
Instruction Scheduling

2

Superscalar (RISC) Processors

Function Units

Register Bank

Pipelined
Fixed, Floating
Branch etc.

3

Canonical Instruction Set

Register Register Instructions (Single cycle).

Special instructions for Load and Store to/from memory
(multiple cycles).

A few notable exceptions of course.

Eg., Dec Alpha, HP-PA RISC, IBM Power &
RS6K, Sun Sparc ...

4

Opportunity in Superscalars

High degree of Instruction Level Parallelism (ILP) via
multiple (possibly) pipelined functional units (FUs).

Essential to harness promised performance.

Clean simple model and Instruction Set makes
compile-time optimizations feasible.

Therefore, performance advantages can be harnessed
automatically

5

Example of
Instruction Level Parallelism

Processor components

5 functional units: 2 fixed point units, 2 floating point
units and 1 branch unit.

Pipeline depth: floating point unit is 2 deep, and the
others are 1 deep.

Peak rates: 7 instructions being processed
simultaneously in each cycle

6

Instruction Scheduling: The
Optimization Goal

Given a source program P:
schedule the operations so as to minimize the overall
execution time on the functional units in the target
machine.

Alternatives for Embedded Systems:
Minimize the amount of power consumed by functional
units during execution of the program.
Ensure operations are executed within given time
constraints.

7

Cost Functions

Effectiveness of the Optimizations: How well can we
optimize our objective function?
Impact on running time of the compiled code determined
by the completion time.

Efficiency of the optimization: How fast can we optimize?
Impact on the time it takes to compile or cost for gaining
the benefit of code with fast running time.

8

Recap: Structure of an Optimizing
Compiler

Source Program
(C, C++, etc)

Assembler/
Linker

Executable Binary
Program

Code
Generation

Low-level
Optimizations Scheduler/Register

Allocation

High-level
Optimizations

Front-End

Intermediate
Representations

(IRs)

9

Instruction Scheduling: The
Optimization Goal

Given a source program P:
schedule the operations so as to minimize the overall
execution time on the functional units in the target
machine.

Alternatives for Embedded Systems:
Minimize the amount of power consumed by functional
units during execution of the program.
Ensure operations are executed within given time
constraints.

10

Cost Functions

Effectiveness of the Optimizations: How well can we
optimize our objective function?

Impact on running time of the compiled code determined by the
completion time.
Impact on the power consumption of the compiled code during
execution
Impact on the synchronization between operations

Efficiency of the optimization: How fast can we optimize?
Impact of the optimization on the compile-time of the program

11

Graphs and Data Dependence

12

Introduction to DAGs

A DAG is a Directed Acyclic Graph I.e. a graph with no
cycles

i

j

a1 a2

• Preds(x) ≡ predecessors of node x ; e.g. preds(j) = {a1, a2}
• Succs(x) ≡ successors of node x. e.g. succs(i) = {a1, a2}
• (i,a2) represents the edge from node i to node a2; note that (i,a2)

≠(a2,i)
• A path is a set of 1 or more edges that form a connection

between two nodes e.g. path(i, j) = {(I,a2); (a2,j)}

13

Examples

Undirected graph Directed graph

14

Paths

Undirected graph Directed graph

source

sink

path

15

Cycles

Undirected graph Directed graph Acyclic
Directed
graph

16

Connected Graphs

Unconnected graph Connected
directed graph

17

Connectivity of Directed Graphs

A strongly connected directed graph is one which has a
path from each vertex to every other vertex

Is this graph strongly
connected?

A

B

C

D

E F
G

18

Data Dependence Analysis

If two operations have potentially interfering data
accesses, data dependence analysis is necessary for
determining whether or not an interference actually
exists. If there is no interference, it may be possible to
reorder the operations or execute them concurrently.

The data accesses examined for data dependence
analysis may arise from array variables, scalar
variables, procedure parameters, pointer
dereferences, etc. in the original source program.

Data dependence analysis is conservative, in that it
may state that a data dependence exists between two
statements, when actually none exists.

