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Abstract

The estimation of linguistic evolution has intrigued many researchers for centuries, and in just the last few
years, several new methods for constructing phylogenies from languages have been produced and used to analyze
a number of language families. These analyses have led to a great deal of excitement, both within the field
of historical linguistics and in related fields such as archaeology and human genetics. They have also been
controversial, since the analyses have not always been consistent with each other, and the differences between
different reconstructions have been potentially criticalto the claims made by the different groups. In this paper,
we report on a simulation study we performed in order to help resolve this controversy, which compares some of
the main phylogeny reconstruction methods currently beingused in linguistic cladistics. Our simulated datasets
varied in the number of contact edges, the degree of homoplasy, the deviation from a lexical clock, and the
deviation from the rates-across-sites assumption. We find the accuracy of the unweighted methods maximum
parsimony, neighbor joining, lexico-statistics, and the method of Gray & Atkinson, to be remarkably consistent
across all the model conditions we studied, with maximum parsimony being the best, followed (often closely)
by Gray & Atkinson’s method, then neighbor joining, and finally lexico-statistics (UPGMA). The accuracy of
the two weighted methods (weighted maximum parsimony and weighted maximum compatibility) depends upon
the appropriateness of the weighting scheme, and so dependsupon the homoplasy levels produced by the model
conditions; for low-homoplasy levels, however, the weighted methods generally produce the most accurate results
of all methods, while the use of inappropriate weighting schemes can make for poorer results than maximum
parsimony and Gray & Atkinson’s method under moderate to high homoplasy levels.

1 Introduction

In a phylogenetic analysis, an evolutionary history is proposed for a given set of “taxa”; in biology, the taxa are
likely to be biological species or biomolecular sequences,and in historical linguistics, the taxa are languages, or
perhaps dialects, which are presumed to have a common ancestor. In both biological and linguistic phylogenetic
analyses, a set of characters common to all taxa are considered, and each taxon is represented by its states for these
characters. A (linguistic) character is any feature of languages that can take one or more forms; these different
forms are called the “states” of the character. Linguistic characters are of three types: lexical, phonological, and
morphological. For lexical characters, the different states are cognate classes, so that two languages exhibit the
same state for the lexical character if and only if they have cognates for the meaning associated with the lexical
character. Phonological characters record the occurrenceof sound changes within the (pre)history of the language;
thus a typical phonological character has two states, depending on whether or not the sound change (or, more
often, constellation of changes) has occurred in the development of each language. Most morphological characters
represent inflectional markers; like lexical characters, they are coded by cognation. Thus each character defines
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an equivalence relation on the language family, such that two languages are equivalent if they exhibit the same
state for the character. Thus, if two languages exhibit the same state for the same character, then the presumption
is (generally) that the shared state arose due to common inheritance. However, shared states can also arise due to
borrowing, or through random chance, with some linguistic characters being much more likely to evolve by random
chance or borrowing than others. Thus, not all linguistic characters provide the same quality of “phylogenetic
signal”.

Thus, decisions related to character selection – whether torely only upon lexical characters, or to use mor-
phological and phonological characters as well – have the potential to impact a phylogenetic analysis, and these
decisions also raise other issues, such as whether all characters should be treated identically, or whether “weighting
schemes” should be used to reflect the assumed reliability ofthe character. In [30], we examined the impact of
character selection on phylogenetic analyses of an Indo-European (IE) dataset compiled by Ringe and Taylor, and
showed how phylogenetic analyses using the same method can differ when based upon different sets of charac-
ters. For example, phylogenies obtained on the basis of lexical characters can be very different from phylogenies
obtained based upon a mixture of the three different types ofcharacters, and phylogenies based upon “screened”
datasets (whereby characters are removed if they are considered to be likely to be “homoplastic”) can differ from
phylogenies based upon unscreened datasets. These differences in some cases can be minor, but in other cases can
be significant!

The study in [30] suggests that aspects of character evolution are likely to be significant when evaluating
the impact of characters on phylogenetic accuracy. For example, a character’s resistance to borrowing could be
important, since analyzing characters that have evolved through undetected borrowing could lead to an incorrect
estimation of the underlying true tree (known in linguistics as the “genetic tree”). However, incorrect phylogenetic
reconstructions arise due to a host of reasons. For example,there can be too little evolution in some particular
branch of the true phylogeny for that branch to be correctly reconstructed, resulting typically in an incompletely
resolved tree. There can be “rogue taxa”, which in this case would be languages which have evolved so quickly
from their parents that they can attach fairly arbitrarily throughout the tree without changing the quality of the
resultant phylogeny; Albanian is an example of this property, to some extent. There can also simply be inadequate
data - just not enough information to resolve the evolutionary history. The degree of deviation from a lexical clock
can negatively impact methods, as can the degree of homoplasy (parallel evolution or back-mutation).

All of these issues have the potential to impact all phylogenetic reconstruction methods, and yet it is clear that
different methods respond differently to these challenges, with some methods more negatively impacted by some
conditions than others.

How, therefore, is an interested researcher to determine whether a particular phylogenetic analysis proposed
for a given language family is reliable? Or to determine whatphylogenetic reconstruction method to use when
given a particular character dataset? Or to determine whichcharacters to use in a new phylogenetic analysis? Or
to understand why two phylogenetic analyses might differ? Explicit models of language evolution – especially
parametric ones – will greatly enable the exploration of howdifferent conditions impact the accuracy of different
phylogeny reconstruction methods, and help us answer thesequestions.

Models of linguistic character evolution Various stochastic models of linguistic character evolution have been
proposed or implicitly suggested in simulation studies andstatistical analyses of language evolution [14, 22, 25,
1, 31]. Models of linguistic character evolution differ in several ways: (a) they may assume that all evolution is
treelike, so that no borrowing occurs, or they may explicitly model borrowing, (b) they may assume that evolution is
clock-like or not, (c) they may assume that characters evolve identically or not, (d) they may assume that different
characters evolve independently, or not, and (e) they may allow homoplasy to occur, or not. For example, in
[25] we proposed the “perfect phylogenetic network” non-parametric model of language evolution in which every
character evolves down a tree contained within a network, but without any homoplasy, and in [39] we proposed a
parametric model that allows for borrowing and limited homoplasy.

