Reconstructing the Evolutionary History of
Indo-European Languages
using Answer Set Programming

Esra Erdem?, Vladimir Lifschitz!, Luay Nakhleh!, and Donald Ringe?

! Department of Computer Sciences
University of Texas at Austin, Austin, TX 78712, USA
? Department of Linguistics
University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract. The evolutionary history of languages can be modeled as
a tree, called a phylogeny, where the leaves represent the extant lan-
guages, the internal vertices represent the ancestral languages, and the
edges represent the genetic relations between the languages. Languages
not only inherit characteristics from their ancestors but also sometimes
borrow them from other languages. Such borrowings can be represented
by additional non-tree edges. This paper addresses the problem of com-
puting a small number of additional edges that turn a phylogeny into
a “perfect phylogenetic network”. To solve this problem, we use answer
set programming, which represents a given computational problem as
a logic program whose answer sets correspond to solutions. Using the
answer set solver SMODELS, with some heuristics and optimization tech-
niques, we have generated a few conjectures regarding the evolution of
Indo-European languages.

1 Introduction

The evolutionary history of languages can be modeled as a tree, called a “phy-
logeny” (or an “evolutionary tree”), where the leaves represent the extant lan-
guages, the internal vertices represent the ancestral languages, and the edges
represent the “genetic” relations between the languages. For instance, when we
say “French and Italian are both descendants of Latin” we refer to such a tree
where French and Italian are denoted by leaves, and Latin is denoted by an
internal vertex that is a common ancestor of these two leaves.

Reconstructing phylogenies for various language families is a major endeavor
in historical linguistics, but is also of interest to archaeologists, human geneti-
cists, and physical anthropologists. For instance, an accurate reconstruction of
the evolutionary history of certain languages can help us answer questions about
human migrations, the time that certain artifacts were developed, when ancient
people began to use horses in agriculture [4], [5], [11], [15]

Languages not only inherit characteristics from their ancestors but also some-
times borrow them from other languages. In such cases, trees are not a fully ad-
equate model of evolution. Nakhleh et al. [7] make this idea precise by defining

“perfect phylogenetic networks.” They start with a phylogeny built automati-
cally from a dataset describing characteristics of Indo-European languages, and
show how some perfect phylogenetic networks can be obtained from it by adding
a small number of new edges.

This paper addresses the same computational problem—computing a small
set of additional edges that turn a given phylogeny into a perfect phylogenetic
network. To solve this problem, we use answer set programming [6], [8], [3]|—a
new form of declarative programming based on “answer sets” (or stable models)
[1], [2]. The idea of answer set programming is to represent a computational
problem as a logic program whose answer sets correspond to solutions to the
given problem. There are systems specifically designed to compute the answer
sets of a logic program. These systems are called answer set solvers. For instance,
SMODELS [12] is one of the answer set solvers that are currently available. In the
main part of this paper, we assume that the reader has some familiarity with
the input language of SMODELS.

In the following, we will first describe the problem mathematically (Section 2)
and then formalize it in the language of SMODELS (Section 3). Useful heuristics
and optimization techniques will be discussed in Sections 4—6. After that, we
will describe the dataset we used to find some explanations to the evolutionary
history of the Indo-European languages and present the explanations computed
by SMODELS (Section 7). Proofs of theorems can be found in the full version of
this paper available at http://www.cs.utexas.edu/users/esra/ie.pdf.

2 Problem Description

We describe the problem of computing perfect phylogenetic networks built on a
given phylogeny as a graph problem. Therefore, we first introduce some defini-
tions related to graphs.

Recall that a directed graph (digraph) is an ordered pair (V, E) where V is a
set and E is a binary relation on V. In a digraph (V, E), the elements of V are
called vertices, and the elements E are called the edges of the digraph.

In a digraph, we say that the edge (u,v) is incident from u and is incident
into v. The out-degree of a vertex is the number of edges incident from it, and
the in-degree of a vertex is the number of edges incident into it.