19

Data Dependence: Definition

A data dependence, S1 → S2, exists between CFG
nodes S1 and S2 with respect to variable X if and only if

1. there exists a path P: S1 → S2 in CFG, with no intervening write
to X, and

2. at least one of the following is true:

(a) (flow) X is written by S1 and later read by S2, or
(b) (anti) X is read by S1 and later is written by S2 or
(c) (output) X is written by S1 and later written by S2

Instruction Scheduling AlgorithmsInstruction Scheduling Algorithms

21

Impact of Control Flow

Acyclic control flow is easier to deal with than cyclic
control flow. Problems in dealing with cyclic flow:

A loop implicitly represent a large run-time program space
compactly.
Not possible to open out the loops fully at compile-time.
Loop unrolling provides a partial solution.
Using the loop to optimize its dynamic behavior is a challenging
problem.
Hard to optimize well without detailed knowledge of the range of
the iteration.
In practice, profiling can offer limited help in estimating loop
bounds

22

Acyclic Instruction Scheduling

The acyclic case itself has two parts:
The simpler case that we will consider first has no branching
and corresponds to basic block of code, eg., loop bodies.
The more complicated case of scheduling programs with
acyclic control flow with branching will be considered next.

Why basic blocks?
All instructions specified as part of the input must be
executed.

Allows deterministic modeling of the input.

No “branch probabilities” to contend with; makes problem
space easy to optimize using classical methods.

23

Input: A basic block represented as a DAG

I# are instructions in the basic block; edges (i, j) represent
dependence constraints
i2 is a load instruction.
Latency of 1 on (i2,i4) means that i4 cannot start for one cycle
after i2 completes.
Assume 1 FU
What are the possible schedules?

Example: Instruction Scheduling

0

0 0

1

i1

i2

i3

i4

Latency

24

Two possible schedules for the DAG
The length of the schedule is the number of cycles
required to execute the operations

Length(S1) > Length(S2)

Which schedule is optimal?

i1 i3 i2 i4

i1 i3i2 i4

Idle Cycle Due
to Latency

S1

S2

Example(cont): Possible Schedules

25

Generalizing the Instruction
Scheduling Problem

Input: DAG representing each basic block where:

1. Nodes encode unit execution time (single cycle) operations.

2. Each node requires a definite class of FU.

3. Additional time delays encoded as latencies on the edges.

4. Number of FUs of each type in the target machine.

more...

26

Generalizing the Instruction
Scheduling Problem (Contd.)

Feasible Schedule: A specification of a start time for
each instruction such that the following constraints are
obeyed:

1. Resource: Number of instructions of a given type
of any time < corresponding number of FUs.

2. Precedence and Latency: For each predecessor j
of an instruction i in the DAG, i is the started only δ
cycles after j finishes where δ is the latency
labeling the edge (j,i),

Output: A schedule with the minimum overall
completion time (makespan).

27

Scheduling with infinite FUs

Infinite FUs implies only the #2 constaint holds
Minimal length for a correct schedule can be obtained

I1

I2 I6

I7
I8

I10

I9

I5I4I3

Input: DAG

Cycle Ops

1 I1

2 I2, I3, I4, I5, I6

3 I7, I8, I9

4 I10

28

Scheduling with finite FUs

Assuming 2 FUs
What happens in Cycle #2? Must Choose from {I2, I3 , I4, I5, I6}

How does an algorithm decide which ops to choose?
What factors may influence this choice?

─ Fanout
─ Height
─ Resources available

I1

I2 I6

I7
I8

I10

I9

I5I4I3

Input: DAG

Cycle Ops

1 I1, <empty>

2 ??

29

Addressing Scheduling Questions

Greediness helps in making sure that idle cycles
don’t remain if there are available instructions further
“down stream.”

If an instruction is available for a slot, then fill the slot

Ranks help prioritize nodes such that choices made
early on favor instructions with greater enabling
power, so that there is no unforced idle cycle.