Parametric stochastic models are those in which the probability distribution of the observed data comes from
a given family of possible distributions, with the actual member of the family being determined by a collection of
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numerical parameters. For example, a parametric model may assume that all characters evolve independently, but
without any homoplasy, and require extra parameters to specify the probability that a given character will change
its state (and thus evolve into a new state) on a given edge in the tree. Thus, the model is fully specified by the
underlying tree and the parameter values for the substitution mechanism. One of the virtues of a parametric model
is that simulation studies can be performed under the model,which allows a researcher to study the accuracy of
a reconstruction method under a range of conditions. That is, in a simulation study, the researcher selects (or
randomly generates) a model phylogeny, which may either be atree or a network (a tree with contact edges, which
are added to model borrowing). Characters are then evolved down the phylogeny, thus producing states for each
character at every leaf in the phylogeny. This resultant character state matrix (where the rows correspond to the
languages that occupy the leaves of the phylogeny, and the columns correspond to the characters) can then be given
to a collection of phylogeny reconstruction methods. The resultant phylogenies are computed, of course, without
knowledge of the model phylogeny, and hence may have errors.However, these estimated phylogenies can each
be compared to the model phylogeny, and the degree of error can be quantified. By performing simulation studies,
it is possible to determine various aspects of the performance of phylogeny reconstruction methods. For example,
it is then possible to characterize the model conditions (i.e., parameter values) under which a method will yield
a highly accurate estimation, and those under which the method will be more likely to have errors. It can also
be possible to characterize the model conditions under which all methods do well, or all methods do poorly, or -
perhaps - one method outperforms another.

To our knowledge, the most complex model of language evolution is the one we provided in [39], which
allows characters to evolve with limited (but identifiable)homoplasy, borrowing between lineages, and assumes
the characters evolve independently but not identically. Under this complex model, we showed in [39] that with
limited borrowing, the evolutionary history is identifiable (which implies that given enough data, the true history
can be reconstructed if a good reconstruction method is used), and we provided polynomial time algorithms which
are statistically consistent under the model. However, these theoretical results do not provide any direct insight into
the relative performance of any methods on finite datasets (as identifiability and statistical consistency are concepts
that address what is possible given unbounded amounts of data).

Simulation studies have been used to evaluate the performance of phylogeny reconstruction methods in molec-
ular systematics (i.e., the estimation of phylogenies fromDNA, RNA, or amino-acid sequences), and have been
able to shed light on how different molecular evolutionary processes impact phylogenetic accuracy. For example,
such simulation studies have been used to show how rates of evolution, taxonomic sampling, reticulation events,
and deviations from a molecular clock (the biological equivalent of a lexical clock, which asserts that the number
of times each site within a molecular sequence changes should be proportional to time) impact absolute accuracy
as well as the relative performance of different phylogenetic reconstruction methods (the scientific literature is too
large to provide a comprehensive list of papers, but see [6, 15, 19, 24, 26, 27, 28]). These studies tend to lend
support to the conjecture that statistical estimation methods, such as maximum likelihood, will produce the most
accurate results, provided that the statistical estimation methods are based upon models that are a good fit to the
underlying evolutionary processes (which, of course, cannot be known on a real dataset).

Linguistic evolution has many of the same features as biological sequence evolution, but certain issues are
of particular relevance because of differences between thetwo domains. In particular, in linguistic evolution (as
compared to biological sequence evolution), there is generally much less homoplasy. That is, in our experience,
careful application of the Comparative Method [16] by an experienced and knowledgeable historical linguist can
identify many of the borrowings between languages, and thusproduce data matrices which have very little ho-
moplasy. In addition, since certain characters are known toevolve through parallel evolution, these can also be
identified in advance, and screened out (removed from the analysis). Finally, some phylogenetic reconstructions
of language families have been based solely upon lexical data, while others have used morphological and complex
phonological characters as well.

In this paper we provide a simulation study in order to address how different features of evolutionary processes
impact the accuracy of phylogenies estimated from linguistic character data, using phylogeny reconstruction meth-
ods that have been used in recent analyses of linguistic datasets. We describe the experimental design in Section
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2, and report on the results of this experiment in Section 3. We then conclude in Section 4 with a discussion about
ongoing work in modelling language evolution.

2 The simulation study

2.1 Overview

We performed a simulation study under the model we provided in [39], in order to evaluate the performance of six
existing phylogeny reconstruction methods under a wide range of model conditions. All model networks and trees
we used had 30 leaves, and ranged from no contact edges (i.e.,tree-like evolution) to networks with three contact
edges. To capture the characteristics of a real dataset, such as the IE dataset that was analyzed in [30], we evolved
from 301 to 361 characters down the trees, the bulk of which (300 or more) were modelled after lexical characters,
and the remainder were morphological. We set the parametersof the simulation in order to produce datasets with
different homoplasy levels, deviations from a lexical clock, and deviations from the rates-across-sites assumption.

We had two types of characters, lexical and morphological, and we divided lexical characters into three types
according to the rate of evolution, obtaining fast lexical,medium lexical, and slow lexical characters. Within each
of the four types of characters, the parameters of the evolutionary process were drawn identically and independently
from a distribution which we describe below.

Our experiment was designed to help us understand how the conditions of the evolutionary process (e.g.,
the presence of borrowing between lineages (i.e., reticulations), relaxing the strong molecular clock, relaxing
the rates-across-sites assumption, and the degree of homoplasy) impact the accuracy of the different phylogeny
reconstruction methods we studied. However, we were also interested in seeing if there were any clear indications
of relative performance between different methods, in evaluating the consequences for “screening datasets” to
remove likely homoplastic characters, in using weighting schemes to give higher weight to those characters which
were considered likely to be more resistant to homoplasy, and in restricting analyses to lexical-only datasets as
compared to using lexical and morphological characters together.

2.2 Phylogeny reconstruction methods

The phylogeny reconstruction methods we study in this paperinclude most of the standard methods used in molec-
ular phylogenetics as well as two newer methods proposed explicitly for reconstructing phylogenies on languages.
The methods studied include four character-based methods and two distance-based methods. The four character-
based methods each produce several trees, and hence we use a standard consensus method (the “majority con-
sensus”) in order to return a single estimate of the evolutionary history. (See [11, 38] for two books providing
information on phylogenetic reconstruction methods used in biology, including many of the methods studied here.)

UPGMA The UPGMA (unweighted pair grouping method of agglomeration) algorithm is a distance-based method
which is designed to work well when the evolutionary processes obeys thelexical clockassumption. This is the
same method used in lexicostatistical analyses. As is standard for this method, we use Hamming distances (the
number of characters on which a given pair of languages have different states) to define the distance matrix between
the set of languages.

Neighbor joining NJ, orNeighbor Joining[34], is a particular agglomerative clustering technique used in molec-
ular phylogenetics, which is able to reconstruct accurate phylogenies even when the clock assumption does not
hold. Of all distance-based methods, NJ is believed to be oneof the best. The corrected distanceD(i, j) between
two languagesi andj is computed by calculating corrected distances for each type of character (i.e., slow lexical
(SL), medium lexical (ML), fast lexical (FL) and morphological (Mo)), and then averaging them:

D(i, j) =
numSLDSL(i, j) + numMLDML(i, j) + numFLDFL(i, j) + numMoDMo(i, j)

numSL + numML + numFL + numMo
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wherenumX is the number of characters in classX asX ranges over the four classes of characters,HDX(i, j)
is the Hamming Distance between languagesi andj computed only on the basis of the characters in the class
X , andDX(i, j) = − log(1 − HDX(i, j)/numX). Under the model we propose, if we do not allow reticulation,
homoplasy or heterotachy (that is, violation of the rates-across-sites assumption), then theD(i, j) will be consistent
statistical estimators of genuine tree distances that are concordant with the topology of the underlying genetic
tree. That is, when the numbers of replicatesnumX are large, theD(i, j) will be close to a collection of leaf-
to-leaf distances on a tree with edge lengths whose shape is that of the genetic tree. (Note that using NJ with
uncorrected distances is not a statistically consistent estimator of phylogenies, except for cases where the lexical-
clock assumption holds.)