In a digraph (V, E), a path from a vertex u to a vertex u' is a sequence
Vg, V1, . ..,V Of vertices such that u = vg and v’ = v, and (v;—1,v;) € E for
1 <4 < k. If there is a path from a vertex u to a vertex v then we say that v
is reachable from u. If V' is a subset of V, and there exists a path from u to v
whose vertices belong to V' then we say that v is reachable from u in V'.

A rooted tree is a digraph with a vertex of in-degree 0, called the root, such
that every vertex different from the root has in-degree 1 and is reachable from
the root. In a rooted tree, a vertex of out-degree 0 is called a leaf.

A digraph (V', E') is a subgraph of a digraph (V,E) if V' CV and E' C E.

A phylogeny is a triple of the form (V, E, f) where (V, E) is a finite rooted
tree and f is a function from L X I to S, where L is the set of leaves of (V, E),
and I, S are finite sets.

We are interested in the problem of turning a phylogeny into a perfect phylo-
genetic network by adding at most k bidirectional edges. Formally, the problem
is defined as follows:

Input: A phylogeny (V, E, f), with f: L x I — S; a nonnegative integer k.

Output: a function g : V x I — S and a symmetric irreflexive binary relation
N on V such that

(i) g |L><I: fa
(ii) for all ¢ € I and s € S, if V;y = {u € V : g(u,i) = s} is not empty then
(V, EU N) has a subgraph with the set V;; of vertices that is a rooted tree,
(iii) for every edge (u,v) € E, u is not reachable from v in (V, E U N),
(iv) the cardinality of N is at most 2k.

If (V, E, N, g) satisfies conditions (i)—(iii) then we say that it is a perfect (phy-
logenetic) network built on (V, E, f). The problem described above is essentially
the Minimum Increment to Perfect Phylogenetic Network (MIPPN) problem [7].
In place of (iv), MIPPN as defined in that paper includes a minimality condition.

Intuitively, the edges of the phylogeny (V, E, f) show the “genetic” relations
between languages; each leaf of this phylogeny corresponds to an extant lan-
guage; the internal vertices represent ancestral languages. The languages are
identified by a set of specific observable discrete characteristics, called “(quali-
tative) characters” (such as grammatical features, unusual sound changes, and
cognate classes for different meanings). For every extant language, function f
maps every character to a “state”; we say that the leaves of the tree (V, E) are
“labeled” by f. Function g extends f to ancestral languages (condition (i)).

Languages can affect each other by transmitting some linguistic properties
due to contact. These contacts are not represented on the given phylogeny.
They correspond to the elements of N in a perfect network (V, E, N, g) built on
(V, E, f). A perfect network explains how every state of every character evolved
from its original occurrence in some “root” language (condition (ii)). Languages
cannot borrow characteristics from their descendants (condition (iii)). We are
only interested in the perfect networks where the number of postulated borrow-
ings is small (condition (iv)), because inheritance of characteristics of a language
from its ancestors is far more probable than acquiring them through borrowing.
In the case of the phylogeny of Indo-European languages discussed in Section 7
the fact that a small number of edges is sufficient was established in a preliminary
analysis done by Tandy Warnow and Donald Ringe.

For instance, consider the phylogeny presented in Figure 1(a) that is recon-
structed for 4 extant languages A, B, C, D. There is one character, i.e., |I| =1,
and there are two states (S = {0,1}). The leaves of the phylogeny are labeled:
f(4,1) = f(C,1) =0and f(B,1) = f(D,1) = 1. A perfect network built on this
phylogeny is presented in Figure 1(b). The new bidirectional edge is added to

(a) (b)

Fig.1. A phylogeny (a), and a perfect network (b) built on it with N =
{(B,D),(D,B)}.

A
01 00 A
‘\\
Characters /\ \\

0 1 \\\
A 0 0 B 01 11 v
Languages B 0! A \“
c 10 /
D 1 1 :

Fig. 2. A perfect network.

make the vertices labeled 1 connected via a rooted tree, i.e., to satisfy condition

(i)

Another example, with two characters (I = {0,1}) and two states (S =
{0,1}), is presented in Figure 2. The new edge is added to make the vertices
labeled 0 at Character 1 connected via a rooted tree.