Ranks are an encoding for a scheduling heuristic
Ranks are based on characteristics of the operations, and
allow the algorithm to compare operations

30

A Canonical Greedy List Scheduling
Algorithm

1. Assign a Rank (priority) to each instruction (or
node).

2. Sort and build a priority list ℒ of the instructions in
non-decreasing order of Rank.

Nodes with smaller ranks occur earlier in this list
Smaller ranks imply higher priority

3. Greedily list-schedule ℒ.
An instruction is ready provided it has not been chosen earlier
and all of its predecessors have been chosen and the
appropriate latencies have elapsed.
Scan ℒ iteratively and on each scan, choose the largest
number of “ready” instructions from the front of the list subject
to resource (FU) constraints.

31

Applying the Canonical Greedy List
Algorithm

Example: Consider the DAG shown below, where nodes are
labeled (id, rank)

Sorting by ranks gives a list ℒ = <i3,1, i4,1, i2,2, i1,3, i5,3>
The following slides apply the algorithm assuming 2 FUs.

more...

I5,3

I4,1

I3,1

I2,2

I1,3

32

Applying the Canonical Greedy List
Algorithm (cont.)

1. On the first scan
1. i1,3 is added to the schedule.
2. No other ops can be scheduled, one empty slot

2. On the second and third scans
1. i3,1 and i4,1 are added to the schedule
2. All slots are filled, both FUs are busy

3. On the fourth and fifth scans
1. i2,2 and i5,3 are added to the schedule
2. All slots are filled, both FUs are busy

4. All ops have been scheduled

33

How Good is Greedy?

Approximation: For any pipeline depth k ≥ 1 and any
number m of pipelines,

1
Sgreedy/Sopt ≤ (2 - -----).

mk

For example, with one pipeline (m=1) and the latencies k grow
as 2,3,4,…, the approximate schedule is guaranteed to have a
completion time no more 66%, 75%, and 80% over the optimal
completion time.
This theoretical guarantee shows that greedy scheduling is not
bad, but the bounds are worst-case; practical experience tends
to be much better.

more...

34

How Good is Greedy? (Contd.)

Running Time of Greedy List Scheduling: Linear in
the size of the DAG.

“Scheduling Time-Critical Instructions on RISC
Machines,” K. Palem and B. Simons, ACM
Transactions on Programming Languages and
Systems, 632-658, Vol. 15, 1993.

A Critical Choice: The Rank A Critical Choice: The Rank
Function for Prioritizing NodesFunction for Prioritizing Nodes

36

Rank Functions

1. “Postpass Code Optimization of Pipelined Constraints”, J. Hennessey
and T. Gross, ACM Transactions on Programming Languages and
Systems, vol. 5, 422-448, 1983.

2. “Scheduling Expressions on a Pipelined Processor with a Maximal
Delay of One Cycle,” D. Bernstein and I. Gertner, ACM Transactions on
Programming Languages and Systems, vol. 11 no. 1, 57-66, Jan 1989.

3. “Scheduling Time-Critical Instructions on RISC Machines,” K. Palem
and B. Simons, ACM Transactions on Programming Languages and
Systems, 632-658, vol. 15, 1993

Optimality: 2 and 3 produce optimal schedules for RISC processors

37

An Example Rank Function

The example DAG

1. Initially label all the nodes by the same value, say α

2. Compute new labels from old starting with nodes at level zero
(i4) and working towards higher levels:
(a) All nodes at level zero get a rank of α.

more...

0

0 0

1

i1

i2

i3

i4

Latency

38

An Example Rank Function (Contd.)

(b) For a node at level 1, construct a new label
which is the concentration of all its successors
connected by a latency 1 edge.

Edge i2 to i4 in this case.

(c) The empty symbol ∅ is associated with latency
zero edges.

Edges i3 to i4 for example.

39

An Example Rank Function

(d) The result is that i2 and i3 respectively get new
labels and hence ranks α’= α > α’’ = ∅.

Note that α’= α > α’’ = ∅ i.e., labels are drawn
from a totally ordered alphabet.

