classical Optimizations
Code Layout

Superblock Formation
Hyperblock Formation
ILP Transformations

IMPACT

Elcor/CAR

CREST
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The Research Process
The infrastructure is used for designing, implementing, and 
testing new compilation modules to be incorporated into the back
end

These phases may augment or replace existing ILP optimization 
modules

New modules may be the result of research in scheduling, 
register allocation, program analysis, profile-driven compilation, 
etc.

For example, NYU has added a region-based register allocator

New Modules

Each phase is
an IR     IR
transformation
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HPL-PD
A Parameterized Research 

Architecture
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Overview of HPL-PD
HPL-PD is a parameterized ILP architecture

serves as a vehicle for processor architecture and compiler 
optimization  research.
Admits both EPIC and superscalar implementations

The HPL-PD parameter space includes:
Number and types of functional units
Number and types of registers (in register files)
Width of the instruction word (for EPIC)
Instruction latencies
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Features of HPL-PD
Support for speculative execution

Data speculation (run-time address disambiguation)

Control speculation (eager execution)

Predicated (guarded) execution

Conditionally enable/disable instructions

Memory system

Compiler-visible cache hierarchy

Serial behavior of parallel reads/writes
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Features of HPL-PD
Branch architecture

Architecturally visible separation of fetch and execute of branch 
target

Unusual simultaneous write semantics

Hardware allows multiple simultaneous writes to registers

Software loop pipelining support

Rotating registers for efficient software pipelining of tight inner loops

Branch instructions with loop support (shifting the rotating register 
window, etc)



17

Register Files are of various types
General purpose (GPR), Floating point (FPR), Predicate (PR), 
Branch target (BTR)

Each register file may have a static and a rotating portion
The ith static register in file F is named Fi
The ith rotating register in file F is named F[i].
Indexed off the RRB, the rotating register base register. 

F [i] =FR [(RRB + i) % size(FR)]

Register Files in HPL-PD

FR

FSF

size(FR)
RRB
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Control Speculation Support
Control speculation is the execution of instructions that may not 
have been executed in un-optimized code

Generally occurs due to code motion across conditional branches
e.g. An instruction in one branch is moved above the conditional
jump

This transformation is generally safe
If the effect of the speculative instruction can be ignored or undone 
if the other branch is taken
eg. if a speculative instruction causes an exception, the exception 
should not be raised if the other branch is taken
HPL-PD provides hardware support for this
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Speculative Operations
Speculative operations are written identically to their non-
speculative counterparts, but with an “E” appended to the 
operation name.

e.g. DIVE ADDE PBRRE

If an exceptional condition occurs during a speculative operation, 
the exception is not raised

A bit is set in the result register to indicate that such a condition 
occurred
More information (e.g. type of condition, IP of  instruction) is stored
Not currently specified how or where

If a non-speculative operation has an operand with its 
speculative bit set, an exception is raised
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Speculative Operations
An example

The effect of the DIV latency is reduced 
If a divide-by-zero occurs, an exception will be raised by ADD

.  .  .
v1 = DIV v1,v2
v3 = ADD v1,5

.  .  .

.  .  .
v3 = ADD v1,5

.  .  .

.   .   .
v1 = DIVE v1,v2

.   .   .
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Predication in HPL-PD
In HPL-PD, most operations can be predicated

they can have an extra operand that is a one-bit predicate register.
r2 = ADD.W r1, r3  if p2
If the predicate register contains 0, the operation is not performed

The values of predicate registers are typically set by “compare-to-
predicate” operations

p1 = ( CMPP.< r4, r5 )

HPL-PD provides two-output CMPP instructions
p1,p2 = CMPP.W.<.UN.UC r1,r2

U means unconditional, N means normal, C means complement
There are other possibilities (conditional, or, and)

Predication, in its simplest form, has several uses
If-conversion 
To aid code motion by instruction scheduler.

