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Abstract

The estimation of linguistic evolution has intrigued maegearchers for centuries, and in just the last few
years, several new methods for constructing phylogenies fanguages have been produced and used to analyze
a number of language families. These analyses have led tea deal of excitement, both within the field
of historical linguistics and in related fields such as aecagy and human genetics. They have also been
controversial, since the analyses have not always beeristemswith each other, and the differences between
different reconstructions have been potentially crittcathe claims made by the different groups. In this paper,
we report on a simulation study we performed in order to he$lve this controversy, which compares some of
the main phylogeny reconstruction methods currently besegd in linguistic cladistics. Our simulated datasets
varied in the number of contact edges, the degree of homgpias deviation from a lexical clock, and the
deviation from the rates-across-sites assumption. We fiachtcuracy of the unweighted methods maximum
parsimony, neighbor joining, lexico-statistics, and thetmod of Gray & Atkinson, to be remarkably consistent
across all the model conditions we studied, with maximunsipaony being the best, followed (often closely)
by Gray & Atkinson's method, then neighbor joining, and flpdéxico-statistics (UPGMA). The accuracy of
the two weighted methods (weighted maximum parsimony anghted maximum compatibility) depends upon
the appropriateness of the weighting scheme, and so deppodsthe homoplasy levels produced by the model
conditions; for low-homoplasy levels, however, the wegghinethods generally produce the most accurate results
of all methods, while the use of inappropriate weightingesohs can make for poorer results than maximum
parsimony and Gray & Atkinson’s method under moderate tb higmoplasy levels.

1 Introduction

In a phylogenetic analysis, an evolutionary history is josgl for a given set of “taxa”; in biology, the taxa are
likely to be biological species or biomolecular sequenees, in historical linguistics, the taxa are languages, or
perhaps dialects, which are presumed to have a common anciesboth biological and linguistic phylogenetic
analyses, a set of characters common to all taxa are coadiderd each taxon is represented by its states for these
characters. A (linguistic) character is any feature of leagpes that can take one or more forms; these different
forms are called the “states” of the character. Linguistiaracters are of three types: lexical, phonological, and
morphological. For lexical characters, the differentestadre cognate classes, so that two languages exhibit the
same state for the lexical character if and only if they hasgnates for the meaning associated with the lexical
character. Phonological characters record the occur@rsmind changes within the (pre)history of the language;
thus a typical phonological character has two states, dbpgron whether or not the sound change (or, more
often, constellation of changes) has occurred in the dpwedmt of each language. Most morphological characters
represent inflectional markers; like lexical charactersytare coded by cognation. Thus each character defines



an equivalence relation on the language family, such thatlawguages are equivalent if they exhibit the same
state for the character. Thus, if two languages exhibit #meesstate for the same character, then the presumption
is (generally) that the shared state arose due to commonteatee. However, shared states can also arise due to
borrowing, or through random chance, with some linguigti@racters being much more likely to evolve by random
chance or borrowing than others. Thus, not all linguistiareleters provide the same quality of “phylogenetic
signal”.

Thus, decisions related to character selection — whetheglyoonly upon lexical characters, or to use mor-
phological and phonological characters as well — have tltenpial to impact a phylogenetic analysis, and these
decisions also raise other issues, such as whether allathesahould be treated identically, or whether “weighting
schemes” should be used to reflect the assumed reliabilittyeo€haracter. In [30], we examined the impact of
character selection on phylogenetic analyses of an Indog&an (IE) dataset compiled by Ringe and Taylor, and
showed how phylogenetic analyses using the same methodftanvwhen based upon different sets of charac-
ters. For example, phylogenies obtained on the basis afdegharacters can be very different from phylogenies
obtained based upon a mixture of the three different typehafacters, and phylogenies based upon “screened”
datasets (whereby characters are removed if they are @vaditb be likely to be “homoplastic”) can differ from
phylogenies based upon unscreened datasets. Thesertiffsia some cases can be minor, but in other cases can
be significant!

The study in [30] suggests that aspects of character egalatie likely to be significant when evaluating
the impact of characters on phylogenetic accuracy. For pigm character’s resistance to borrowing could be
important, since analyzing characters that have evolveritth undetected borrowing could lead to an incorrect
estimation of the underlying true tree (known in linguistis the “genetic tree”). However, incorrect phylogenetic
reconstructions arise due to a host of reasons. For exathgles can be too little evolution in some particular
branch of the true phylogeny for that branch to be corre@tpnstructed, resulting typically in an incompletely
resolved tree. There can be “rogue taxa”, which in this caseldvbe languages which have evolved so quickly
from their parents that they can attach fairly arbitrartlyaughout the tree without changing the quality of the
resultant phylogeny; Albanian is an example of this propéotsome extent. There can also simply be inadequate
data - just not enough information to resolve the evolutigtéstory. The degree of deviation from a lexical clock
can negatively impact methods, as can the degree of honyqjplasallel evolution or back-mutation).

All of these issues have the potential to impact all phylagierreconstruction methods, and yet it is clear that
different methods respond differently to these challengith some methods more negatively impacted by some
conditions than others.

How, therefore, is an interested researcher to determiretheh a particular phylogenetic analysis proposed
for a given language family is reliable? Or to determine whiaglogenetic reconstruction method to use when
given a particular character dataset? Or to determine wdtiehacters to use in a new phylogenetic analysis? Or
to understand why two phylogenetic analyses might diffexdligit models of language evolution — especially
parametric ones — will greatly enable the exploration of hiifferent conditions impact the accuracy of different
phylogeny reconstruction methods, and help us answer thesstions.

M odels of linguistic character evolution Various stochastic models of linguistic character evolutiave been
proposed or implicitly suggested in simulation studies stadistical analyses of language evolution [14, 22, 25,
1, 31]. Models of linguistic character evolution differ iev@ral ways: (a) they may assume that all evolution is
treelike, so that no borrowing occurs, or they may expligitbdel borrowing, (b) they may assume that evolution is
clock-like or not, (c) they may assume that characters evidlentically or not, (d) they may assume that different
characters evolve independently, or not, and (e) they mlaywdiomoplasy to occur, or not. For example, in
[25] we proposed the “perfect phylogenetic network” nomapaetric model of language evolution in which every
character evolves down a tree contained within a networtkawithout any homoplasy, and in [39] we proposed a
parametric model that allows for borrowing and limited hqrtasy.