(e) Rank of i1 is the concentration of the ranks of its
immediate successors i2 and i3 i.e., it is
α’’’= α’|α’’.

3. The resulting sorted list is (optimum) i1, i2, i3, i4.

Control Flow GraphsControl Flow Graphs

41

Control Flow Graphs

Motivation: language-independent and machine-independent
representation of control flow in programs used in high-level and
low-level code optimizers. The flow graph data structure lends itself
to use of several important algorithms from graph theory.

42

Control Flow Graph: Definition

A control flow graph CFG = (Nc ; Ec ; Tc) consists of

Nc, a set of nodes. A node represents a straight-line
sequence of operations with no intervening control flow i.e. a

basic block.
Ec ⊆ Nc x Nc x Labels, a set of labeled edges.
Tc , a node type mapping. Tc(n) identies the type of node n as
one of: START, STOP, OTHER.

We assume that CFG contains a unique START node
and a unique STOP node, and that for any node N in
CFG, there exist directed paths from START to N and
from N to STOP.

43

Example CFG

main(int argc, char *argv[])

{

if (argc == 1) {

printf("1");

} else {

if (argc == 2) {

printf("2");

} else {

printf("others");

}

}

printf("done");

}

BB1

BB2

BB4BB3

BB6BB5

BB8

BB9

44

Control Dependence Analysis

We want to capture two related ideas with control
dependence analysis of a CFG:
1. Node Y should be control dependent on node X if node X evaluates

a predicate (conditional branch) which can control whether node Y
will subsequently be executed or not. This idea is useful for
determining whether node Y needs to wait for node X to complete,
even though they have no data dependences.

45

Control Dependence
Analysis (contd.)

2. Two nodes, Y and Z, should be identified as having

identical control conditions if in every run of the

program, node Y is executed if and only if node Z is

executed. This idea is useful for determining

whether nodes Y and Z can be made adjacent and

executed concurrently, even though they may be far

apart in the CFG.

46

Program Dependence Graph

The Program Dependence Graph (PDG) is the
intermediate (abstract) representation of a program
designed for use in optimizations

It consists of two important graphs:
Control Dependence Graph captures control flow and control
dependence
Data Dependence Graph captures data dependences

47

Data and Control Dependences

Motivation: identify only the essential control and data
dependences which need to be obeyed by
transformations for code optimization.

Program Dependence Graph (PDG) consists of
1. Set of nodes, as in the CFG
2. Control dependence edges
3. Data dependence edges

Together, the control and data dependence edges
dictate whether or not a proposed code transformation
is legal.

The More General Case The More General Case
Scheduling Acyclic Scheduling Acyclic

Control Flow GraphsControl Flow Graphs

49

Significant Jump in
Compilation Cost

What is the problem when compared to basic-blocks?
Conditional and unconditional branching is permitted.
The problem being optimized is no longer deterministically and
completely known at compile-time.
Depending on the sequence of branches taken, the problem
structure of the graph being executed can vary
Impractical to optimize all possible combinations of branches
and have a schedule for each case, since a sequence of k
branches can lead to 2k possibilities -- a combinatorial explosion
in cost of compiling.

50

Trace Scheduling

A well known classical approach is to consider traces through the
(acyclic) control flow graph. An example is presented in the next
slide.

“Trace Scheduling: A Technique for Global Microcode
Compaction,” J.A. Fisher, IEEE Transactions on
Computers, Vol. C-30, 1981.

Main Ideas:
Choose a program segment that has no cyclic dependences.
Choose one of the paths out of each branch that is
encountered.

51

BB-1

BB-4 BB-5

BB-6

BB-7

BB-2

BB-3

STOP

START

A trace BB-1, BB-4, BB-6

Branch Instruction

52

Trace Scheduling (Contd.)

Use statistical knowledge based on (estimated)
program behavior to bias the choices to favor the
more frequently taken branches.

This information is gained through profiling the
program or via static analysis.