Maximum parsimony and weighted maximum parsimony Maximum Parsimony, or MP, is an optimization
problem which seeks a tree on which a minimum number of character state changes occurs. When the characters
are weighted, then the objective is to find a tree in which the total weighted number of character state changes is
minimized. Both MP and WMP are NP-hard problems, which has the consequence that exact solutions cannot be
guaranteed using polynomial time algorithms. Hence, we useheuristics in the PAUP* [37] software package to
find good (though not provably optimal) solutions. Since there can be many equally good solutions, the majority
consensus tree of the set of optimal solutions is returned. In our experiments, we used a weighting scheme where
the weight of every morphological character is 50, and the weight of every lexical character is 1; this weighting
scheme was selected on the basis of the perceived relative resistance of thescreeneddatasets we analyzed in [30],
and so reflects the expectation that screened morphologicalcharacters will be much more resistant to homoplasy
and borrowing than screened lexical characters.

Weighted maximum compatibility When all the characters evolve without homoplasy down a tree, then the
tree is called a “perfect phylogeny”, and each of the characters is said to be “compatible” on the tree. Weighted
Maximum Compatibility, or WMC, is the optimization problemwhich seeks a tree with the maximum weighted
compatibility score, which is computed by adding up all the weights of each character which is compatible on
the tree. WMC is an NP-hard problem, which we “solve” heuristically through the use of the WMP (weighted
maximum parsimony) analysis – by taking all the trees which are optimal for WMP, scoring each one under the
WMC criterion, and then returning those trees which are optimal under WMC. Once again, we return the majority
consensus of the best trees we find. Since WMC (like MP and WMP)is NP-hard, these solutions are not guaranteed
to be globally optimal solutions.

Gray & Atkinson’s method (G&A) The method (originally presented in [14]) designed by Russell Gray and
Quentin Atkinson operates as follows. First, each multistate character is replaced by a binary encoded version of
the character, and these binary characters are then interpreted as restriction sites and analyzed under a rates-across-
sites model in the MrBayes software [20]. MrBayes uses a Markov chain Monte Carlo exploration of tree and
parameter space to simulate the Bayesian posterior distribution of the tree and parameters under its model. The run
of the Markov chain is divided into aburn-inand astationaryphase of equal length. Each phase contains 75,000
iterations. During the second,stationaryphase, 100 simulated values are recorded at regular intervals. We report
the majority consensus tree of those 100 values.

Comments These six methods are most of the ones that have been used in phylogenetic reconstructions on
linguistic datasets: UPGMA is the standard method used in lexico-statistics, maximum parsimony has been used in
several dataset analyses (see for example the analysis of the Bantu language family in [17]), and Gray & Atkinson
used their method to analyze an Indo-European dataset [14] and to analyze the Bantu language family [18]. In
our own analyses [25, 30, 32] of IE datasets, we have used methods designed to find trees that optimize weighted
maximum compatibility; most recently, we have modified thisapproach by looking for “perfect phylogenetic
networks” which use the obtained trees as candidates for theunderlying genetic tree. Thus, WMC is included in
order to represent a technique that is closely allied to our approaches. Neighbor joining is included in order to
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provide a method from the biological systematics toolkit (although it has also been used in phylogenetic analyses
for language families).

Some comments should be made about the use of weighting in maximum parsimony or maximum compati-
bility. The weights in these methods are supposed to reflect the relative resistance to borrowing and homoplasy,
with higher weights given to characters that are believed tobe more resistant to borrowing and homoplasy. In
our studies, we have used WMConly afterthe data have been screened to remove clearly homoplastic characters.
In our simulation study, we have the weights for all lexical characters set to 1 and weights for all morphological
characters set to 50, to reflect the expectation that morphological characters, after screening, will have a very low
incidence of homoplasy and borrowing, as compared to lexical characters. Thus, WMC and WMP shouldnot be
used in this way on unscreened data. However, we include datashowing how WMC and WMP perform on un-
screened data in order to show how the use of extremely poor estimates of character weights impacts phylogenetic
accuracy.

Software We used PAUP* [37] for all the phylogeny reconstruction methods we studied, except for Gray &
Atkinson. For our implementation of Gray & Atkinson, we usedMrBayes [20]. We used the r8s program [35] to
generate our model trees. See the appendix for the commands we used.

2.3 Model network generation

Our simulation generates random binary trees using a Yule process with per individual birth rate1 conditioned to
have the requisite number of terminal taxa at time1, as implemented by Sanderson’sr8s software [35]. Thus, the
trees we generated by r8s have edge lengths that represent elapsed time, and are normalized so that all paths from
root to terminal leaf have length1. We indicate the elapsed time on edgee by t(e).

In our model of evolution, the implementation of borrowing requires the existence of contact edges between
lineages. Those contact edges must be added to the generatedbinary tree and the resulting structure is no longer a
tree but a network. Two languages must be in existence at the same absolute time to borrow from each other. Thus
contact edges can only be generated between points that are equidistant from the root.

Suppose we have a pair of tree edges in different lineages that overlap for some interval of time[t1, t2]. Let
t0 ≤ t1 be the time of the most recent common ancestor of the points inthe two edges. We begin by laying
downcandidatecontact edges according to an inhomogeneous Poisson process – some of these candidate contact
edges will be removed to form the final reticulate network viaa procedure that we describe below. The infinitesimal
probability that a candidate contact edge occurs during thetime interval[t, t+dt] between the two edges is initially
µ(t− t0)

−1 dt for t1 ≤ t ≤ t2, whereµ is some parameter controlling the initial laying down of candidate contact
edges. This prescription has the two features that the probability a pair of edges will be connected by a contact
edge is increasing with the length of the overlap of the edgesin time and decreasing from the time at which the
lineages containing the edges diverged.

The inclusion of contact edges between two edges that issue from the same branch point doesn’t introduce
reticulation and so we discard such candidate edges. We would then like to condition the contact edge generation
process to create exactlyn contact edges (for some specified integern) between edges that don’t issue from the
same branch point. This conditioning eliminates the parameterµ and gives a network with a prescribed number of
possibilities for borrowing. We may approximate the effectof such a conditioning by the following procedure that
allows at most one contact edge between any two tree edges.

• For each pairπ of tree edges that overlap for some non-empty time interval[t1, t2] and have their most recent
common ancestor at timet0 < t1 (so that the edges don’t issue from the same branch point), assign a score
S(π) given by

S(π) = − log
(t1 − t0)

(t2 − t0)
.
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• Draw without replacementn pairs of edges, such that each pairπ is drawn with probability equal to its
normalized scoreS(π)/

∑

π′ S(π′).