Parametric stochastic models are those in which the prbtyatistribution of the observed data comes from
a given family of possible distributions, with the actualmtger of the family being determined by a collection of



numerical parameters. For example, a parametric model sgynee that all characters evolve independently, but
without any homoplasy, and require extra parameters tafypee probability that a given character will change
its state (and thus evolve into a new state) on a given eddwitrée. Thus, the model is fully specified by the
underlying tree and the parameter values for the substitutiechanism. One of the virtues of a parametric model
is that simulation studies can be performed under the madath allows a researcher to study the accuracy of
a reconstruction method under a range of conditions. Thahia simulation study, the researcher selects (or
randomly generates) a model phylogeny, which may eithertleeaor a network (a tree with contact edges, which
are added to model borrowing). Characters are then evoleet the phylogeny, thus producing states for each
character at every leaf in the phylogeny. This resultantattar state matrix (where the rows correspond to the
languages that occupy the leaves of the phylogeny, and thmos correspond to the characters) can then be given
to a collection of phylogeny reconstruction methods. Tsaitant phylogenies are computed, of course, without
knowledge of the model phylogeny, and hence may have erraiever, these estimated phylogenies can each
be compared to the model phylogeny, and the degree of emdyeeguantified. By performing simulation studies,
it is possible to determine various aspects of the perfoomafiphylogeny reconstruction methods. For example,
it is then possible to characterize the model conditiores, (parameter values) under which a method will yield
a highly accurate estimation, and those under which the adethill be more likely to have errors. It can also
be possible to characterize the model conditions undertwddiomethods do well, or all methods do poorly, or -
perhaps - one method outperforms another.

To our knowledge, the most complex model of language evmiuis the one we provided in [39], which
allows characters to evolve with limited (but identifiableymoplasy, borrowing between lineages, and assumes
the characters evolve independently but not identicallgdért this complex model, we showed in [39] that with
limited borrowing, the evolutionary history is identifigb{which implies that given enough data, the true history
can be reconstructed if a good reconstruction method is)paed we provided polynomial time algorithms which
are statistically consistent under the model. Howevesgdlieeoretical results do not provide any direct insiglat int
the relative performance of any methods on finite datasetisléatifiability and statistical consistency are concepts
that address what is possible given unbounded amountsaf. dat

Simulation studies have been used to evaluate the perfee@dmphylogeny reconstruction methods in molec-
ular systematics (i.e., the estimation of phylogenies fidNA, RNA, or amino-acid sequences), and have been
able to shed light on how different molecular evolutionarggesses impact phylogenetic accuracy. For example,
such simulation studies have been used to show how rate®hitiew, taxonomic sampling, reticulation events,
and deviations from a molecular clock (the biological eqlewt of a lexical clock, which asserts that the number
of times each site within a molecular sequence changesagheybroportional to time) impact absolute accuracy
as well as the relative performance of different phylogerretonstruction methods (the scientific literature is too
large to provide a comprehensive list of papers, but see§619, 24, 26, 27, 28]). These studies tend to lend
support to the conjecture that statistical estimation ww@shsuch as maximum likelihood, will produce the most
accurate results, provided that the statistical estimatiethods are based upon models that are a good fit to the
underlying evolutionary processes (which, of course, oabe known on a real dataset).

Linguistic evolution has many of the same features as bickdgequence evolution, but certain issues are
of particular relevance because of differences betweetwbelomains. In particular, in linguistic evolution (as
compared to biological sequence evolution), there is gdlyenuch less homoplasy. That is, in our experience,
careful application of the Comparative Method [16] by anexignced and knowledgeable historical linguist can
identify many of the borrowings between languages, and pinaduce data matrices which have very little ho-
moplasy. In addition, since certain characters are knowgvtdve through parallel evolution, these can also be
identified in advance, and screened out (removed from thigsigp Finally, some phylogenetic reconstructions
of language families have been based solely upon lexical ddtile others have used morphological and complex
phonological characters as well.

In this paper we provide a simulation study in order to adslhesv different features of evolutionary processes
impact the accuracy of phylogenies estimated from lingrigtaracter data, using phylogeny reconstruction meth-
ods that have been used in recent analyses of linguistisetataWe describe the experimental design in Section



2, and report on the results of this experiment in Section 8tWgn conclude in Section 4 with a discussion about
ongoing work in modelling language evolution.

2 Thesimulation study

2.1 Overview

We performed a simulation study under the model we provid¢89], in order to evaluate the performance of six
existing phylogeny reconstruction methods under a widgearf model conditions. All model networks and trees
we used had 30 leaves, and ranged from no contact edgetréieelike evolution) to networks with three contact
edges. To capture the characteristics of a real datasétasutie IE dataset that was analyzed in [30], we evolved
from 301 to 361 characters down the trees, the bulk of wiioh 6r more) were modelled after lexical characters,
and the remainder were morphological. We set the paramaftéine simulation in order to produce datasets with
different homoplasy levels, deviations from a lexical élpoand deviations from the rates-across-sites assumption.

We had two types of characters, lexical and morphological, e divided lexical characters into three types
according to the rate of evolution, obtaining fast lexicagdium lexical, and slow lexical characters. Within each
of the four types of characters, the parameters of the dvalarty process were drawn identically and independently
from a distribution which we describe below.

Our experiment was designed to help us understand how thditimms of the evolutionary process (e.qg.,
the presence of borrowing between lineages (i.e., retionls), relaxing the strong molecular clock, relaxing
the rates-across-sites assumption, and the degree of tesyppnpact the accuracy of the different phylogeny
reconstruction methods we studied. However, we were ateodsted in seeing if there were any clear indications
of relative performance between different methods, inweatithg the consequences for “screening datasets” to
remove likely homoplastic characters, in using weighticigesnes to give higher weight to those characters which
were considered likely to be more resistant to homoplagy,ianestricting analyses to lexical-only datasets as
compared to using lexical and morphological charactersttuay.

2.2 Phylogeny reconstruction methods

The phylogeny reconstruction methods we study in this pagirde most of the standard methods used in molec-
ular phylogenetics as well as two newer methods proposdtifor reconstructing phylogenies on languages.
The methods studied include four character-based methatisne distance-based methods. The four character-
based methods each produce several trees, and hence wetasdad consensus method (the “majority con-
sensus”) in order to return a single estimate of the evatatip history. (See [11, 38] for two books providing
information on phylogenetic reconstruction methods ueddalogy, including many of the methods studied here.)

UPGMA The UPGMA (unweighted pair grouping method of agglomergtadgorithm is a distance-based method
which is designed to work well when the evolutionary proesssbeys théexical clockassumption. This is the
same method used in lexicostatistical analyses. As is atdrfdr this method, we use Hamming distances (the
number of characters on which a given pair of languages héfeeaht states) to define the distance matrix between
the set of languages.

Neighbor joining NJ, orNeighbor Joinind34], is a particular agglomerative clustering technigeediin molec-
ular phylogenetics, which is able to reconstruct accuraigqgenies even when the clock assumption does not
hold. Of all distance-based methods, NJ is believed to beobtiee best. The corrected distanb¢i, j) between
two languages and; is computed by calculating corrected distances for eaoh ¢fgharacter (i.e., slow lexical
(SL), medium lexical (ML), fast lexical (FL) and morpholagi (Mo)), and then averaging them:

numsz, Dsr.(4,7) +numprr Darr (4, §) + numpr Der (4, §) + numaze Daro(7, 5)
numgy, + numysz, + DUMpgyz, + numys,

D(Za]) =



wherenumx is the number of characters in cla&sas X ranges over the four classes of charact&8)x (i, j)

is the Hamming Distance between languagesd j computed only on the basis of the characters in the class
X, andDx(i,j) = —log(1 — HDx (i, j)/numx ). Under the model we propose, if we do not allow reticulation,
homoplasy or heterotachy (thatis, violation of the rate®ss-sites assumption), then héi, ;) will be consistent
statistical estimators of genuine tree distances that ameardant with the topology of the underlying genetic
tree. That is, when the numbers of replicat@sny are large, theD(i, j) will be close to a collection of leaf-
to-leaf distances on a tree with edge lengths whose shapati®t the genetic tree. (Note that using NJ with
uncorrected distances is not a statistically consistdirhator of phylogenies, except for cases where the lexical-
clock assumption holds.)