The resulting sequence of basic blocks including the
branch instructions is referred to as a trace.

53

Trace Scheduling

High Level Algorithm:

1. Choose a (maximal) segment s of the program with acyclic
control flow.
The instructions in s have associated “frequencies” derived via
statistical knowledge of the program’s behavior.

2. Construct a trace τ through s:
(a) Start with the instruction in s, say i, with the

highest frequency.
more...

54

Trace Scheduling (Contd.)

(b) Grow a path out from instruction i in both
directions, choosing the path to the instruction
with the higher frequency whenever there is

Frequencies can be viewed as a way of prioritizing the
path to choose and subsequently optimize.

3. Rank the instructions in τ using a rank function of choice.
4.Sort and construct a list ℒ of the instructions using the ranks as

priorities.
5. Greedily list schedule and produce a schedule using the list ℒ

as the priority list.

55

The Four Elementary but Significant Side-
effects

Consider a single instruction moving past a conditional
branch:

← Branch Instruction ← Instruction being moved

56

The First Case

This code movement leads to the instruction executing
sometimes when the instruction ought not to have: speculatively.

more...

A

If A is a DEF Live Off-trace

False Dependence Edge Added

Off-trace Path

57

The First Case (Contd.)

If A is a write of the form a:= …, then, the variable
(virtual register) a must not be live on the off-trace
path.

In this case, an additional pseudo edge is added from
the branch instruction to instruction A to prevent this
motion.

58

The Second Case

Identical to previous case except the pseudo-dependence edge
is from A to the join instruction whenever A is a “write” or a def.
A more general solution is to permit the code motion but undo
the effect of the speculated definition by adding repair code
An expensive proposition in terms of compilation cost.

Edged added

59

The Third Case

Instruction A will not be executed if the off-trace path is taken.
To avoid mistakes, it is replicated.

more...

Replicate A

Off-trace Path

A

60

The Third Case (Contd.)

This is true in the case of read and write instructions.
Replication causes A to be executed independent of
the path being taken to preserve the original
semantics.
If (non-)liveliness information is available , replication
can be done more conservatively.

61

The Fourth Case

Similar to Case 3 except for the direction of the
replication as shown in the figure above.

Replicate A

Off-trace Path

A

62

At a Conceptual Level: Two Situations

Speculations: Code that is executed “sometimes” when a
branch is executed is now executed “always” due to code motion
as in Cases 1 and 2.

Legal speculations wherein data-dependences are not violated.

Safe speculation wherein control-dependences on exceptions-
causing instructions are not violated.

more...

63

At a Conceptual Level: Two Situations
(Contd.)

Unsafe speculation where there is no restriction and hence
exceptions can occur.

This type of speculation is currently playing a role in
“production quality” compilers.

Replication: Code that is “always” executed is
duplicated as in Cases 3 and 4.

64

Comparison to Basic Block Scheduling

Instruction scheduler needs to handle speculation
and replication.

Otherwise the framework and strategy is identical.

65

Significant Comments

We pretend as if the trace is always taken and executed and
hence schedule it in steps 3-5 using the same framework as for
a basic-block.
The important difference is that conditionals branches are there
on the path, and moving code past these conditionals can lead
to side-effects.
These side effects are not a problem in the case of basic-blocks
since there, every instruction is executed all the time.
This is not true in the present more general case when an
outgoing or incoming off-trace branch is taken however
infrequently: we will study these issues next.

66

Fisher’s Trace Scheduling Algorithm

Description:

1. Choose a (maximal) region s of the program that has acyclic
control flow.

2. Construct a trace τ through s.

3. Add additional dependence edges to the DAG to limit
speculative execution.
Note that this is Fisher’s solution.

more…

67

Fisher’s Trace Scheduling Algorithm
(Contd.)

4. Rank the instructions in τ using a rank function of
choice.

5. Sort and construct a list ℒ of the instructions using
the ranks as priorities.

6. Greedily list schedule and produce a schedule using
the list ℒ as the priority list.

7. Add replicated code whenever necessary on all the
off-trace paths.

68

Example applying Fisher’s Algorithm

BB6

BB2

BB4

BB5

BB3

BB7

BB1

START

STOP

BBi Basic-block

69

Example (Contd.)