e.g. hyperblocks
Height reduction of control dependences
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Use of Predication: An Example
In hyperblock formation, if-conversion is used to form larger 
blocks of operations than the usual basic blocks

Tail duplication used to remove some incoming edges in middle of
block
if-conversion applied after tail duplication
larger blocks provide a greater opportunity for code motion to 
increase ILP

Basic Blocks
Tail Duplication If-conversion to

form hyperblock

}Predicated Operations
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Hyperblock Performance Comparison
Although the total number of operations executed increases, so 
does the parallelism

with hyperblock formation
without hyperblock formation

Total number
of operations
executed

Average number
of operations 
executed per 
cycle
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The HPL-PD Memory Hierarchy
HPL-PD’s memory hierarchy is unusual in that it is visible to the 
compiler

In store instructions, compiler can specify in which cache the data should be 
placed
In load instructions, the compiler can specify in which cache the data is 
expected to be found and in which cache the data should be left

This supports static scheduling of load/store operations with reasonable 
expectations that the assumed latencies will be correct

Data prefetch
cache

CPU/regs

First-level 
cache

Second-level 
cache

Main Memory

C1

C2

C3

V1
data-prefetch cache

• Independent of the first-level 
cache

• Used to store large amounts of 
cache-polluting data

• Doesn’t require sophisticated 
cache-replacement mechanism
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Load/Store Instructions

Sample Load Instruction
r1 = L.W.C2.V1 r2

Sample Store Instruction
S.W.C1 r2,r3

Target Cache

Source Cache Operand register
(contains address)

Contains address

Target Cache Contains value to be stored
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Run-time Memory Disambiguation
Here’s a desirable optimization (due to long load latencies):

However, this optimization is not valid if the load and store 
reference the same location

i.e. if r2 and r3 contain the same address.
This cannot be determined at compile time

HPL-PD solves this by providing run-time memory 
disambiguation

. . . 
S r3, 4

r1 = L r2
r1 = ADD r1,7

r1 = L r2
. . . 

S r3, 4
r1 = ADD r1,7
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Run-time Memory Disambiguation
HPL-PD provides two special instructions that can replace a 
single load instruction:
r1 = LDS r2 ; speculative load

initiates a load like a normal load instruction
A log entry is made in a table to store the memory location

r1 = LDV r2     ; load verify 
checks to see if  a store to the memory location has occurred since 
the LDS
if so, the new load is issued and the pipeline stalls

Otherwise, it’s a no-op

. . . 
S r3, 4

r1 = L r2
r1 = ADD r1,7

r1 = LDS r2
. . . 

S r3, 4
r1 = LDV r2
r1 = ADD r1,7
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The HPL-PD Branch Architecture
HPL-PD replaces conventional branch operations with two 
operations

Prepare-to-Branch operations (PBRR, etc)
Loads target address into a branch target register
Initiates prefetch of the branch target instruction to minimize branch 
delay
Contains field specifying whether the branch is likely to be taken
Must precede any  branch instruction

Branch operations (BRU, etc)
Branches to address contained in a branch target register
There are branch instructions for function calls, loops, software 
pipelining, and conditional branch related to memory 
disambiguation
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Software Pipelining Support
Software Pipelining is a technique for exploiting parallelism 
across iterations of a loop

Iterations are overlaid

HPL-PD’s rotating registers support a form of software pipelining 
called Modulo Scheduling

Rotating registers provide automatic register renaming across 
iterations
The rotating base register, RRB, is decremented by the BRLC 
instruction.
Thus, r[i] in one iteration is referenced as r[i+1] in the next iteration
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Modulo Scheduling Example
Initial C code

Non-pipelined code (r and s are GPR registers)

for(i = 0; i < N; i++)
a[i] += M;

LC = MOV N-1
s = MOV a
b1 = PBRR Loop,1

Loop:
r = L s
r = ADD r,M

S s,r
s = Add s,4

BRLC b1
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We can overlay the iterations…..