Maximum parsimony and weighted maximum parsimony Maximum Parsimonyor MP, is an optimization
problem which seeks a tree on which a minimum number of cieratate changes occurs. When the characters
are weighted, then the objective is to find a tree in which tital tveighted number of character state changes is
minimized. Both MP and WMP are NP-hard problems, which hastinsequence that exact solutions cannot be
guaranteed using polynomial time algorithms. Hence, wehesegistics in the PAUP* [37] software package to
find good (though not provably optimal) solutions. Since¢hean be many equally good solutions, the majority
consensus tree of the set of optimal solutions is returmedut experiments, we used a weighting scheme where
the weight of every morphological character is 50, and thigyteof every lexical character is 1; this weighting
scheme was selected on the basis of the perceived relagigtargce of thecreenedlatasets we analyzed in [30],
and so reflects the expectation that screened morpholadiashcters will be much more resistant to homoplasy
and borrowing than screened lexical characters.

Weighted maximum compatibility When all the characters evolve without homoplasy down g tresn the
tree is called a “perfect phylogeny”, and each of the charads said to be “compatible” on the tree. Weighted
Maximum Compatibility, or WMC, is the optimization problewhich seeks a tree with the maximum weighted
compatibility score, which is computed by adding up all theights of each character which is compatible on
the tree. WMC is an NP-hard problem, which we “solve” heigédty through the use of the WMP (weighted
maximum parsimony) analysis — by taking all the trees whighaptimal for WMP, scoring each one under the
WMC criterion, and then returning those trees which arerogtiunder WMC. Once again, we return the majority
consensus of the best trees we find. Since WMC (like MP and W&I®P-hard, these solutions are not guaranteed
to be globally optimal solutions.

Gray & Atkinson's method (G& A) The method (originally presented in [14]) designed by Riis3sy and
Quentin Atkinson operates as follows. First, each muliistharacter is replaced by a binary encoded version of
the character, and these binary characters are then iatedas restriction sites and analyzed under a rates-across
sites model in the MrBayes software [20]. MrBayes uses a bladhain Monte Carlo exploration of tree and
parameter space to simulate the Bayesian posterior distibof the tree and parameters under its model. The run
of the Markov chain is divided into burn-inand astationaryphase of equal length. Each phase contains 75,000
iterations. During the seconstationaryphase, 100 simulated values are recorded at regular itgeiv@ report

the majority consensus tree of those 100 values.

Comments These six methods are most of the ones that have been usedlogghetic reconstructions on
linguistic datasets: UPGMA is the standard method usedkindestatistics, maximum parsimony has been used in
several dataset analyses (see for example the analysis Bathitu language family in [17]), and Gray & Atkinson
used their method to analyze an Indo-European dataset fit4jcaanalyze the Bantu language family [18]. In
our own analyses [25, 30, 32] of IE datasets, we have usedoaettesigned to find trees that optimize weighted
maximum compatibility; most recently, we have modified thproach by looking for “perfect phylogenetic
networks” which use the obtained trees as candidates farritierlying genetic tree. Thus, WMC is included in
order to represent a technique that is closely allied to ppr@aches. Neighbor joining is included in order to



provide a method from the biological systematics toolkih@ugh it has also been used in phylogenetic analyses
for language families).

Some comments should be made about the use of weighting immaxparsimony or maximum compati-
bility. The weights in these methods are supposed to refhectdlative resistance to borrowing and homoplasy,
with higher weights given to characters that are believeldetanore resistant to borrowing and homoplasy. In
our studies, we have used WMy afterthe data have been screened to remove clearly homoplaatiaathrs.

In our simulation study, we have the weights for all lexichéracters set to 1 and weights for all morphological
characters set to 50, to reflect the expectation that moogiaa! characters, after screening, will have a very low
incidence of homoplasy and borrowing, as compared to legltaracters. Thus, WMC and WMP shouldt be
used in this way on unscreened data. However, we includestiataing how WMC and WMP perform on un-
screened data in order to show how the use of extremely ptioragses of character weights impacts phylogenetic
accuracy.

Software We used PAUP* [37] for all the phylogeny reconstruction noeth we studied, except for Gray &
Atkinson. For our implementation of Gray & Atkinson, we udddBayes [20]. We used the r8s program [35] to
generate our model trees. See the appendix for the commandsed.

2.3 Modd network generation

Our simulation generates random binary trees using a Ywegss with per individual birth rateconditioned to
have the requisite number of terminal taxa at timas implemented by Sanderson8s software [35]. Thus, the
trees we generated by r8s have edge lengths that repreapseéitime, and are normalized so that all paths from
root to terminal leaf have length We indicate the elapsed time on edgey ¢(e).

In our model of evolution, the implementation of borrowirggjuires the existence of contact edges between
lineages. Those contact edges must be added to the gengireegdtree and the resulting structure is no longer a
tree but a network. Two languages must be in existence aathe absolute time to borrow from each other. Thus
contact edges can only be generated between points thaj@dkstant from the root.

Suppose we have a pair of tree edges in different lineagéswleaap for some interval of timg, t2]. Let
to < t; be the time of the most recent common ancestor of the pointiseinwo edges. We begin by laying
downcandidatecontact edges according to an inhomogeneous Poisson presesne of these candidate contact
edges will be removed to form the final reticulate networkavrocedure that we describe below. The infinitesimal
probability that a candidate contact edge occurs duringrineintervalft, ¢ + dt] between the two edges is initially
u(t —to)~tdtfort; <t <ty, whereu is some parameter controlling the initial laying down of dialate contact
edges. This prescription has the two features that the piiiigea pair of edges will be connected by a contact
edge is increasing with the length of the overlap of the edlyéisne and decreasing from the time at which the
lineages containing the edges diverged.

The inclusion of contact edges between two edges that issuethe same branch point doesn'’t introduce
reticulation and so we discard such candidate edges. Wedwoeih like to condition the contact edge generation
process to create exactlycontact edges (for some specified integebetween edges that don't issue from the
same branch point. This conditioning eliminates the patameand gives a network with a prescribed number of
possibilities for borrowing. We may approximate the effeicsuch a conditioning by the following procedure that
allows at most one contact edge between any two tree edges.

e For each pairr of tree edges that overlap for some non-empty time intétyal,| and have their most recent
common ancestor at timg < ¢, (so that the edges don't issue from the same branch poisiyraa score
S(m) given by

(t1 — o)

S(m) = —logm.



e Draw without replacement pairs of edges, such that each paiis drawn with probability equal to its
normalized scoré&(m)/ >, S(n').

e Oncen such edge pairs have been drawn, the corresponding codtges are drawn by generating a time
of contactt. for the edge via

to — 1
te =to+ (t1 —to) exp (Ulog((QiO))) ,
(t1 —to)
whereU is a random variable uniformly distributed ¢ 1] and these random variables are independent for
different edge pairs. In particular, each pair of edgesénttbe is connected by at most one contact edge.