TRACE: BB6, BB2,BB4, BB5

BB6:

BB2:

BB4:

BB5:

6-1 6-21

2-1 1
2-2

0

0 1
2-3

2-4 2-5

4-1 4-2

1

5-1

Feasible Schedule: 6-1 X 6-2 2-1 X 2-2 2-3 X 2-4 2-5 4-1 X 4-2 5-1

Global Improvements 6-1 2-2 6-2 2-2 2-3 X 2-4 2-5 4-1 X 4-2 5-1:

6-1 2-1 6-2 2-3 2-2 2-4 2-5 4-1 X 4-2 5-1

6-1 2-1 6-2 2-3 2-2 2-4 2-5 4-1 5-1 4-2

X:Denotes Idle Cycle

Obvious advantages of
global code motion are
that the idle cycles have
disappeared.

Concentration of Local
Schedules

70

Limitations of This Approach

Optimizations depends on the traces being the
dominant paths in the program’s control-flow

Therefore, the following two things should be true:

Programs should demonstrate the behavior of being skewed
in the branches taken at run-time, for typical mixes of input
data.

We should have access to this information at compile time.
Not so easy.

71

Hyperblocks

Single entry/ multiple exit set of predicated basic block (if
conversion)
Two conditions for hyperblocks:

Condition 1: There exist no incoming control flow arcs from outside
basic blocks to the selected blocks other than the entry block I.e.
no entry edges

Condition 2: There exist no nested inner loops inside the selected
blocks

72

Hyper block formation procedure

Tail duplication
Remove side entries
Code expansion must be monitored

Loop Peeling
Create bigger region for nested loop

Node Splitting
Eliminate dependencies created by control path merge
Large code expansion must be monitored

After above three transformations, perform if-conversion

Hyperblock
Pruning

Reducing
Ctrl Flow
Complexity

73

Criteria for Selecting BBs

To form hyperblocks, we must consider
Execution Frequency
─ Exclude paths that are not frequently executed

Basic Block Size
─ Include smaller blocks in favor of larger blocks.
─ Larger blocks use many machine resources, having an adverse

affect on the performance of smaller blocks.
instruction characteristics
─ Basic blocks containing hazardous instructions are less likely to be

included
─ Hazardous instructions are procedure calls, unresolvable memory

accesses, etc. (I.e. any ambiguous operations)

74

The Formulated Selection Heuristic

BSV : Block Selection Value
K: machine parameter to represent the issue rate of the
processor
weight_bb: execution frequency of the block
Size_bb: number of instructions per block
“main path” is the most likely executed control path through the
region of blocks considered for inclusion in the hyperblock
bb_chari is a “characteristic value”; lower for blocks containing
harzardous instructions; always less than 1

large blocks have a lower probability of selection

An Example

edge
frequency

block
frequency

hyperblock

side
entrance

76

Tail Duplication: Removes
Side Entries

x > 0

y > 0

v:=v*x
x = 1

v:=v-1v:=v+1

u:=v+y

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y u’:=v+y

hyperblock

Tail duplication

hyperblock

Side-
entry

77

Loop Peeling: Removes
Inner loop

A

C

B

D

A

C’

B’

D

C

B

D’

hyperblockhyperblock

78

Node Splitting: Eliminate Dependencies due
to Merge

x > 0

y > 0

x = 1

v:=v-1v:=v+1

k:=k+1

u:=v+y

l=k+z

x > 0

y > 0

x = 1

v:=v-1v:=v+1

k:=k+1

u:=v+y

l=k+z

v:=v-1

u:=v+y

l=k+z
u:=v+y

l=k+z

Control-path
merge

79

Managing Node Splitting

Excessive node splitting can lead to code explosion
Use the following heuristics, the Flow Selection Value, which is
computed for each control flow edge in the blocks selected for the
hyperblock that contain two or more incoming edges