The phylogeny of Indo-European languages described in Section 7 below is
a tree with 24 leaves, 370 characters, and 74 states.

% a phylogeny for the extant languages A, B, C, D:

% denote A by 1, B by 2, C by 3, D by 4,

% the parent of A and B by 5,
% the parent of C and D by 6,
h the root by O.

vertex(0..6).

edge(0,5). edge(0,6). edge(5,1).
edge(5,2). edge(6,3). edge(6,4).

state(0;1).
character(0).

£(1,0,0). £(2,0,1). £(3,0,0). £(4,0,1).

Fig. 3. Input file describing the phylogeny of Figure 1.
3 Presenting the Problem to SMODELS

A phylogeny is defined by the “domain predicates”! vertex(X), edge(X,Y),
state(S), character(C), £(X,C,S) (expressing that the function f maps the
leaf X and the character C to the state S). For instance, the phylogeny of Figure 1
is described to SMODELS by the file presented in Figure 3.2

The solutions of the problem are characterized by the atoms of the form
g(X,C,8) (expressing that the function g maps the vertex X and the character
C to the state S) and new(X,Y) (expressing that the pairs (X,Y) and (Y,X) are
elements of the set N; X < Y). For instance, the output of SMODELS describing
the solution presented in Figure 1(b) (with I = {0}) is:

g(0,0,0) g(1,0,0) g(2,0,1) g(3,0,0) g(4,0,1) g(5,0,0) g(6,0,0)
new(2,4)

First we describe conditions on the labeling g of the vertices. According to (i),
g coincides with f where the latter is defined:

g(X,C,8) :- £(X,C,S).

Every internal vertex should be labeled by exactly one state for each charac-

ter:3

! Intuitively, the domain predicates are the predicates that are used to find all possible
variable bindings during grounding. See [13, Definition 8, page 7] for a definition of
a domain predicate.

% In this file, the expression vertex(0..6). has the same meaning as vertex(0).

. vertex(6).; the expression state(0;1). has the same meaning as state(0).
state(1). [14].

3 In this rule, for every internal vertex X and for every character C, the expression

1 {g(X,C,S): state(S)} 1 describes a set of atoms of the form g(X,C,S) where S

1 {g(X,C,S): state(S)} 1 :-
vertex(X), not leaf(X), character(C).

Then, we add at most k pairs of edges between the vertices of this phylogeny:
{new(X,Y): vertex(X;Y): X < Y} maxE.

(maxE represents the value of k).

However, due to (iii), we cannot add such a pair between two vertices if adding
it will create a cycle that includes at least one edge of the given phylogeny. To
express this condition, we first define the extended set of edges E U N by the
rules

an_edge(X,Y) :- edge(X,Y).
an_edge(X,Y) :- new(X,Y), vertex(X;Y).
an_edge(X,Y) :- new(Y,X), vertex(X;Y).

Then we define the binary predicate directed path as the transitive closure
of an_edge, and impose the constraint

:- directed_path(X,Y), edge(Y,X). (%)

Finally, we need to make sure that (ii) holds. For that we use the following
proposition:

Proposition 1 For any finite digraph (V, E), and any set V' C V, the following
conditions are equivalent:

(a) there exists a subgraph of (V, E) with the set V' of vertices that is a rooted
tree,

(b) there exists a vertex v € V' such that every vertez in V' is reachable from v
inV'.

This fact shows that condition (ii) in the statement of the MIPPN problem
can be equivalently expressed as follows:

(ii') for alli e Tand s € S, if V;; = {u € V : g(u,4) = s} is not empty then
there exists a vertex v in V;,; such that every vertex in Vj; is reachable from v in
Vis.

We consider pairs (7, s) for which some vertex is labeled by state s at character
i, so that V;s; is not empty. After picking an element v of Vs, and defining
reachability of vertices in V;; from v by the predicate reachable, we express
(ii') by the constraint

:- g(X,C,S8), not reachable(X,C,S), character(C),
state(S), vertex(X).

is a state whose cardinality is at least 1 and at most 1. Such expressions are called
“cardinality constraints” [9, page 5].