2.4 Stochastic model of language evolution

We use the stochastic model of language evolution propasg9]. In that model, there is a fixed collection of
linguistic characters, each of which has an infinite coltecbf possible states. A language is represented by the
particular states it exhibits for each of the charactersgnmowever, that two leaves in the tnerybe identical
with respect to the characters, due to insufficient evohjtibanguages evolve down an underlying tree with added
reticulate edges that represent contact events betwesagks. At a contact event, the state of each character may
be instantaneously transferred from the lineage at one £t @dge to the lineage at the other end (that is, one
lineage “borrows” the character state of another), andaegs the character state inherited from its genetic parent.

The set of possible states for a given character consistglgtiaguished staté*, which we call the homo-
plastic state, that may arise at several points in time irstimee or different lineages, and an inexhaustible set of
states denoted, n/, n”, . . ., which we call the non-homoplastic states, each of which anesg no more than once
across all times and all lineages as the result of a tranditim another (homoplastic or non-homoplastic) state.

Given an edge in a model tree with edge lengthk$ indicating elapsed time on the edgehe transition events
along the edge follow a homogeneous Poisson process with torbe described later.

In this paper we simplify the model of single character etioluby taking the transition probabilities to be
identical for all edges and all characters and to depend ogiegparameted < homoplasy_factor(c) < 1 which
depends upon the charactgas follows:

e Pr(h*,h*) = Pr(n,n) =0

e Pr(n, h*) = homoplasy_factor (c)

e Pr(n,n’) =1 — homoplasy_factor (c)
e Pr(h*,n)=1

The probability that the state of a charactés transferred along a contact edgdepends upon two parame-
ters, one which depends upon the edge, and one which depetits character. The parameter that depends upon
the edge idge_borrowing(e), which is the probability that the most easily borrowed eleter transmits a state
in one of the two directions for the edge. This parameter egredd upon the edge, to reflect the possibility that
some contact events are more extensive than others; hquieweer simulation study we setige_borrowing(e)
to the same value for all edges. The other parametemasacter _bor rowing(c), which reflects the probability
that the character will transmit its state across a con@ge e This parameter depends upon the character since
some character types are more easily borrowed than otimepaiticular, some lexical characters and morpholog-
ical characters are not readily borrowed, but other lexébalracters and some phonological characters are easily
borrowed). In our simulations, we sgtar acter _borrowing(c) for each of the different character classes, but set it
to 0 for the morphological characters since we do not permit thebe borrowed. For a given edge and character,
the probability of borrowing in one direction along the edgehe same as the probability of borrowing in the
other direction. Thus, the probability of charactéransmitting its state in one direction on the edds given by
1edge_borrowing(e) x character_borrowing(c).



2.5 Character evolution

The phylogenetic network consists of an underlying geniegie with additional contact edges, whose edge lengths
t(e) represent the elapsed time on edgéso that contact edges hate) = 0). We now describe additional
parameters so that we can describe how each character exddwen this network, independently of the other
characters.

We begin by defining the expected number of changes of a givaracter on a given edge. This expected
number of changes will depend upon the eddand specifically ori(e)), but also on some additional parame-
ters which we need to define. However, before we define thasengders we need to describe the concepts of
ultrametricityandrates-across-sites

The condition of ultrametricity is that the path length fréine root to each leaf is identical; when all taxa are
current-day and path lengths represent time, ultramstrigiimmediate. However, when path lengths represent
the expected number of changes of a random site, then uliiaityedepends upon thiexical clockhypothesis,
which is generally discounted. We quantify the deviatiamirthe lexical clock through the use of a parameter
which we define below.

The rates-across-sites assumption is quite standard iecoal systematics and its underlying models, but is
nevertheless also questionable. It states that every taxacters evolve proportionally — so that if one character
evolves at twice the speed of another character on one brdribhk tree, then it evolves at twice the speed of the
other character on every branch in the tree. We quantify éwéaton from this assumption through the parameter
o1, which we also define below. (See [10] for a study discusdiegates-across-sites assumption and statistical
identifiability of divergence times.)

We now define the expected number of transitions on edgecharacter to be:

t(e) x Ve x height_factor(c) x W,

whereheight_factor (c) is a parameter that only depends on the class of the charaaed V, and W, . are
random variables with
‘/6 :exp(Xe—a§/2), Xe NN(Ova(Q))

and

Wee=exp(Xee—07/2), Yoo~ N(0,0%).
The normal random variables, andY, . are independent over all choices of edgand charactet. Note thatl,
andW, . both have meah. The parameter, controls the degree to which the model deviates from a légioak
(that is, fails to be ultrametric). The parametercontrols the degree to which thates-across-siteassumption
fails.

Model conditions Certain parameters of the model are specific to the phyldgametwork but vary with the ex-
periments; these include the model phylogeny topologyditigular the number of contact edges) and the elapsed
time on each edge. We fix the parametdge_bor rowing(e) which indicates the probability of a character state be-
ing transmitted on the edge. In addition to these netwodciic parameters, there are parameters that can change
according to the character; these inclimbenoplasy_factor (c), character _borrowing(c), height_factor(c), devi-
ation from lexical clocKrepresented by the parametg)), andheterotachyrepresented by the parametg).

We add the following constraints to the parameter systemppi®ss additional degrees of freedom unneces-
sary for the purpose of our experiments:

e We set the parametets, ando; identically for all characters within any one simulatiomt lvary these
parameters between different experiments.

e The other parameters have one set value for each of the favaater classes we consider.

e The value oheight_factor (c) only depends on the class of the character and increasesgasfraan slow to
medium to fast lexical characters. Its value for morphataficharacters is the same as that for slow lexical
characters.



e The values ohomoplasy_factor(c) andcharacter borrowing(c) are identical across the three classes of
slow, medium and fast lexical characters. They only difietmeen lexical and morphological characters.

e Because morphological characters will not undergo bomgydhar acter _borrowing(c) is a parameter for
lexical characters only. We are therefore able to add thetcaint that for all contact edges and for all char-
acter classesdge_borrowing(e) = character _borrowing(c), which reduces the parameterization related to
borrowing to a single parameter.

For each experiment, we set the above stochastic paranpeigissby targeting measurable model conditions
such as observed homoplasy and borrowing, as well as othsidayations such as the number of contact edges,
number and type of characters analyzed, etc. For each exgratiwe generaté2 random networks by taking a
tree generated by r8s and adding the contact edges. For tisdse networks, we make three random draws of
the random variabledf andW., .). For each of these draws, we generate three random seguefindaracters
at the root and simulate their evolution. In total, for eaableexperiment, we generate a data point averaged over
288 measurements2 topological networks<3 draws of the random variables3 randomly evolved datasets.