Weight_flowi is the execution frequency of the edge
Size_flowi is the # of instr. that are executed from the entry block to
the point of the flow edge

Large differences in FSV ⇒ unbalance control flow split those
first

80

If-conversion Example:
Assembly Code

x > 0

y > 0

v:=v*x

x = 1

v:=v-1v:=v+1

u:=v+y u:=v+y

ble x,0,C

ble y,0,F

v:=v*x

ne x,1,F

v:=v-1v:=v+1

u:=v+y u:=v+y

C

D

B

A

FE

G

81

If conversion

ble x,0,C

ble y,0,F

v:=v*x

ne x,1,F

v:=v-1v:=v+1

u:=v+y u:=v+y

C

D

B

A

FE

G

v:=v*x

u:=v+y

C

ble x,0,C

d := ?(y>0)

f’:= ?(y<=0)

e := ?(x=1) if d

f”:= ?(x≠1) if d

f := ?(f’∨f”)
v := v+1 if e

v := v-1 if f

u := v+y

82

Region Size Control

Experiments show that 85% of the execution time was
contained in regions with fewer than 250 operations, when
region size is not limited.
There are some regions formed with more than 10000
operations. (May need limit)
How can I decide the size limit?

Open Issue

83

Additional references

Region Based Compilation: An Introduction and
Motivation, Richard Hank, Wen-mei Hwu, Bob Rau, Micro-
28, 1995
Effective compiler support for predicated execution using
the hyperblock, Scott Mahlke, David Lin, William Chen,
Richard Hank, Roger Bringmann, Micro-25, 1992

84

Supplemental Readings

1. “All Shortest Routes from a Fixed Origin in a Graph”, G. Dantzig, W. Blattner
and M. Rao, Proceedings of the Conference on Theory of Graphs, 85-90,
July 1967.

2. “The Program Dependence Graph and its use in optimization,” J. Ferrante,
K.J. Ottenstein and J.D. Warren, ACM TOPLAS, vol. 9, no. 3, 319-349, Jul.
1987.

3. “ The VLIW Machine: A Multiprocessor for Compiling Scientific Code”, J.
Fisher, IEEE Computer, vol.7, 45-53, 1984.

4. The Superblock: An Effective Technique for VLIW and Superscalar
Compilation”, W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter, R.
Bringmann, R. Ouellette, R. Hank, T. Kiyohara, G. Habb, J. Holm and D.
Lavery, Journal of Supercomputing, 7(1,2), March 1993.

5. “Data Flow and Dependence Analysis for Instruction Level Parallelism”, B.
Rau, Proceedings of the Fourth Workshop on Language and Compilers for
Parallel Computing, August 1991.

6. “Some Scheduling Techniques and an Easily Schedulable Horizontal
Architecture for High-Performance Scientific Computing”, B. Rau and
C. Glaeser, Proceedings of the 14th Annual Workshop on
Microprogramming, 183-198, 1981.

Appendix A: Superblock
Formation

86

Building on Traces:
Super Block Formation

A trace with a single entry but potentially many exits
Two step formation

Trace picking
Tail duplication - eliminates side entrances

87

The Problem with Side Entrance

side
entrance

messy book
keeping!

88

Super Block Formation and Tail
Duplication

If x=3

y=1
u=v

y=2
u=w

If x=3

x=y*2 z=y*3

A

C

D

B

E F

G

H

If x=3

y=1
u=v

y=2
u=w

x=2 z=6

A

C

D

B

E F

G

H

E’

D’

G’optimized!

89

Super Block: Implications to Code Motion

Simplifies code motion during scheduling
Upward movements past a side exit within a block are pure
speculation
Downward movements past a side exit within a block are pure
replication
Downward movements past a side entry must be predicated, and
replicated.
─ Eliminated via tail duplication

Upward movements past a side entry must be replicated and
speculated.
─ Eliminated via tail duplication

Super Blocks eliminate the more complex cases.