• Oncen such edge pairs have been drawn, the corresponding contact edges are drawn by generating a time
of contacttc for the edge via

tc = t0 + (t1 − t0) exp

(

U log(
(t2 − t0)

(t1 − t0)
)

)

,

whereU is a random variable uniformly distributed on[0, 1] and these random variables are independent for
different edge pairs. In particular, each pair of edges in the tree is connected by at most one contact edge.

2.4 Stochastic model of language evolution

We use the stochastic model of language evolution proposed in [39]. In that model, there is a fixed collection of
linguistic characters, each of which has an infinite collection of possible states. A language is represented by the
particular states it exhibits for each of the characters (note, however, that two leaves in the treemaybe identical
with respect to the characters, due to insufficient evolution). Languages evolve down an underlying tree with added
reticulate edges that represent contact events between lineages. At a contact event, the state of each character may
be instantaneously transferred from the lineage at one end of the edge to the lineage at the other end (that is, one
lineage “borrows” the character state of another), and replaces the character state inherited from its genetic parent.

The set of possible states for a given character consists of adistinguished stateh∗, which we call the homo-
plastic state, that may arise at several points in time in thesame or different lineages, and an inexhaustible set of
states denotedn, n′, n′′, . . ., which we call the non-homoplastic states, each of which mayarise no more than once
across all times and all lineages as the result of a transition from another (homoplastic or non-homoplastic) state.

Given an edge in a model tree with edge lengthst(e) indicating elapsed time on the edgee, the transition events
along the edge follow a homogeneous Poisson process with a rate to be described later.

In this paper we simplify the model of single character evolution by taking the transition probabilities to be
identical for all edges and all characters and to depend on a single parameter0 ≤ homoplasy factor(c) ≤ 1 which
depends upon the characterc, as follows:

• Pr(h∗, h∗) = Pr(n, n) = 0

• Pr(n, h∗) = homoplasy factor(c)

• Pr(n, n′) = 1 − homoplasy factor(c)

• Pr(h∗, n) = 1

The probability that the state of a characterc is transferred along a contact edgee depends upon two parame-
ters, one which depends upon the edge, and one which depends on the character. The parameter that depends upon
the edge isedge borrowing(e), which is the probability that the most easily borrowed character transmits a state
in one of the two directions for the edge. This parameter can depend upon the edge, to reflect the possibility that
some contact events are more extensive than others; however, in our simulation study we setedge borrowing(e)
to the same value for all edges. The other parameter ischaracter borrowing(c), which reflects the probability
that the character will transmit its state across a contact edge. This parameter depends upon the character since
some character types are more easily borrowed than others (in particular, some lexical characters and morpholog-
ical characters are not readily borrowed, but other lexicalcharacters and some phonological characters are easily
borrowed). In our simulations, we setcharacter borrowing(c) for each of the different character classes, but set it
to 0 for the morphological characters since we do not permit themto be borrowed. For a given edge and character,
the probability of borrowing in one direction along the edgeis the same as the probability of borrowing in the
other direction. Thus, the probability of characterc transmitting its state in one direction on the edgee is given by
1

2
edge borrowing(e) × character borrowing(c).
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2.5 Character evolution

The phylogenetic network consists of an underlying genetictree with additional contact edges, whose edge lengths
t(e) represent the elapsed time on edgee (so that contact edges havet(e) = 0). We now describe additional
parameters so that we can describe how each character evolves down this network, independently of the other
characters.

We begin by defining the expected number of changes of a given character on a given edge. This expected
number of changes will depend upon the edgee (and specifically ont(e)), but also on some additional parame-
ters which we need to define. However, before we define these parameters we need to describe the concepts of
ultrametricityandrates-across-sites.

The condition of ultrametricity is that the path length fromthe root to each leaf is identical; when all taxa are
current-day and path lengths represent time, ultrametricity is immediate. However, when path lengths represent
the expected number of changes of a random site, then ultrametricity depends upon thelexical clockhypothesis,
which is generally discounted. We quantify the deviation from the lexical clock through the use of a parameterσ0

which we define below.
The rates-across-sites assumption is quite standard in molecular systematics and its underlying models, but is

nevertheless also questionable. It states that every two characters evolve proportionally – so that if one character
evolves at twice the speed of another character on one branchof the tree, then it evolves at twice the speed of the
other character on every branch in the tree. We quantify the deviation from this assumption through the parameter
σ1, which we also define below. (See [10] for a study discussing the rates-across-sites assumption and statistical
identifiability of divergence times.)

We now define the expected number of transitions on edgee for characterc to be:

t(e) × Ve × height factor(c) × Wc,e,

whereheight factor(c) is a parameter that only depends on the class of the characterc, andVe andWc,e are
random variables with

Ve = exp(Xe − σ2

0/2), Xe ∼ N(0, σ2

0)

and
Wc,e = exp(Xc,e − σ2

1/2), Yc,e ∼ N(0, σ2

1).

The normal random variablesXe andYc,e are independent over all choices of edgee and characterc. Note thatVe

andWc,e both have mean1. The parameterσ0 controls the degree to which the model deviates from a lexical clock
(that is, fails to be ultrametric). The parameterσ1 controls the degree to which therates-across-sitesassumption
fails.

Model conditions Certain parameters of the model are specific to the phylogenetic network but vary with the ex-
periments; these include the model phylogeny topology (in particular the number of contact edges) and the elapsed
time on each edge. We fix the parameteredge borrowing(e) which indicates the probability of a character state be-
ing transmitted on the edge. In addition to these network-specific parameters, there are parameters that can change
according to the character; these includehomoplasy factor(c), character borrowing(c), height factor(c), devi-
ation from lexical clock(represented by the parameterσ0), andheterotachy(represented by the parameterσ1).

We add the following constraints to the parameter system to suppress additional degrees of freedom unneces-
sary for the purpose of our experiments:

• We set the parametersσ0 andσ1 identically for all characters within any one simulation, but vary these
parameters between different experiments.

• The other parameters have one set value for each of the four character classes we consider.

• The value ofheight factor(c) only depends on the class of the character and increases as wego from slow to
medium to fast lexical characters. Its value for morphological characters is the same as that for slow lexical
characters.
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• The values ofhomoplasy factor(c) andcharacter borrowing(c) are identical across the three classes of
slow, medium and fast lexical characters. They only differ between lexical and morphological characters.

• Because morphological characters will not undergo borrowing,character borrowing(c) is a parameter for
lexical characters only. We are therefore able to add the constraint that for all contact edges and for all char-
acter classesedge borrowing(e) = character borrowing(c), which reduces the parameterization related to
borrowing to a single parameter.