….and take a slice to be executed as a single EPIC instruction:
s[0] = Add s[1],4 ; increment i 
S s[4],r[3] ; store a[i-3]
r[2] = Add r[2],M ; a[i-2]= a[i-2]+M
-----
r[0] = L s[1] ; load a[i]

Modulo Scheduling Example

r = L s
----
r = Add r,M

S s,r
s = Add s,4

L r,s
----

r = Add r,M
S s,r

s = Add s,4

L r,s
----

r = Add r,M
S s,r

s = Add s,4

L r,s
----

r = Add r,M
S s,r

s = Add s,4

L r,s
----

r4 = Add r,M
S s,r

s = Add s,4
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Only the shaded part, the 
loop kernel, involves 
executing the full width of 
the EPIC instruction.

The loop prolog and 
epilog contain only a 
subset of the instructions
“ramp up” and “ramp 
down” of the parallelism

Modulo Scheduling
With rotating registers, we can overlay iterations of the loop.

e.g. r[j] in one iteration was r[j-1] in the previous iteration, r[j-2] in 
the iteration before that, and so on
thus a single EPIC instruction could conceivably contain an 
operation from each of the n previous iterations

where n is the size of the rotating portion of a register file

Loop Prolog and Epilog

Epilog

Kernel

Prolog
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We can also view the overlay of iterations as

Where the loop kernel is executed in every iteration, but with the 
undesired instructions disabled by predication

Supported by rotating predicate registers

Modulo Scheduling With Predication

Disabled by predication
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Modulo Scheduling Performance (Matmult)

Speedup of 2.2 due to Modulo scheduling

Without modulo scheduling
80608 cycles

With modulo scheduling
35008 cycles

Total number of cycles

Matmult
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Summary
HPL-PD is a flexible ILP architecture

Encompassing both superscalar and EPIC machine classes

HPL-PD is a very interesting target for compiler optimizations
Many useful, novel features 
Increased opportunities for  instruction scheduling

Predication, speculative instructions

Other optimizations
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The Elcor Intermediate 
Representation
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Factors Motivating the Design
Global scheduling is key to exploiting ILP

We are moving towards bigger and complex regions

Frequency-based regions have more complex structure than 
traditional structure-based regions 

Even a trace is multiple-entry multiple-exit region

Many of the ILP enhancing techniques, e.g., height reduction, 
rely on estimates of height and resource usage 

Such estimates may be helpful even in earlier phases

Analysis like memory disambiguation are expensive 
Need to represent and maintain their results accurately
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Factors motivating the design
Flexibility in phase ordering 

Because we don't fully understand the right phase order

Flexibility and ability to grow

In many cases, we don't fully understand the requirements

IR highly optimized for a specific purpose may not be the right one

Put general mechanism to support various policies

Well defined interfaces to modules and encapsulation

Uniformity

Easy to build software, modify and grow 
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IR Features
Multi-state IR 

Provides mechanism for 
representing 

Traditional control flow
graph 
Control dependences
Data dependences for both 
registers and memory in various 
forms 
Various forms of register usage –
single assignment, multiple 
assignments
Expanded virtual registers (EVRs) 
Predicated execution

Data section
Global symbols, arrays, etc.

Registers carry values, edges 
represent dependences

A uniform, edge-based 
representation of control flow 
and data dependences

Supports threading of data 
dependences 

dependence flow graphs

Hierarchical non-overlapping 
region structure (a tree)
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Internal vs. Textual Representation

Each component of the graph data structure is a C++ object
All modules of the Elcor use this IR
Optimization are simply IR-to-IR transformations

There is an ASCII intermediate representation, called Rebel
Phases of Elcor may communicate using Rebel
A reader procedure is provided that reads Rebel and constructs 
the corresponding internal program representation
A writer procedure is provided for generating Rebel from  the 
internal representation
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Program Representation
A program unit is represented by a graph of operations 
connected by edges

Control flow is represented explicitly and at the operation level

A region structure over the operation graph (a tree) 
The root of the tree is the program unit, e.g. a procedure
The leaf nodes of the tree are operations