The answer sets for the program described above correspond to the solutions
of the MIPPN problem. We will call it “the basic program.”

We can use SMODELS with the basic program to solve small instances of the
MIPPN problem. Larger data sets, such as the one described in Section 7, require
the use of some heuristics and optimization techniques. Some of these techniques
are not complete, that is, do not allow us, generally, to find all solutions. We will
discuss them in the following sections.

4 Preprocessing

Sometimes the MIPPN problem for a given phylogeny can be simplified by mak-
ing its set I of characters smaller. If (V, E, N, g) is a perfect network built on
a phylogeny (V, E, f) then, for any subset J of I, (V,E,N,g|vx.) is obviously
a perfect network built on (V, E, f |Lx.). Proposition 2 below shows, for some
special choice of J, that every perfect network built on (V, E, f |Lxs) can be
extended to a network built on (V, E, f).

Consider a phylogeny (V, E, f), with f : L x I — S. We say that a char-
acter j € T is inessential if there exists a perfect network (V, E,(, g) built on
(V,E, f |Lx¢j3)- For instance, in the phylogeny of Figure 2, the first of the two
characters is inessential. In the phylogeny of Indo-European languages described
in Section 7, 352 characters out of 370 are inessential.

Proposition 2 Let (V, E, f) be a phylogeny, with f : LxI — S, and let I' be the
set of its inessential characters. There exists a function g' : V xI' — S such that,
for every perfect network (V, E, N, g) built on (V, E, f |Lx\1)), (V,E,N,gUg")
is a perfect network built on (V, E, f).

This theorem shows that the sets IV in solutions to the MIPPN problem for
a phylogeny (V, E, f) are identical to the sets N in the solutions to the same
problem for the smaller phylogeny (V, E, f |Lx(1\1+)) (although the functions g
in these solutions are, generally, different).

Another way to make a given phylogeny smaller is to check whether it has an
internal vertex v such that all leaves descending from v are labeled in the same
way. In Figure 4, for instance, this condition holds for the common parent of
Al and A2. If such a vertex v is found, then we remove all its descendants from
the tree, so that v turns into a leaf. The labeling of v in the reduced phylogeny
(V',E', ') is the same as the common labeling of the descendants of v in the
given phylogeny. For instance, this process turns Figure 4 into the phylogeny of
Figure 2.

In our work on the phylogeny of Indo-European languages with 24 leaves, we
repeated this process several times, and reduced the given tree to a tree with 15
leaves.

Every solution to the MIPPN problem for the pruned phylogeny can be
extended to a solution for the original phylogeny:

/N
AN
TPRTRS

C 10 11D

Fig. 4. A phylogeny.

Proposition 3 Let (V, E, f) be a phylogeny, with f : LxI — S, and (V', E', f')
be the phylogeny obtained from it as described above. Let (V',E',N,g') be a
perfect network built on (V', E', f'). Then there exists a function g from V x I
to S with g|v'x1= g' such that (V, E, N, g) is a perfect network built on (V, E, f).

However this preprocessing is not complete, i.e., there may be a solution
to the MIPPN problem such that its set N of new edges will not be found
after pruning vertices. For instance, the perfect network built on the phylogeny
of Figure 4 in which new edges connect C' with A1 and with A2 will not be
generated after A1 and A2 are removed from the tree.

5 DPartial Perfect Networks and Essential States

The basic program (Section 3) can be improved using “partial” perfect phylo-
genetic networks—a generalization of the “total” version of this concept defined
in Section 2.

Let (V, E, f) be a phylogeny, with f : L x I — S. A partial perfect (phylo-
genetic) network built on this phylogeny is a quadruple of the form (V, E, N, g),
where N is a symmetric irreflexive binary relation on V, and g is a partial map-
ping of V x I to S such that the domain of g contains L x I, and conditions
(i)—(iii) from Section 2 are satisfied. For instance, a partial perfect network built
on the phylogeny of Figure 1 can be defined by

N = {(A’C)’(C’A)’(BaD)a(DaB)}v g=1f

(Figure 5).
Every partial perfect network can be extended to a perfect network:

Proposition 4 Let (V, E, f) be a phylogeny, with f : LxI — S. For any partial
perfect network (V, E, N, g) built on this phylogeny there exists an extension g' of
g to VxI such that (V, E,N,g') is a perfect network built on the same phylogeny.