For each experiment, we set the above stochastic parameterspartly by targeting measurable model conditions
such as observed homoplasy and borrowing, as well as other considerations such as the number of contact edges,
number and type of characters analyzed, etc. For each experiment, we generate32 random networks by taking a
tree generated by r8s and adding the contact edges. For each of these networks, we make three random draws of
the random variables (Ve andWc,e). For each of these draws, we generate three random sequences of characters
at the root and simulate their evolution. In total, for each each experiment, we generate a data point averaged over
288 measurements:32 topological networks×3 draws of the random variables×3 randomly evolved datasets.

The state at the root of each character is drawn ash∗ (with probability homoplasy factor(c)) or n (with
probability 1-homoplasy factor(c)). After each run of the simulation process, we obtain a set ofsequences,
one for each leaf in the phylogenetic tree or network, where each sequence represents the states of the language
represented by that leaf for each of the characters in the simulation process. This resulting character state matrix
is used by each reconstruction method to produce an estimated tree, which can then be compared with the genetic
tree within the model phylogenetic network.

Preliminary experiments showed that most of the variability in the estimated trees was due to variability in the
network, and this is why we have many more replicates of the network itself, rather than evolving many datasets
down any given network.

2.6 Error rates for phylogeny reconstruction methods

We compute two types of error rates: “false negatives” and “false positives”, which we now define. Recall that each
phylogeny reconstruction method produces a tree, which is compared to the “genetic tree” contained within the
model network. (That is, although a phylogenetic network can contain many trees, there is an underlying binary
tree to which the contact edges are added in order to produce the network; it is this tree that we will make our
comparisons to.)

Every edge in a tree defines a bipartition of the leaves of the tree, and hence can be identified with that bipar-
tition. Two trees on the same leaf set can thus be compared on the basis of their bipartitions. A bipartition in the
genetic tree that is missing from the estimated tree is said to be a “false negative”, while a bipartition that appears
in an estimated tree that does not appear in the genetic tree is a “false positive”. The number of false negatives is
bounded byn − 3, where there aren leaves, and so the “false negative rate” (FN rate) is defined to be the number
of false negatives, divided byn − 3. Similarly, the false positive rate (FP rate) is the number of false positives,
divided byn − 3. Genetic trees are always binary, but estimated trees may not be - consensus trees, in particular,
will often not be fully resolved. However, when estimated trees are binary, then their false negative rates and false
positive rates are identical. In general, though, we can only assert that the false positive rate is always no more
than the false negative rate. We focus our attention on FalseNegative rates, but provide information about false
positive rates as well. (The average of these two rates is often referred to as the Robinson-Foulds rate [33].)

Each data point represents an average of 288 measurements. We report the average false negative and false
positive rates between the majority consensus tree for the reconstruction methods and the genetic tree generated
by r8s (the genetic tree).
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3 Experimental results

3.1 Preliminary discussion

We now describe our experimental results. We begin by notingsome conditions that hold throughout all the exper-
iments. Parameter settings (specificallycharacter borrowing(c) andhomoplasy factor(c)) are set so that on the
low homoplasy or screened datasets, 1% of the lexical characters and none of the morphological characters evolve
homoplastically, and 6% of the lexical characters and none of the morphological characters evolve with borrow-
ing, while on the moderate homoplasy or unscreened datasets, 13% of the lexical and 24% of the morphological
characters are homoplastic, and 7% of the lexical and none ofthe morphological evolve with borrowing. All these
settings were made to reflect the empirical data analyses in [32] for low homoplasy datasets (“screened datasets”
in [32]) and moderate homoplasy datasets (“unscreened datasets” in [32]).

The borrowing parameter in our experiments replicates not all the lexical borrowing to be found in a real-
language dataset, but only borrowings thatare not detected as borrowings. Thus, we take no account of borrowings
from languages not in the dataset, nor of borrowings betweenlanguages in the dataset that can be detected using
the usual criteria (such as failure to reflect the regular sound changes diagnostic of the borrowing language).

One of the consequences of the settings we chose is that before “screening”, the morphological characters are
much morelikely to be homoplastic than the lexical characters, and after screening they are much less likely. The
weighting we use for the weighted parsimony and weighted compatibility methods are identical for both screened
and unscreened datasets, where morphological characters are weighted 50 and lexical characters are weighted 1.

Summary of experiments We begin by describing the 28 different basic experiments weran, each consisting
of a model condition (parameters for the evolutionary process) and the number and type of characters simulated
under each condition. For each of these basic experiments, we produced 288 datasets. Thus, all in all we created
9216 datasets, each of which was analyzed by the six phylogeny reconstruction methods we studied.

The 28 different experiments we ran can be grouped into four sets.

• Basic experiment: We fixedσ0 = 0.3 andσ1 = 1.2, reflecting intermediate values for these parameters. We
then allowed the number of contact edges to vary from0 to 3, and the homoplasy level to vary from low (to
reproduce the conditions of screened data) to moderate (to reproduce the conditions of unscreened data). For
each experiment, we generated300 lexical and 60 morphological characters, with the300 lexical grouped
evenly between slow, medium, and fast evolving characters.This produced eight different model conditions.

• Experiment 2: We set the number of contact edges to three, andσ0 = 0.3. We setσ1 to be either0.6 or
1.8, and homoplasy levels to be either low or moderate. For each experiment, we generated300 lexical and
60 morphological characters, with the300 lexical grouped evenly between slow, medium, and fast evolving
characters. This produced four different model conditions.

• Experiment 3: We set the number of contact edges to three, andσ1 = 1.2. We letσ0 be either0.15 or
0.45, and we let the homoplasy level be either low or moderate. Foreach experiment, we generated300
lexical and60 morphological characters, with the 300 lexical grouped evenly between slow, medium, and
fast evolving characters. This produced four possible model conditions.

• Experiment 4: We fixedσ0 = 0.3 andσ1 = 1.2, and we let the number of contact edges be0 or 3, the
homoplasy level be either low or moderate, and we varied the number and type of characters in three ways:
360 lexical and1 morphological,300 lexical and1 morphological, and300 lexical and20 morphological.
Regardless of their number, the lexical characters remain grouped evenly between slow, medium, and fast
evolving characters. This produced 12 possible model conditions.

Our discussion, provided below, explores the impact of various model conditions (homoplasy levels, deviations
from a lexical clock, deviations from the rates-across-sites assumption, and choice of dataset) on the performance
of the six phylogeny reconstruction methods. In each of these experiments, we report the false negative rate.
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False positive rates are not shown due to space limitations,but can be summarized as follows. UPGMA and NJ
produce binary trees, and hence for these two methods their false positive and false negative rates are identical. The
remaining methods (G&A, MP, WMP, and WMC) all use the majority consensus method to produce their output,
and for these the false positive rates are lower than their false negative rates. In general, we see that the false
positive rates are quite low for these four methods – often below 1%, but almost always below 5%. Furthermore,
much of the time the false positive rates of these four methods are very close, and don’t really help distinguish
between them (the cases where there is a difference are generally restricted to the low homoplasy settings where
G&A tends to do less well with respect to both false negative and false positive rates than the other methods).