Operation graph elements
Op(eration) class
Operand class
Edge class
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Op class
Represents an operation 

Machine operation
Compiler operations (e.g.,CONTROL_MERGE, PRED_CLEAR)

Has source and destination operands including guarding 
predicate (their number is determined by MDES)

dest1, ..., destm = opcode(src1, ..., srcn) if p
May have implicit sources and destinations

e.g., parameter passing registers for BRL
Memory dependence "sources" and "destinations"

Memory dependences are encoded as "def" and "use" of special 
variables
<$a> r3 = load (r4) 
store(r1, r2) <$a, $b, ...>

Simplifies dependence graph construction 
Set of input edges and set of output edges
Schedule time, latency queries for sources/destinations
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Mem_vr

Reg

VR_name

Macro_reg

Int_lit
Pred_lit
Float_lit

Double_lit
String_lit

Label_lit

Cb_operand
Undefined

Base_operand

Operand

Operand Class Hierarchy

Operand class is a wrapper for all operand types. 
Provides Boolean methods for class type testing
Provides access methods to class specific fields
Provides comparison operators
Manages symbol table
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Extended Virtual Registers
EVRs allow multiple values from a 
sequence of assignments to be live 
at the same time

An EVR is a linearly ordered set of 
VRs

Elements are referenced using the 
notation t[0], t[1], etc.

A special remap operation to "shift" 
reference coordinates

t = 0;    // t means t[0] 

remap(t); // Previous 
value

// of t is now 
t[1]

t = 1;

remap (t); 

t = t[1] + t[2] // t = 0 
+ 1

EVRs allow

Accurate representation of value flow 
across zero or more iterations of a 
loop

Representation of results of analysis 
and transformation without unrolling 
or unnecessary copies

E.g., The use of the value loaded in 
previous previous iteration as t[2] 

Representation in dynamic single 
assignment form to eliminate inter-
iteration anti- and output 
dependences

Use of EVRs in IR doesn't imply use 
of rotating registers in hardware

Code can be unrolled at a later stage 
if rotating registers are not supported
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Edge Class
Edges Represents dependence constraints between operations
Edges do not represent value-flow like data flow graphs

Edge types:
Control (sequential control flow, control dependence)
Flow, anti and output dependences on registers
Flow, anti and output memory dependences classified as "certain"
or "maybe"

An edge has pointers to source and destination ops 
An edge also contains more detailed reason for dependence 

Represented in terms of "Port" for source and destination operands 

e.g., register flow edge from DEST1 of op1 to SRC2 of op2

Latency setting and querying functions
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Edge

Reg_anti

Mem

Reg_outReg_flow

Control

Edge Class Hierarchy
The hierarchy is based on how latency for an edge is 
computed
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Region Class Hierarchy
Region class is an abstract base class
Compound regions can contain other regions in the region tree

Region

BB HB LoopBody Procedure

OpCompound_region



48

IR Attributes
The intermediate representation allows annotations on Regions 
and Edges 

Used for module specific purposes
Used when the information is sparse

There are two kinds of attributes
Heavy weight

Type safe
Can be represented in ASCII form of IR (can be printed and parsed in)
If the object it is attached to is deleted the attributes are deleted

Light weight
Stored and retrieved using string keys
Not type safe
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void check_region_hierarchy(Region* r) 
{

// Iterator over subregions
Region_subregions subreg_iter; 

if (r->is_op()) return;
Compound_region* cr = (Compound_region*) r;

for(subreg_iter(cr) ; subreg_iter!=0 ; subreg_iter++) {
Region* current_subregion = (*subreg_iter);

assert(current_subregion->parent() == r);
check_region_hierarchy(current_subregion);

}
}

Using the IR iterators

Current item, please

Move to next

Initialize iterator

We aren’t done, are we?