Proposition 5 below shows, on the other hand, that every perfect network can
be obtained by extending a partial perfect network satisfying a certain condition,
expressed in terms of “essential states.” Let (V, E, f) be a phylogeny, with f :
LxI — S. We say that a state s € S is essential with respect to a character j € T

Fig.5. A partial perfect network built on the phylogeny of Figure 1 with N =
{(4,0),(C,A),(B,D),(D,B)}, g=f.

if there exist two different leaves I and Iy in L such that f(l1,5) = f(l2,j) = s.
For instance, in the phylogeny of Figure 6(a), State 3 is essential, and States 1
and 2 are not. There is no need to use inessential states to label internal vertices:

Proposition 5 Let (V, E, f) be a phylogeny, with f : LxI — S. For any perfect
network (V,E, N, g') built on this phylogeny there exists a partial mapping g of
V x I to S such that

— (V,E,N,g) is a partial perfect network built on the same phylogeny,
— ¢’ is an extension of g to V x I, and
— g(v,1) is essential with respect to i whenever v & L.

For instance, if (V, E, N, g') is the perfect network of Figure 6(a), then the
partial perfect network of Figure 6(b) satisfies the conditions of this theorem as
(V,E, N, g). In this partial perfect network, inessential states 1 and 2 are not
used for labeling internal vertices.

Propositions 4 and 5 show that the problem of computing a perfect network
built on a given phylogeny is closely related to the problem of computing a
partial perfect network (V, E, N, g) built on this phylogeny such that g(v,%) is
essential with respect to i for every internal vertex v and every character i. The
sets N in the solutions to this modification of the problem are identical to the
sets N in the solutions to the original problem (although the functions g are,
generally, different).

In the phylogeny of Indo-European languages described in Section 7, 61 out
of the 74 states are not essential with respect to any of its essential characters.

To adapt the basic program (Section 3) to the modification of the problem
described above, we replace

1 {g(X,C,S): state(S)} 1 :-
vertex(X), not leaf(X), character(C).

with the rule

(a) (b)

Fig. 6. A perfect network (a), and a partial perfect network (b) obtained from it via
Proposition 5.

{g(X,C,S): essential_state(C,S)} 1 :-
vertex(X), not leaf(X), character(C).

where essential state is defined by the rule

essential_state(C,S) :- £(X,C,S), character(C),
f(X1,C,S), X '= X1, vertex(X;X1).

6 A Divide-and-Conquer Strategy

Recall that a perfect network built on a phylogeny (V, E, f) is a quadruple
(V,E, N, g) satisfying conditions (i)—(iii) from Section 2. If (V, E, N, g) satisfies
the first two of these conditions, we will call it an almost perfect network.

The divide-and-conquer approach we use is based on the following fact: if, for
each j € I, (V, E, Nj, g;) is an almost perfect network built on (V, E, f |vx{;})
then (V, E,U; N;,U; g;) is an almost perfect network built on (V, E, f). In view
of this fact, solutions to the MIPPN problem can be generated by finding such
networks (V, E, N, g;) for all characters j and checking that (V, E,U; N;,U; 9;)
satisfies conditions (iii) and (iv).

Proposition 6 below shows that this process can generate every minimal
solution—every network (V, E, N, g) in which the set N of new edges cannot be
replaced by its proper subset without violating condition (ii).

Proposition 6 Let (V,E,N,g) be a minimal almost perfect network built on
(V,E, f). For every j € I, there exists a minimal almost perfect network
(V,E,Nj,glvxyjy) built on (V,E, f|px;}) such that U].EI N; =N.