3.2 Impact of homoplasy

We begin by considering the impact of the level of homoplasy on a phylogenetic analysis. Recall that we set the
parameter values for our “low homoplasy” and “moderate homoplasy” datasets to reflect what we observed for our
screened and unscreened datasets, respectively, in [30], and this has the consequence that morphological characters
aremorehomoplastic than lexical characters for unscreened data, but less homoplastic than lexical characters for
screened data. However, the weighting we use for the weighted parsimony and weighted compatibility methods
(where morphological characters receive higher weight than lexical characters) is identical for both conditions, and
is therefore not appropriate for unscreened data.

In Figure 1 we show the results when the model phylogeny is a tree, and in Figure 2 we show the results when
the model phylogeny is a network with three contact edges. Wesee that screening improves weighted parsimony
and weighted compatibility the most, which is not surprising since the weighting scheme is inappropriate for the
unscreened data. Thus, the improvement in accuracy of the weighted MP and weighted MC methods obtained as
a result of screening is to be expected.

We also see an improvement in MP’s performance from unscreened to screened, and this too is to be expected
since maximum parsimony will tend to improve as the homoplasy level decreases (in particular, maximum parsi-
mony should be accurate when the characters evolve without any homoplasy).

However, there is no change in performance for the other methods between screened and unscreened data, indi-
cating that these methods are not designed to extract betterphylogenetic signal under conditions of low homoplasy.

Figure 1: Impact of homoplasy on accuracy of phylogeny reconstruction methods for300 lexical characters and
60 morphological characters evolved down a phylogenetic tree under a moderate deviation from a lexical clock
(σ0 = 0.3) and moderate deviation from the rates-across-sites assumption (σ1 = 1.2).
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Figure 2: Impact of homoplasy on accuracy of phylogeny reconstruction methods for300 lexical characters and
60 morphological characters evolved down a phylogenetic network with three contact edges under a moderate
deviation from the lexical clock (σ0 = 0.3) and moderate deviation from the rates-across-sites assumption (σ1 =
1.2).

3.3 Impact of deviation from a lexical clock

We now examine the impact of varying the deviation from a lexical clock, from almost clock-like behavior (with
σ0 = 0.15) to a moderate deviation (withσ0 = 0.45). We show the results on the screened datasets obtained
from a phylogenetic network with three contact edges, and with moderate deviation from the rates-across-sites
assumption (σ1 = 1.2); results for other conditions (including unscreened datasets) were similar in terms of the
impact of this parameter on performance. Error rates increase for all methods as the deviation from the lexical
clock increases, but this is most pronounced for UPGMA and quite slight for the other methods.

Figure 3: Impact of the deviation from a lexical clock on phylogenetic analyses of a 30-taxon phylogenetic network
with three contact edges, from300 lexical characters and60 morphological characters evolved under low levels of
homoplasy and with a moderate deviation from the rates-across-sites assumption (σ1 = 1.2). We vary the deviation
from a lexical clock from low (σ0 = 0.15) to moderate (σ0 = 0.45).
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3.4 Impact of heterotachy

In Figure 4 we show the effect on phylogenetic analyses of deviating from the rates-across-sites assumption to
various degrees, by exploring the difference in accuracy obtained asσ1 varies from0.6 (which is close to the
rates-across-sites) toσ1 = 1.8 (which is further away), on data simulated on a phylogeneticnetwork with three
contact edges and low homoplasy; the same trends are observed for other model conditions. The rates-across-sites
assumption is critical to statistical models that attempt to estimate parameters under the assumption that all the
sites evolve asmultiplesof each other (i.e., some faster and some slower, but with a constant ratio held between
all sites). This is a standard assumption in phylogenetic analyses since it enables distance-based methods to be
statistically consistent under suitable conditions, and it also enables dating of internal nodes.

Interestingly, we see that asσ1 increases - i.e., as we relax the rates-across-sites assumption - methodsimprove
in accuracy. The degree of improvement is small for UPGMA, and largest for the character-based methods. One
explanation for this is that as the rates-across-sites assumption is relaxed, the range of rates-of-change exhibited
by the set of characters on any given edge will also increase (with high probability); this, in particular, increases
the probability that edges that are quite “short” (i.e., edgese for which t(e) is small) will exhibit some changes by
some characters, making these edges more likely to be inferred by a phylogeny reconstruction method.

Figure 4: Impact of heterotachy (deviation from the rates-across-sites assumption) on the accuracy of phylogenetic
reconstruction methods on data (300 lexical characters and60 morphological characters) evolved down a phylo-
genetic network with three contact edges with low homoplasy, and with moderate deviation from a lexical clock
(σ0 = 0.3). The bars refer to the different values forσ1.

3.5 Varying the proportion of lexical and morphological characters

Our next analysis considered the impact of using combined datasets (both morphological and lexical together)
versus lexical-only datasets, for low homoplasy levels (set to reflect the estimated homoplasy levels in [30] for the
“screened” datasets). Recall that in our simulations, we set the parameters for screened morphological characters so
that there is no borrowing (this is true even of unscreened morphological characters) and so that they exhibit much
less homoplasy than lexical characters. The inclusion of morphological characters into a dataset thus reduces the
rate of homoplasy and borrowing. We look at four different possibilities: (a) 360 lexical and one morphological, (b)
300 lexical and one morphological, (c) 300 lexical and 20 morphological, and (d) 300 lexical and 60 morphological.
The comparison between (a) and (b) mostly addresses the impact of adding more data of the same type (lexical);
the comparison between (b), (c) and (d) reflects the consequence of adding morphological characters to a dataset
which is primarily lexical. Finally, the comparison between (a) and (d) allows us to see the consequence of
choosing between lexical and morphological characters, when the total amount of data is kept fixed. In Figure 5,
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we see the result of this experiment, on screened datasets obtained by simulating down a phylogenetic network
with three contact edges.

In comparing (a) and (d), we see the consequence of choosing 360 lexical versus 300 lexical and 60 morpho-
logical characters. Here we see that the distance-based methods and Gray & Atkinson’s method are not improved
by exchanging lexical characters for morphological characters (in fact, neighbor joining even gets worse), while
maximum parsimony (weighted and unweighted) and weighted maximum compatibility improve - with WMC im-
proving the most. Comparisons between (a) and (b) are as expected: decreasing the number of characters while not
changing their nature decreases the accuracy of all methods. Comparisons between (b), (c), and (d) show all meth-
ods improving and thus indicate that all methods are able to improve in accuracy by adding characters (confirming
the earlier inference), but show some differences between methods. In particular, the distance-based methods show
much less improvement between (b) and (d) (i.e., as the number of morphological characters is increased from 1
to 60), possibly because the estimated distances are not becoming substantially more accurate with the increasing
data.

The results for other model settings for screened data are similar; however, as expected, on the unscreened
datasets weighted MP and weighted MC methods get worse as additional morphological characters are added
rather than better. The obvious explanation is the weighting scheme used by these methods, as it is inappropriate
for unscreened data.