Elcor provides a collection of iterators to walk data structures
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Textual Representation of the IR
Rebel is the ASCII representation of the IR
It is human-readable

Can be parsed by a recursive descent parser

It has the same structure and elements as the data structures of
IR

Region based
Sufficiently powerful to express program properties at various 
stages of compilation

Before/after scheduling
Before/after register allocation
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(
)s_opcode(addw.0) attr(lc ^52) flags(sched)

Region 
Type

Region 
Number

Operation 
Name Operation 

Destinations

op 7 ADD_W [br<11:i gpr 11>][br<27:i gpr 14> i<1>] p<t> s_time(3)

Operation 
Sources

Operation 
Predicate

Operation 
Scheduling 

Time

Operation
Opcode (link 
to HMDES)

Operation
Attributes Operation

Flags

Operation in Rebel
Here is how an operation region looks in Rebel
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Summary
Elcor Intermediate Representation is 

Graph based with explicit representation of dependence and control 
flow
Region based

There are two forms of the intermediate representation that a 
researcher can use.

Internal representation
C++ object based
Used by all Elcor modules

Textual representation (Rebel)
Complete program representation
Easily parsed, readable
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Trimaran 
Machine Description System



54

Target Machine Description
Trimaran includes an advanced Machine Description facility, 
called Mdes, for describing a wide range of ILP architectures

A high-level language, Hmdes2, for specifying machine features 
precisely

functional units, register files, instruction set, instruction latencies, 
etc.

Human writable and readable

A translator converting Hmdes2 to Lmdes2, an optimized low-
level machine representation

A query system, mQS, used to configure the compiler and 
simulator based on the specified machine features
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The goal: to minimize the number of assumptions built into the 
compiler back-end regarding the target machine

The processor types have been served by mdes thus far
Cydrome: Cydra 5 (VLIW, complex, non-parametric)
HPL-PD (VLIW, simplified, parametric)
IMPACT: products (superscalar, complex, non-parametric)

Pre-processorPre-processor Optimizer &
Translator

Optimizer &
Translator

hc

Hmdes2Hmdes2 Hmdes2Hmdes2 Lmdes2Lmdes2

CustomizeCustomize

RU MapRU Map

Mdes
DB

Mdes
DB

mQS    

schedulerscheduler

register 
allocation

register 
allocation

Compiler    

mQS
interface

Mdes Overview
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Information Required By The Compiler
For ILP code selection 

I/O descriptor: source / destination register file constraints for 
operations
Register file: the set of compatible register types

For edge drawing
Register: overlapping registers, i.e., that have at least one bit in 
common

For edge delays
Latency descriptor: source sampling / result update times for 
operations

To determine legality of scheduling at a given time with respect
to resource conflicts

Reservation table: resource usage over time for each operation
For lifetime calculation

Latency descriptor: register allocation and de-allocation times
To determine register allocation options

Register file: the set of legal registers for allocation
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The Compiler/Machine Description Interface

The interface between the compiler and the machine description 
is the mdes Query System, mQS

New modules implemented by researchers will need to use the 
mQS

The compiler queries mQS via a set of C++ procedures
Each class of machine feature corresponds to a separate C++ 
procedure

RU MapRU Map

Mdes
DB

Mdes
DB

mQS    

schedulerscheduler

register 
allocation

register 
allocation

Compiler    

mQS
interface



58

Summary
Reconfiguring the target machine is quite easy

GUI speeds up the process substantially for modest changes.
Extensive changes can be made using Hmdes2

there are plenty of sample Hmdes2 files to look at

Adding new machine-dependent compilation modules is also 
quite easy

mQS provides a clean interface between the compiler and the 
machine description



59

Simulator Support in Trimaran
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The Framework
The goals of the HPL-PD simulation framework are

Emulate the execution of the generated REBEL code on a virtual 
HPL-PD processor
Have the ability to adapt to changes in the machine description
Generate accurate run-time information

Execution clock cycles
Dynamic control flow and call trace
Address trace
Average number of operations executed per cycle
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IMPACT ⇒ ELCOR