The state at the root of each character is drawm’agwith probability homoplasy_factor(c)) or n (with
probability 1homoplasy factor(c)). After each run of the simulation process, we obtain a setegfuences,
one for each leaf in the phylogenetic tree or network, whahesequence represents the states of the language
represented by that leaf for each of the characters in thelaiion process. This resulting character state matrix
is used by each reconstruction method to produce an estirtrate, which can then be compared with the genetic
tree within the model phylogenetic network.

Preliminary experiments showed that most of the variahiititthe estimated trees was due to variability in the
network, and this is why we have many more replicates of tieark itself, rather than evolving many datasets
down any given network.

2.6 Error ratesfor phylogeny reconstruction methods

We compute two types of error rates: “false negatives” aats¥f positives”, which we now define. Recall that each
phylogeny reconstruction method produces a tree, whiclnspared to the “genetic tree” contained within the
model network. (That is, although a phylogenetic netwonk cantain many trees, there is an underlying binary
tree to which the contact edges are added in order to prodhecedtwork; it is this tree that we will make our
comparisons to.)

Every edge in a tree defines a bipartition of the leaves ofrée ind hence can be identified with that bipar-
tition. Two trees on the same leaf set can thus be compareukedvatsis of their bipartitions. A bipartition in the
genetic tree that is missing from the estimated tree is sdigta “false negative”, while a bipartition that appears
in an estimated tree that does not appear in the geneticsteedfalse positive”. The number of false negatives is
bounded by, — 3, where there are leaves, and so the “false negative rate” (FN rate) is defioddthe number
of false negatives, divided by — 3. Similarly, the false positive rate (FP rate) is the numbeiatse positives,
divided byn — 3. Genetic trees are always binary, but estimated trees mialyenoconsensus trees, in particular,
will often not be fully resolved. However, when estimategkls are binary, then their false negative rates and false
positive rates are identical. In general, though, we cag assert that the false positive rate is always no more
than the false negative rate. We focus our attention on Fdégmtive rates, but provide information about false
positive rates as well. (The average of these two rateses ofiferred to as the Robinson-Foulds rate [33].)

Each data point represents an average of 288 measuremeatepdft the average false negative and false
positive rates between the majority consensus tree forebenstruction methods and the genetic tree generated
by r8s (the genetic tree).



3 Experimental results

3.1 Preliminary discussion

We now describe our experimental results. We begin by natimge conditions that hold throughout all the exper-
iments. Parameter settings (specificalyar acter _borrowing(c) andhomoplasy_factor (c)) are set so that on the
low homoplasy or screened datasets, 1% of the lexical cteasa@&nd none of the morphological characters evolve
homoplastically, and 6% of the lexical characters and ndrieeomorphological characters evolve with borrow-
ing, while on the moderate homoplasy or unscreened datds$®s of the lexical and 24% of the morphological
characters are homoplastic, and 7% of the lexical and notteeahorphological evolve with borrowing. All these
settings were made to reflect the empirical data analyseéinf¢r low homoplasy datasets (“screened datasets”
in [32]) and moderate homoplasy datasets (“unscreenedetatan [32]).

The borrowing parameter in our experiments replicates hdhea lexical borrowing to be found in a real-
language dataset, but only borrowings thi not detected as borrowing§hus, we take no account of borrowings
from languages not in the dataset, nor of borrowings betiaagguages in the dataset that can be detected using
the usual criteria (such as failure to reflect the regulandathanges diagnostic of the borrowing language).

One of the consequences of the settings we chose is thaebsfweening”, the morphological characters are
much mordikely to be homoplastic than the lexical characters, ateratreening they are much less likely. The
weighting we use for the weighted parsimony and weightedpaiihility methods are identical for both screened
and unscreened datasets, where morphological charartesemhted 50 and lexical characters are weighted 1.

Summary of experiments We begin by describing the 28 different basic experimentsame each consisting
of a model condition (parameters for the evolutionary psst@nd the number and type of characters simulated
under each condition. For each of these basic experimentpreduced 288 datasets. Thus, all in all we created
9216 datasets, each of which was analyzed by the six phyageonstruction methods we studied.

The 28 different experiments we ran can be grouped into fets: s

e Basic experiment: We fixed, = 0.3 ando; = 1.2, reflecting intermediate values for these parameters. We
then allowed the number of contact edges to vary ftoim 3, and the homoplasy level to vary from low (to
reproduce the conditions of screened data) to moderatefftoduce the conditions of unscreened data). For
each experiment, we generatg@D lexical and 60 morphological characters, with 8t lexical grouped
evenly between slow, medium, and fast evolving charactéis. produced eight different model conditions.

e Experiment 2: We set the number of contact edges to threeg@anrd 0.3. We seto; to be either0.6 or
1.8, and homoplasy levels to be either low or moderate. For egoéranent, we generated)0 lexical and
60 morphological characters, with tI360 lexical grouped evenly between slow, medium, and fast énglv
characters. This produced four different model conditions

e Experiment 3: We set the number of contact edges to threegand 1.2. We letoy be either0.15 or
0.45, and we let the homoplasy level be either low or moderate. elBgh experiment, we generatée)
lexical and60 morphological characters, with the 300 lexical groupechvbetween slow, medium, and
fast evolving characters. This produced four possible rhoataditions.

e Experiment 4: We fixedrp = 0.3 ando; = 1.2, and we let the number of contact edgesober 3, the
homoplasy level be either low or moderate, and we varied timelrer and type of characters in three ways:
360 lexical andl morphological 300 lexical andl morphological, an@00 lexical and20 morphological.
Regardless of their number, the lexical characters renrainppd evenly between slow, medium, and fast
evolving characters. This produced 12 possible model ¢iomdi

Our discussion, provided below, explores the impact ofotegimodel conditions (homoplasy levels, deviations
from a lexical clock, deviations from the rates-acrosessitssumption, and choice of dataset) on the performance
of the six phylogeny reconstruction methods. In each ofdhegeriments, we report the false negative rate.

10



False positive rates are not shown due to space limitatlnrts;an be summarized as follows. UPGMA and NJ
produce binary trees, and hence for these two methods #ie@rfjositive and false negative rates are identical. The
remaining methods (G&A, MP, WMP, and WMC) all use the majocbnsensus method to produce their output,
and for these the false positive rates are lower than thisie faegative rates. In general, we see that the false
positive rates are quite low for these four methods — oftéovb&%, but almost always below 5%. Furthermore,
much of the time the false positive rates of these four metteod very close, and don't really help distinguish
between them (the cases where there is a difference areadjgnestricted to the low homoplasy settings where
G&A tends to do less well with respect to both false negative false positive rates than the other methods).

3.2 Impact of homoplasy

We begin by considering the impact of the level of homoplaswy@hylogenetic analysis. Recall that we set the
parameter values for our “low homoplasy” and “moderate hplagy” datasets to reflect what we observed for our
screened and unscreened datasets, respectively, in fi@fhia has the consequence that morphological characters
aremorehomoplastic than lexical characters for unscreened datdess homoplastic than lexical characters for
screened data. However, the weighting we use for the walgtdesimony and weighted compatibility methods
(where morphological characters receive higher weight tbsical characters) is identical for both conditions, and
is therefore not appropriate for unscreened data.