Figure 5: Impact of data selection on the accuracy of phylogenetic reconstructions on data evolved down a phy-
logenetic network with three contact edges, under low homoplasy (“screened data”), moderate deviation from a
lexical clock (σ0 = .3), and moderate deviation from the rates across sites assumption (σ1 = 1.2).

3.6 Impact of the number of contact edges

In Figure 6, we show the results of our experiment in which we vary the number of contact edges from0 (for
tree-like evolution) to3, for low homoplasy datasets (“screened data”), with moderate deviation from the lexical
clock (σ0 = 0.3) and moderate deviation from the rates-across-sites assumption (σ1 = 1.2). Mostly what we see
here is as expected: most methods return better estimates ofthe genetic tree when there is no borrowing (or less
borrowing) between lineages. Two aspects of this study are surprising, however: first, reticulation, in the form of
contact edges, does generally lead to increased error, but not as much as might be expected (though some methods
are more adversely impacted than others). The other surprising observation is that UPGMA getsbetterwith added
contact edges. Understanding why this is so will require further investigation. Similar trends exist for other model
conditions for screened data, but results for unscreened data differ only in degree: UPGMA gets better and the
other methods get worse. However, the significance of these trends isn’t clear, given the magnitude of the standard
deviations.
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Figure 6: Impact of the number of contact edges on phylogenetic reconstructions of a phylogenetic network with
three contact edges, from 360 characters (300 lexical and 60morphological) evolved under low homoplasy, mod-
erate deviation from a lexical clock (σ0 = 0.3), and moderate deviation from the rates-across-sites assumption
(σ1 = 1.2).

3.7 Relative performance of different methods

We turn now to the question of relative performance of different methods. Interestingly, if we exclude weighted
maximum parsimony and weighted maximum compatibility, therelative performance of the remaining methods is
consistent across all model conditions, with UPGMA the worst, NJ the next, Gray & Atkinson next, and finally
MP. The difference between the methods depends upon the model condition, but the gaps between UPGMA and
NJ and between NJ and G&A are generally large, while the differences between G&A and MP are relatively small.
Here we show experiments to demonstrate the conditions in which the gaps in performance between these methods
are smallest, and where they are largest.

In general, the gap in performance G&A and MP is only small when working with unscreened data (i.e.,
moderate levels of homoplasy instead of low), since G&A doesn’t improve with reductions in homoplasy but MP
does. The cases where the gap between G&A and MP is extremely small are for the unscreened data, with few
morphological characters, and with a low deviation from therates-across-sites assumption – see, for example,
Figure 8a and Figure 10a. More generally, however, the gap between G&A and MP is smallest for those model
conditions in which all methods have a harder time, whereas as the model conditions improve (for example, by
increasing the number of characters, or deviating from the rates-across-sites assumption), the gap increases. Thus,
in particular, on the screened datasets, MP is clearly better than G&A.

3.8 Summary

Our study showed the following:

• There was a consistent pattern of relative accuracy of phylogenies reconstructed using these methods, with
the two distance-based methods (UPGMA and neighbor joining) less accurate than the character-based meth-
ods (maximum parsimony, weighted maximum parsimony, weighted maximum compatibility, and Gray &
Atkinson). UPGMA was always the worst by far.

• The relative performance within the character-based methods was often quite close, but Gray & Atkinson’s
method was always the least accurate. The only conditions under which Gray & Atkinson’s (G&A) method
was close to Maximum Parsimony (MP) were for unscreened data.

• Deviating from the lexical clock made all methods somewhat worse, but had the biggest impact on UPGMA.
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(a) (b)

Figure 7: Impact of the number of contact edges on phylogenetic reconstruction methods for 300 lexical characters
and 60 morphological characters, under two levels of homoplasy (moderate in (a), and low in (b)). All datasets
evolve under a moderate deviation from a lexical clock (σ0 = 0.3) and moderate deviation from the rates-across-
sites assumption (σ1 = 1.2).

(a) (b)

Figure 8: Impact of the deviation from the rates across sitesassumption on phylogenetic reconstruction methods,
for 300 lexical characters and 60 morphological characters, under two levels of homoplasy (moderate in (a) and low
in (b)). All characters evolve down a phylogenetic network with three contact edges under a moderate deviation
from a lexical clock (σ0 = 0.3). We varyσ1, the parameter for deviating from the rates-across-sites assumption,
from low (0.6) to moderate (1.8).

• Deviating from the rates-across-sites assumption improved the character-based methods but had little impact
on the distance-based methods.

• The incidence of borrowing between languages generally made reconstructions less accurate, but not dra-
matically so; surprisingly, it made UPGMA somewhat more accurate.

• The inclusion of screened morphological characters with low levels of homoplasy improves the accuracy of
all phylogeny reconstruction methods, but especially MP, WMP, and WMC.

• Using WMP and WMC on data with high levels of homoplasy produced poor results, but using WMP
and WMC on data with lower levels of homoplasy (and with weights reflecting the relative resistance to
homoplasy) improved accuracy.
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(a) (b)

Figure 9: Impact of deviating from the lexical clock on phylogenetic reconstruction methods for 300 lexical charac-
ters and 60 morphological characters, under two homoplasy levels (moderate in (a) and low in (b)). All characters
evolve down a phylogenetic network with three contact edgesunder a moderate deviation from the rates-across-
sites assumption (σ1 = 1.2). We vary the deviation from the lexical clock from low (σ0 = 0.15) to moderate
(σ0 = 0.45).

(a) (b)

Figure 10: Impact of data selection on phylogenetic reconstruction of a phylogenetic network with three contact
edges under two homoplasy levels (moderate in (a) and low in (b)). All characters evolve under a moderate
deviation from a lexical clock (σ0 = 0.3) and moderate deviation from the rates-across-sites assumption (σ1 =
1.2).

4 Discussion

What does our study imply about the choice of phylogeny reconstruction method, or about the choice of dataset
for a phylogenetic analysis? At a minimum, the study indicates that phylogenies estimated using distance-based
methods (e.g, the UPGMA used in lexico-statistics, and neighbor joining) are much less accurate than phylogenies
estimated using character-based methods. However, stronger statements can also be made. It is clear that data
selection has the potential to make a very big impact on the accuracy of the phylogenies that are constructed. In
particular, careful screening of datasets so as to reduce homoplasy and/or borrowing, and using characters which
are more resistant to homoplasy and borrowing (i.e., screened morphological and phonological characters),can
yield significantly improved results, although not all methods are able to take advantage of these modifications.
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(a) (b)

Figure 11: Impact of data selection on the relative performance of reconstruction methods of a tree, under two
levels of homoplasy (moderate in (a) and low in (b)). All characters evolve under moderate deviation from a
lexical clock (σ0 = 0.3) and moderate deviation from the rates-across-sites assumption (σ1 = 1.2).

Furthermore,whenscreened datasets that include morphological characters as well as lexical characters are ana-
lyzed, then the best analyses are clearly obtained by using weighted maximum parsimony or weighted maximum
compatibility, and in these cases the difference in performance between these methods and other methods can be
quite substantial.