C Source REBEL

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

Simulator: Overview

The resultant executable is run on the host platform to generate
statistics and dynamic profile information

.c

C libraries and other 
object code

Native Compiler and LinkerExecution 
Statistics

MDES

Native Code
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Simulator: Codegen
Codegen

Input: REBEL code that is generated by Elcor
Output (one for each function of the benchmark): 

Benchmark.simu.c file wrapper functions for emulating the assembly 
code
Benchmark.simu.c.tbls file for declaring the tables of assembly 
operations
Benchmark.simu.c.inc file contains global declarations and the 
statistics tracking data structures

The .tbls and .inc files are #included into the .c file.
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Simulator: EMULIB
Collection of files corresponding 
to operation types:

PD_load_store_ops.c
PD_move_ops.c
PD_int_arith_ops.c
Etc.

These files contain a function 
for each variation of the HPL-
PD operations
These functions emulate the 
operation during the simulation
Other files support the register 
files, function call mechanics, 
statistics collection, etc.

Simulation
Library
EMULIB

Executable Simulator
Code

Code Processor
CODEGEN

.c

C libraries and other 
object code

Native Compiler and Linker

Native Code
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Customizing and Running the 
Trimaran System
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The Trimaran GUI

The Trimaran system is configured and run via a Graphical User 
Interface

Choose program to compile
Configure target machine
Configure compilation stages
View graphical program representations at various stages of 
compilation
View execution statistics (graphs, pie charts, etc.)
View extensive on-line help and documentation

If desired, the system can also be run from the command line 
and be invoked from shell scripts
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The Control Panel 
The GUI is operated from this main control panel.

Compiler
options

Target Machine
Configuration

Compiler and
Simulator 
Parameters

Viewing
Execution
Statistics

Viewing
Program
Intermediate 
Representation

Organize
Collections of
Programs, Machines,
Parameter Sets, etc. 

GUI settings
and defaults



67

The Compiler Panel
The compiler panel allows you to choose

Benchmark program to compile
you can add your own as well.

Target machine configuration
Parameter set (for the compiler and simulator)
Project file
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Choosing a Benchmark and Machine

Choosing a Benchmark Choosing a Machine
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Configuring the Compiler

Front end
features

Back end
features

Simulator
on/off 
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On-line Documentation
On-line documentation 
is available for each 
component of Trimaran

this is the on-line help 
for the compiler panel.
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The Machine Panel
The machine panel is used create new target machines and modify 
existing ones
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Modifying Parameters

Upon clicking ‘open’, the parameters are displayed
Here, the compiler front end parameters are displayed, along with their 
current values
Clicking a ‘?’ button opens a help window for that parameter

Parameters can also be modified by editing text files, if desired
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Parameters for the Back End
The compiler back end has the largest number of parameters 
The parameters  are organized into groups according to their use

Analysis
Optimizations
Register Allocation
Etc.
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The Statistics Panel

The statistics panel allows you to choose what statistics are 
displayed for the programs in one’s project file

Function level execution profile
Region level profile
Instruction usage
Etc.
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Viewing Statistics
For each program in the project 
file, a separate graph is 
displayed

Here, pie charts show the 
dynamic instruction 
distribution.
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The View IR Panel
The IR viewer provides five kinds of 
views of a program.

The program regions 
(hyperblocks, loops, etc.)

Dependence Graph

Control Flow Graph (CFG)

ILP Instruction Schedule

Profile Information
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Control Flow View
Here is a portion of the control flow 
graph for a program.
The user can specify a portion of 
the program to display.
The viewer has zoom in, zoom out, 
scroll, etc.

other IR views are also present
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Summary
The Trimaran GUI provides a natural interface for configuring 
and running the Trimaran system

Lowers barrier to entry for new user
No learning makefiles, searching parameter files, etc.

Provide interface to powerful visualization tools
IR viewer, execution statistics
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http://www.trimaran.org