In Figure 1 we show the results when the model phylogeny isea ind in Figure 2 we show the results when
the model phylogeny is a network with three contact edgess&¥ethat screening improves weighted parsimony
and weighted compatibility the most, which is not surpissince the weighting scheme is inappropriate for the
unscreened data. Thus, the improvement in accuracy of tighteel MP and weighted MC methods obtained as
a result of screening is to be expected.

We also see an improvementin MP’s performance from unsegttenscreened, and this too is to be expected
since maximum parsimony will tend to improve as the homagplegel decreases (in particular, maximum parsi-
mony should be accurate when the characters evolve witmyut@moplasy).

However, there is no change in performance for the otherodsthetween screened and unscreened data, indi-
cating that these methods are not designed to extract pétgirgenetic signal under conditions of low homoplasy.

25

20 -

FN Error (%)
B

=)
L

| |j’_. ’J‘_. F_. |j’_h “
0 T T T T T
NJ G&A MP WMP WMC

UPGMA

\I:I Moderate Homoplasy B Low Homoplasy\

Figure 1: Impact of homoplasy on accuracy of phylogeny retoiction methods fo300 lexical characters and
60 morphological characters evolved down a phylogeneatie tmder a moderate deviation from a lexical clock
(oo = 0.3) and moderate deviation from the rates-across-sites g@gmmio; = 1.2).
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Figure 2: Impact of homoplasy on accuracy of phylogeny rettoistion methods fo300 lexical characters and
60 morphological characters evolved down a phylogenetiword with three contact edges under a moderate
deviation from the lexical clocksy = 0.3) and moderate deviation from the rates-across-sites gggmis; =

1.2).

3.3 Impact of deviation from a lexical clock

We now examine the impact of varying the deviation from adakclock, from almost clock-like behavior (with

oo = 0.15) to a moderate deviation (withy = 0.45). We show the results on the screened datasets obtained
from a phylogenetic network with three contact edges, artd mioderate deviation from the rates-across-sites
assumptiond; = 1.2); results for other conditions (including unscreened skt were similar in terms of the
impact of this parameter on performance. Error rates irserdéar all methods as the deviation from the lexical
clock increases, but this is most pronounced for UPGMA aritklight for the other methods.

Low Homoplasy Dataset
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Figure 3: Impact of the deviation from a lexical clock on pig#netic analyses of a 30-taxon phylogenetic network
with three contact edges, fro300 lexical characters angh morphological characters evolved under low levels of
homoplasy and with a moderate deviation from the ratessaesdes assumptioa{ = 1.2). We vary the deviation
from a lexical clock from low ¢, = 0.15) to moderated, = 0.45).
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3.4 Impact of heterotachy

In Figure 4 we show the effect on phylogenetic analyses ofatieg from the rates-across-sites assumption to
various degrees, by exploring the difference in accuradginbd ass; varies from0.6 (which is close to the
rates-across-sites) to = 1.8 (which is further away), on data simulated on a phylogenstigvork with three
contact edges and low homoplasy; the same trends are otd$enather model conditions. The rates-across-sites
assumption is critical to statistical models that atteropédtimate parameters under the assumption that all the
sites evolve asultiplesof each other (i.e., some faster and some slower, but witmataot ratio held between
all sites). This is a standard assumption in phylogenetidyases since it enables distance-based methods to be
statistically consistent under suitable conditions, dradsio enables dating of internal nodes.

Interestingly, we see that as increases - i.e., as we relax the rates-across-sites aBsummethodsmprove
in accuracy. The degree of improvement is small for UPGMA] ngest for the character-based methods. One
explanation for this is that as the rates-across-sitesvg#ion is relaxed, the range of rates-of-change exhibited
by the set of characters on any given edge will also increagh bigh probability); this, in particular, increases
the probability that edges that are quite “short” (i.e.,estgfor which¢(e) is small) will exhibit some changes by
some characters, making these edges more likely to beéafésr a phylogeny reconstruction method.

Low Homoplasy Dataset
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) Vi“ |j’_i$‘ |j’_i$‘ |jri'—‘ %
0-— T T T T T
NJ G8&A MP WMP WMC

UPGMA
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|12
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FN Error (%)
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Figure 4: Impact of heterotachy (deviation from the ratess-sites assumption) on the accuracy of phylogenetic
reconstruction methods on dat( lexical characters anéd morphological characters) evolved down a phylo-
genetic network with three contact edges with low homoplasg with moderate deviation from a lexical clock
(oo = 0.3). The bars refer to the different values for.

3.5 Varyingthe proportion of lexical and morphological characters

Our next analysis considered the impact of using combin¢aisdes (both morphological and lexical together)
versus lexical-only datasets, for low homoplasy levelstseeflect the estimated homoplasy levels in [30] for the
“screened” datasets). Recall that in our simulations, wthegarameters for screened morphological characters so
that there is no borrowing (this is true even of unscreenegbhwogical characters) and so that they exhibit much
less homoplasy than lexical characters. The inclusion apimalogical characters into a dataset thus reduces the
rate of homoplasy and borrowing. We look at four differerggibilities: (a) 360 lexical and one morphological, (b)
300 lexical and one morphological, (c) 300 lexical and 20phoiogical, and (d) 300 lexical and 60 morphological.
The comparison between (a) and (b) mostly addresses thetimmpadding more data of the same type (lexical);
the comparison between (b), (c) and (d) reflects the conseguaf adding morphological characters to a dataset
which is primarily lexical. Finally, the comparison betweéa) and (d) allows us to see the consequence of
choosing between lexical and morphological charactergywthe total amount of data is kept fixed. In Figure 5,
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we see the result of this experiment, on screened dataseiineth by simulating down a phylogenetic network
with three contact edges.

In comparing (a) and (d), we see the consequence of choosihtgsical versus 300 lexical and 60 morpho-
logical characters. Here we see that the distance-basdmdsstind Gray & Atkinson’s method are not improved
by exchanging lexical characters for morphological chierac(in fact, neighbor joining even gets worse), while
maximum parsimony (weighted and unweighted) and weightedmmum compatibility improve - with WMC im-
proving the most. Comparisons between (a) and (b) are as®@delecreasing the number of characters while not
changing their nature decreases the accuracy of all metmasparisons between (b), (c), and (d) show all meth-
ods improving and thus indicate that all methods are ablefpwdve in accuracy by adding characters (confirming
the earlier inference), but show some differences betwesthads. In particular, the distance-based methods show
much less improvement between (b) and (d) (i.e., as the nuaflmorphological characters is increased from 1
to 60), possibly because the estimated distances are nonliag substantially more accurate with the increasing
data.

The results for other model settings for screened data endasj however, as expected, on the unscreened
datasets weighted MP and weighted MC methods get worse dsoadt morphological characters are added
rather than better. The obvious explanation is the weighdgcheme used by these methods, as it is inappropriate
for unscreened data.