To compute almost perfect networks (V, E, N;, g;) for each character j, we
use the basic program without the definition of directed path and without con-
straint (*). We can find all such networks using the compute all {} statement
of SMODELS. However, there may be more than one such network with the same
set N of new edges where the labelings g of the vertices differ; we are only in-
terested in solutions with different sets of new edges. For this reason, we wrote
a script that calls SMODELS repeatedly to compute one value of N at a time. To
ensure that every next N; computed by SMODELS is different from the sets com-
puted so far, we add appropriate constraints to the program at every iteration.
For instance, if the first call to SMODELS produces new(1,2), new(3,4) then
the constraint

:- new(1,2), new(3,4).

will be added to the program when SMODELS is called for the second time, so
that SMODELS will now compute an answer set that does not contain {new(1,2),
new(3,4)}. To compute all minimal almost perfect networks with at most 2k
new edges, we start with maxE=0 and increment maxE by 1 until it reaches k.

The verification of conditions (iii) and (iv) for the networks (V, £, |J; N;,U; 9;)
generated from the almost perfect networks (V, E, Ny, g;) is performed by sMOD-
ELS programs.

This divide-and-conquer strategy can be extended to partial networks (Sec-
tion 5) in a straightforward way.

7 The Evolutionary History of the Indo-European
Languages

We have applied the computational methods described above to the phylogeny of
Indo-European languages that was generated automatically [10] on the basis of a
dataset assembled by Donald Ringe and Ann Taylor, who are specialists in Indo-
European historical linguistics, with the advice of other specialist colleagues.
Figure 7 shows the tree (V, E) of this phylogeny. Its leaves correspond to the
following 24 Indo-European languages: Hittite (HI), Luvian (LU), Lycian (LY),
Tocharian A (TA), Tocharian B (TB), Vedic (VE), Avestan (AV), Old Persian
(PE), Classical Armenian (AR), Ancient Greek (GK), Latin (LA), Oscan (OS),
Umbrian (UM), Gothic (GO), Old Norse (ON), Old English (OE), Old High
German (OG), Old Irish (OI), Welsh (WE), Old Church Slavonic (OC), Old
Prussian (PR), Lithuanian (LI), Latvian (LT), and Albanian (AL). All these
languages are “historic,” that is, recorded, and the position of every leaf vertex
against the time line in Figure 7 corresponds to the earliest period at which
there is substantial attestation of the corresponding language.

The internal vertices of this tree represent “prehistoric” languages, or “pro-
tolanguages,” which were reconstructed by comparison of their descendants. For
instance, Vertex 38 is proto-Celtic, reconstructed by comparison of Old Irish and
Welsh. The position of every internal vertex against the time line corresponds

4000BC

3000BC

2000BC

1000BC

1000AD

2000AD

Fig. 7. The phylogeny obtained from the Indo-European dataset.

to the time period when the corresponding protolanguage split up into daughter
languages, each spoken by a different speech community.

There are 370 characters in this phylogeny.* Out of 370 characters, 22 are
phonological characters encoding regular sound changes that have occurred in
the prehistory of various languages, 15 are morphological characters encoding de-
tails of inflection (or, in one case, word formation), and 333 are lexical characters
defined by meanings on a basic word list.

The SMODELS program used to generate perfect networks built on this
phylogeny incorporated several domain-specific constraints. One of these con-
straints prohibits new edges incident with Vertex 24 and its descendants; this
constraint is justified by the fact that the labelings of the leaves HI, LU and
LY are “disjoint,” in their essential parts, from the labelings of the other leaves.
Other constraints prohibit contacts between specific pairs of languages which,
we know, were spoken at different times. For instance, Old Prussian (Vertex 16)
could not be in contact with proto-Celtic (Vertex 38).

Under these constraints, we have found that there are no solutions to the
MIPPN problem with fewer than 5 new bidirectional edges. There is only one
solution with 5 new edges:

* We disregard the 20 characters that take into account multiple character coding and
parallel development.

— (32,38) (38,40) (32,43) (18,34) (7,44) .

According to this solution there are 5 borrowings: between proto-Germanic and
proto-Celtic (32,38), between proto-Celtic and proto-Greco-Armenian (38,40),
between and proto-Germanic and proto-Baltic (32,43), between Gothic and proto-
West-Germanic (18,34), and between Old Church Slavonic and proto-East-Baltic
(7,44). Each of these contacts is understood to occur at a time prior to the dates
assigned to the two languages in the chronology of Figure 7. The approximate
times of these contacts are shown in Figure 8.