On the other hand, with the exception of UPGMA, under most conditions we studied, all the remaining methods
(even neighbor joining) were able to reconstruct all but (about) 10% of the edges of the true tree. In other words,
probably all the methods (except for lexicostatistics, which uses UPGMA) will agree on a substantial portion of the
tree, and probably succeed in reconstructing the major subgroups. The differences between methods really come
down to finer details of the phylogenetic analysis. In IE terms, these questions might be: where does Germanic lie
in the Indo-European family tree, is Italo-Celtic a subgroup, are Greek and Armenian sisters? These “fine details”,
in other words, are where much of the intense debate lies within the historical linguistics community.

On the other hand, our study did not address the performance of phylogeneticnetworkreconstruction methods,
although the use of these methods for phylogeny reconstruction of language families is of increasing interest;
recent studies [9, 12, 13, 18, 22, 25] have used diverse techniques to produce these estimates, including SplitsTree
[2, 21], Neighbor Net [8], Median-Joining [3, 4, 5], and our Perfect Phylogenetic Network [25] method. However,
the relative performance of these methods has not been studied, due in part to a lack of accepted criteria by which
to evaluate the performance of phylogenetic network reconstruction methods (see, however, [23, 29]) and lack
of simulation tools. These studies will also require a rangeof models to cover the wide range of “reticulation”
in language evolution, from the end where the underlying “genealogical” tree is clearly defined (even if contact
occurs), to the other end where there is no underlying genealogical tree, but rather a dialect continuum.

We now briefly touch upon some of the outstanding theoreticalquestions. Currently methods for phylogenetic
analysis are fundamentally limited to using characters which exhibit at most one state on each language, and hence
cannot be used for “polymorphic” characters which exhibit two or more states on some languages. Polymorphism
is, unfortunately, quite common - especially among lexicalcharacters. Thus, clearly one of the outstanding prob-
lems in linguistic phylogenetics is to develop methods which can utilize polymorphic characters, and to do this
we need to begin with appropriate models of how polymorphismarises. Some simple examples of polymorphism
are arise from semantic shift, whereby two characters with different meaning gradually become indistinguishable
within one language with respect to meaning, so that the language then has two words for the same basic mean-
ing. English examples of this includebig and large, or rock and stone. In our initial work [7] on modelling
polymorphism, we considered the case where polymorphism arises only from semantic shift, but no homoplasy is
permitted. However, polymorphism can also arise from borrowing, through the incorporation of a loan word into
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a language, as well as from other processes; in addition, we now have good evidence that while morphological
characters may generally evolve with little (or no) homoplasy, the same is not true for lexical characters. Hence,
our first model for polymorphism is incomplete, and must be extended.

Another issue that must be addressed comes about because a speech community is not comprised of a single
individual speaking the language, but a community of speakers, and thuspopulation effectsmust be considered.
In effect, the basic problem of estimating phylogenies in languages that still confronts historical linguistics is that
models of linguistic character evolution are too simple in that they do not take population effects into consideration.
This is obvious in polymorphism, but it holds as well for the modelling of all characters.

It is worth noting that the same issue arises in biology. There is a divide between the “between-species”
stochastic models of biological character evolution typically used in phylogenetic analysis, which usually as-
sume monomorphism and also do not take population heterogeneity into consideration, and the “within-species”
models of population genetics, in which there is only partial geographical or reproductive separation between
sub-populations, leading to polymorphism within sub-populations and the possibility that different samples of
individuals from each of the sub-populations may exhibit varying evolutionary trees.

Mathematical models of evolution that would take these population effects explicitly into consideration would
have to include modifications of the underlying graphs (so that vertices and edges in the phylogenies would rep-
resent populations of speakers, rather than a single individual speaker), as well as of the stochastic processes that
operate on the characters. As important as this is to historical linguistics, little has yet been done.

For many researchers, the question of estimating dates at internal nodes is of central importance. However, from
a mathematical point of view, estimating dates at internal nodes is extremely difficult without significant constraints
on the deviation from a lexical clock (the linguistic equivalent of a molecular clock). Thus, our viewpoint on this
matter is that it’s best to limit phylogenetic reconstruction to estimating the underlying branching process, rather
than also estimating the dates. See [10, 22, 36] for more on this topic.
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Appendix

Software commands We provide the details about the commands we used with each software package.

Generating trees with R8s
#nexus
begin r8s;

simulate diversemodel=yule_c T=1.0 ntaxa=30 nreps=1 seed=1965807332 speciation=1
charevol=yes ratemodel=normal startrate=1.0 changerate=0.0 infinite=yes
minrate=1.0 maxrate=1.0;

describe plot=phylo_description;
end;

UPGMA using PAUP*
begin paup;

UPGMA treefile=PAUP/PAUP_up_out.trees replace;
quit;

Neighbor joining using PAUP*
begin paup;

NJ treefile=PAUP/PAUP_nj_out.trees replace;
quit;

Maximum parsimony or weighted maximum parsimony using PAUP*
begin paup;

set criterion=parsimony maxtrees=100 increase=no;
weights 1:1-300, 50:301-360;
hsearch start=stepwise addseq=random nreps=25 swap=tbr;
filter best=yes;
set maxtrees=100 increase=no;
hsearch start=current swap=tbr hold=1 nbest=100;
filter best=yes;
pscores all/ ci ri rc hi scorefile=PAUP_wmp_out.scores replace=yes;
savetrees file=PAUP_wmp_out.trees replace=yes format=nexus;

quit;
end;

Gray & Atkinson’s method using MrBayes
begin mrbayes;

set autoclose=yes nowarn=yes;
lset rates=gamma;
mcmcp ngen=150000 printfreq=10000 samplefreq=750

nruns=1 nchains=4 savebrlens=yes filename=Bayes_out;
mcmc;
set nowarnings=yes;
sumt filename=Bayes_out burnin=100;

quit;
end;

Parameter settings We used the following settings for our simulations.
The parameter heightfactor was set to 1.0, 2.0 and 3.0 for slow, medium and fast lexical characters, and 1.0

for morphological characters. In addition, we set the remaining parameters for each of the two homoplasy levels,
as follows:

• Moderate homoplasy dataset: Lexical - 13.0% incompatible due to homoplasy is achieved with homo-
plasy factor = 0.05788. Lexical - 7.0% incompatible due to borrowing is achieved with edgeborrowing
= characterborrowing = 0.3035. Morphological - 24% incompatible due tohomoplasy is achieved with
homoplasyfactor = 0.1215.
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• Low homoplasy dataset: Lexical - 1.0% incompatible due to homoplasy is achieved with homoplasyfactor
= 0.01321. Lexical - 6.0% incompatible due to borrowing is achieved with edgeborrowing = charac-
ter borrowing = 0.281425. Morphological - no borrowing, no homoplasy, so homoplasyfactor - 0.0 =
edgeborrowing= characterborrowing.
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