Low Homoplasy Dataset
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Figure 5: Impact of data selection on the accuracy of phyletie reconstructions on data evolved down a phy-
logenetic network with three contact edges, under low hdasyp(“screened data”), moderate deviation from a
lexical clock g = .3), and moderate deviation from the rates across sites asaimip, = 1.2).

3.6 Impact of the number of contact edges

In Figure 6, we show the results of our experiment in which \w&eyvhe number of contact edges fran{for
tree-like evolution) ta3, for low homoplasy datasets (“screened data”), with magedaviation from the lexical
clock (oo = 0.3) and moderate deviation from the rates-across-sites gggaamis; = 1.2). Mostly what we see
here is as expected: most methods return better estimates génetic tree when there is no borrowing (or less
borrowing) between lineages. Two aspects of this studywam@rising, however: first, reticulation, in the form of
contact edges, does generally lead to increased errorpbasmmuch as might be expected (though some methods
are more adversely impacted than others). The other singpsservation is that UPGMA geltetterwith added
contact edges. Understanding why this is so will requirtheirinvestigation. Similar trends exist for other model
conditions for screened data, but results for unscreentddiffer only in degree: UPGMA gets better and the
other methods get worse. However, the significance of thieeadd isn’t clear, given the magnitude of the standard
deviations.
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Figure 6: Impact of the number of contact edges on phylogeretonstructions of a phylogenetic network with
three contact edges, from 360 characters (300 lexical amdd@@phological) evolved under low homoplasy, mod-
erate deviation from a lexical clock{ = 0.3), and moderate deviation from the rates-across-sitesrgssn
(0'1 = 12)

3.7 Relative performance of different methods

We turn now to the question of relative performance of défégrmethods. Interestingly, if we exclude weighted
maximum parsimony and weighted maximum compatibility,rlative performance of the remaining methods is
consistent across all model conditions, with UPGMA the wadxs the next, Gray & Atkinson next, and finally
MP. The difference between the methods depends upon thel wmugition, but the gaps between UPGMA and
NJ and between NJ and G&A are generally large, while the mtiffees between G&A and MP are relatively small.
Here we show experiments to demonstrate the conditionsichwhe gaps in performance between these methods
are smallest, and where they are largest.

In general, the gap in performance G&A and MP is only small mwherking with unscreened data (i.e.,
moderate levels of homoplasy instead of low), since G&A ddésprove with reductions in homoplasy but MP
does. The cases where the gap between G&A and MP is extremely are for the unscreened data, with few
morphological characters, and with a low deviation from thtes-across-sites assumption — see, for example,
Figure 8a and Figure 10a. More generally, however, the gapdan G&A and MP is smallest for those model
conditions in which all methods have a harder time, whersah@ model conditions improve (for example, by
increasing the number of characters, or deviating fromadiesracross-sites assumption), the gap increases. Thus,
in particular, on the screened datasets, MP is clearly tibie G&A.

3.8 Summary
Our study showed the following:

e There was a consistent pattern of relative accuracy of gieyles reconstructed using these methods, with
the two distance-based methods (UPGMA and neighbor jojiésg accurate than the character-based meth-
ods (maximum parsimony, weighted maximum parsimony, weigimaximum compatibility, and Gray &
Atkinson). UPGMA was always the worst by far.

e The relative performance within the character-based nastia@s often quite close, but Gray & Atkinson’s
method was always the least accurate. The only conditiodsrumhich Gray & Atkinson’s (G&A) method
was close to Maximum Parsimony (MP) were for unscreened data

e Deviating from the lexical clock made all methods somewhatse, but had the biggest impact on UPGMA.
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Figure 7: Impact of the number of contact edges on phylogerextonstruction methods for 300 lexical characters
and 60 morphological characters, under two levels of hoasyp(moderate in (a), and low in (b)). All datasets
evolve under a moderate deviation from a lexical clagk £ 0.3) and moderate deviation from the rates-across-

sites assumptioro{ = 1.2).
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Figure 8: Impact of the deviation from the rates across sigssimption on phylogenetic reconstruction methods,
for 300 lexical characters and 60 morphological characterder two levels of homoplasy (moderate in (a) and low
in (b)). All characters evolve down a phylogenetic netwoikhwthree contact edges under a moderate deviation
from a lexical clock g, = 0.3). We varyo;, the parameter for deviating from the rates-across-sgssmption,
from low (0.6) to moderate (1.8).

e Deviating from the rates-across-sites assumption impttve character-based methods but had little impact
on the distance-based methods.

e The incidence of borrowing between languages generallyermaconstructions less accurate, but not dra-
matically so; surprisingly, it made UPGMA somewhat moreusate.

e The inclusion of screened morphological characters withlé&vels of homoplasy improves the accuracy of
all phylogeny reconstruction methods, but especially MRJRVand WMC.

e Using WMP and WMC on data with high levels of homoplasy pratupoor results, but using WMP
and WMC on data with lower levels of homoplasy (and with wesgteflecting the relative resistance to
homoplasy) improved accuracy.
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Figure 9: Impact of deviating from the lexical clock on phgtmetic reconstruction methods for 300 lexical charac-
ters and 60 morphological characters, under two homopéagld (moderate in (a) and low in (b)). All characters
evolve down a phylogenetic network with three contact edgeker a moderate deviation from the rates-across-
sites assumptiors{ = 1.2). We vary the deviation from the lexical clock from lowy = 0.15) to moderate
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Figure 10: Impact of data selection on phylogenetic reganton of a phylogenetic network with three contact
edges under two homoplasy levels (moderate in (a) and low)n (All characters evolve under a moderate
deviation from a lexical clockdy = 0.3) and moderate deviation from the rates-across-sites gggmis; =

1.2).

4 Discussion

What does our study imply about the choice of phylogeny rstraotion method, or about the choice of dataset
for a phylogenetic analysis? At a minimum, the study indisahat phylogenies estimated using distance-based
methods (e.g, the UPGMA used in lexico-statistics, andhisigjoining) are much less accurate than phylogenies
estimated using character-based methods. However, stretatements can also be made. It is clear that data
selection has the potential to make a very big impact on tharacy of the phylogenies that are constructed. In
particular, careful screening of datasets so as to redum®plasy and/or borrowing, and using characters which
are more resistant to homoplasy and borrowing (i.e., se@morphological and phonological charactecsi
yield significantly improved results, although not all madls are able to take advantage of these modifications.
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Figure 11: Impact of data selection on the relative perforcesof reconstruction methods of a tree, under two
levels of homoplasy (moderate in (a) and low in (b)). All caers evolve under moderate deviation from a
lexical clock ¢g = 0.3) and moderate deviation from the rates-across-sites gggamis; = 1.2).

Furthermorewhenscreened datasets that include morphological charadtexglaas lexical characters are ana-
lyzed, then the best analyses are clearly obtained by uséighted maximum parsimony or weighted maximum
compatibility, and in these cases the difference in peréoroe between these methods and other methods can be
quite substantial.

On the other hand, with the exception of UPGMA, under mostlit@ns we studied, all the remaining methods
(even neighbor joining) were able to reconstruct all bub(gh10% of the edges of the true tree. In other words,
probably all the methods (except for lexicostatistics,ahhises UPGMA) will agree on a substantial portion of the
tree, and probably succeed in reconstructing the majorrsupg. The differences between methods really come
down to finer details of the phylogenetic analysis. In IE terthese questions might be: where does Germanic lie
in the Indo-European family tree, is Italo-Celtic a subgroare Greek and Armenian sisters? These “fine details”,
in other words, are where much of the intense debate liesniitle historical linguistics community.

On the other hand, our study did not address the performdpte/tngenetimetworkreconstruction methods,
although the use of these methods for phylogeny recongiruof language families is of increasing interest;
recent studies [9, 12, 13, 18, 22, 25] have used diverseigobsito produce these estimates, including SplitsTree
[2, 21], Neighbor Net [8], Median-Joining [3, 4, 5], and owarfect Phylogenetic Network [25] method. However,
the relative performance of these methods has not beerediudlie in part to a lack of accepted criteria by which
to evaluate the performance of phylogenetic network reicoason methods (see, however, [23, 29]) and lack
of simulation tools. These studies will also require a raofjmodels to cover the wide range of “reticulation”
in language evolution, from the end where the underlyinghé&gdogical” tree is clearly defined (even if contact
occurs), to the other end where there is no underlying gegesll tree, but rather a dialect continuum.

We now briefly touch upon some of the outstanding theoretjuaktions. Currently methods for phylogenetic
analysis are fundamentally limited to using characterstvbihibit at most one state on each language, and hence
cannot be used for “polymorphic” characters which exhili br more states on some languages. Polymorphism
is, unfortunately, quite common - especially among lexatedracters. Thus, clearly one of the outstanding prob-
lems in linguistic phylogenetics is to develop methods Wwtgan utilize polymorphic characters, and to do this
we need to begin with appropriate models of how polymorplasises. Some simple examples of polymorphism
are arise from semantic shift, whereby two characters wftarént meaning gradually become indistinguishable
within one language with respect to meaning, so that theuageg then has two words for the same basic mean-
ing. English examples of this includgg andlarge, or rock and stone In our initial work [7] on modelling
polymorphism, we considered the case where polymorphigasonly from semantic shift, but no homoplasy is
permitted. However, polymorphism can also arise from haimg, through the incorporation of a loan word into
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a language, as well as from other processes; in addition,amehave good evidence that while morphological
characters may generally evolve with little (or no) homaplahe same is not true for lexical characters. Hence,
our first model for polymorphism is incomplete, and must beeded.

Another issue that must be addressed comes about becauseca spmmunity is not comprised of a single
individual speaking the language, but a community of spesalend thugpopulation effectsnust be considered.

In effect, the basic problem of estimating phylogenies imglaages that still confronts historical linguistics isttha
models of linguistic character evolution are too simplénatthey do not take population effects into consideration.
This is obvious in polymorphism, but it holds as well for theahelling of all characters.

It is worth noting that the same issue arises in biology. €hsra divide between the “between-species”
stochastic models of biological character evolution tgfjcused in phylogenetic analysis, which usually as-
sume monomorphism and also do not take population hetegitgento consideration, and the “within-species”
models of population genetics, in which there is only padiographical or reproductive separation between
sub-populations, leading to polymorphism within sub-gapians and the possibility that different samples of
individuals from each of the sub-populations may exhibitirsg evolutionary trees.

Mathematical models of evolution that would take these petn effects explicitly into consideration would
have to include modifications of the underlying graphs (s tertices and edges in the phylogenies would rep-
resent populations of speakers, rather than a single thadiispeaker), as well as of the stochastic processes that
operate on the characters. As important as this is to histidinguistics, little has yet been done.

For many researchers, the question of estimating dateeatal nodes is of central importance. However, from
a mathematical point of view, estimating dates at interodis is extremely difficult without significant constraints
on the deviation from a lexical clock (the linguistic equesat of a molecular clock). Thus, our viewpoint on this
matter is that it's best to limit phylogenetic reconstrantio estimating the underlying branching process, rather
than also estimating the dates. See [10, 22, 36] for moreisndpic.
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Appendix

Software commands We provide the details about the commands we used with edistese package.

Generating treeswith R8s

#nexus
begin r8s;
si mul ate di versenodel =yul e_c T=1.0 ntaxa=30 nreps=1 seed=1965807332 speci ati on=1
charevol =yes ratenpdel =nornmal startrate=1.0 changerate=0.0 infinite=yes
mi nrate=1. 0 naxrate=1. 0;
descri be pl ot =phyl o_description;
end;

UPGMA using PAUP*

begi n paup;
UPGMA treefil e=PAUP/ PAUP_up_out .trees repl ace;
quit;

Neighbor joining using PAUP*

begi n paup;
NJ treefil e=PAUP/ PAUP_nj _out.trees repl ace;
quit;

Maximum parsimony or weighted maximum par simony using PAUP*

begi n paup;
set criterion=parsi nony naxtrees=100 i ncrease=no;
wei ghts 1:1-300, 50:301-360;
hsearch start=stepw se addseq=random nreps=25 swap=t br;
filter best=yes;
set naxtrees=100 i ncrease=no;
hsearch start=current swap=tbr hol d=1 nbest=100;
filter best=yes;
pscores all/ ci ri rc hi scorefil e=PAUP_wnp_out.scores repl ace=yes;
savetrees fil e=PAUP_wnp_out.trees repl ace=yes format=nexus;
quit;
end;

Gray & Atkinson’smethod using MrBayes

begi n nrbayes;
set autocl ose=yes nowar n=yes;
| set rates=ganmg;
ncncp ngen=150000 printfregq=10000 sanpl ef req=750
nruns=1 nchai ns=4 savebrl ens=yes fil enane=Bayes_out;
ncnc;
set nowarni ngs=yes;
sunt fil ename=Bayes_out burni n=100;
quit;
end;

Parameter settings We used the following settings for our simulations.

The parameter heigliactor was set to 1.0, 2.0 and 3.0 for slow, medium and fagtdéxharacters, and 1.0
for morphological characters. In addition, we set the rexingi parameters for each of the two homoplasy levels,

as follows:

e Moderate homoplasy dataset: Lexical - 13.0% incompatible t homoplasy is achieved with homo-
plasyfactor = 0.05788. Lexical - 7.0% incompatible due to bormgvis achieved with edgborrowing
= charactetborrowing = 0.3035. Morphological - 24% incompatible duentamoplasy is achieved with

homoplasyfactor = 0.1215.
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e Low homoplasy dataset: Lexical - 1.0% incompatible due tmbplasy is achieved with homoplaggctor
= 0.01321. Lexical - 6.0% incompatible due to borrowing itiaged with edgéorrowing = charac-
ter.borrowing = 0.281425. Morphological - no borrowing, no hgtasy, so homoplasfactor - 0.0 =

edgeborrowing= characteborrowing.
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