We have also computed 52 solutions with 6 new edges; 8 of these solutions
do not include any borrowings that would be historically implausible:

— (32,38) (31,36) (27,41) (32,43) (18,34) (7,44)
— (32,38) (31,36) (35,40) (32,43) (18,34) (7,44)
— (32,38) (31,36) (36,40) (32,43) (18,34) (7,44)
— (32,38) (31,36) (27,42) (32,43) (18,34) (7,44)
— (32,38) (31,36) (31,40) (32,43) (18,34) (7,44)
— (32,38) (31,36) (27,45) (32,43) (18,34) (7,44)
— (7,27) (32,38) (38,40) (32,42) (18,34) (7,44)
— (32,38) (38,40) (3,7) (32,42) (18,34) (7,44)

In addition to the phylogeny of Figure 7, we considered its modification in
which additional internal vertices are introduced—one vertex in the middle of
every edge. This extension reflects the possibility of ancestral languages not
represented in the original phylogeny, and it was used as the starting point in
the work reported in [7]. The calculations described in that paper are limited to
the case when new edges are inserted between additional vertices only. Nakhleh
et al. found 2 solutions with 5 new edges that satisfy this restriction and are
historically plausible. To facilitate comparison with that work, we included the
same restriction in our program.

For the modified problem, we have computed 11 solutions with 5 new edges;
we found among them the 2 solutions from [7], and also one other historically
plausible solution. This solution is very close to the 5-edge solution for the phy-
logeny of Figure 7.

To sum up, the collection of conjectures about the evolutionary history of
Indo-European languages generated in our experiments is richer than what is
found in [7] in two ways. First, we arrived at several historically plausible per-
fect networks built on the phylogeny of Figure 7 without additional vertices;
this network was not studied in the earlier work at all. Second, we found one
new historically plausible perfect network built on the extended phylogeny. The
reason why this network could not be generated by Nakhleh et al. is that these
authors started their computations with a major simplification step, in which ev-
ery language group (such as Germanic languages or Baltic languages) is reduced
to a single vertex, and 16 of the 18 essential characters are considered.

4000BC

3000BC

2000BC

1000BC

1000AD

2000AD

Fig. 8. Contacts between Indo-European languages according to the 5-edge solution.
8 Conclusion

The Minimum Increment to Perfect Phylogenetic Network problem discussed in
this paper is a combinatorial search problem well suited to the use of answer set
programming. But the basic SMODELS program for the MIPPN problem will pro-
duce solutions reasonably fast only if the given phylogeny is small. Several ideas
helped us adapt this program to a large phylogeny of Indo-European languages.

One idea is to make the given phylogeny smaller by removing its inessential
characters and some of its vertices. This kind of preprocessing is somewhat sim-
ilar to reducing every language group to a single vertex in [7]. The difference is
that our preprocessing is domain-independent—it is defined for any phylogeny.
Second, there is no need to use inessential states for labeling the internal vertices
of the tree. Finally, a divide-and-conquer strategy allowed us to replace a single
run of SMODELS by a series of invocations that solve subproblems of the given
problem.

The input program included some domain-specific information about the
impossibility of contacts between languages spoken at different times. These
constraints helped us further reduce the computation time. Even so, computing
the results reported in this paper involved thousands of calls to SMODELS and
took more than a week of CPU time. In spite of the presence of several constraints
of this kind, most perfect networks computed by our program turned out to
be impossible or implausible for historical reasons. To weed out unacceptable

solutions, we had to analyze each solution carefully on the basis of the conclusions
of earlier research in historical linguistics.

Acknowledgments

We are grateful to Tandy Warnow for useful discussions related to the subject
of this paper, and to Selim Erdogan foruseful comments on a draft of this paper.
The first two authors were partially supported by the National Science Foun-
dation under grant IIS-9732744 and by Texas Higher Education Coordinating
Board under grant 003658-0322-2001.

References

1.

10.

11.

12.

13.

14.
15.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert Kowalski and Kenneth Bowen, editors, Logic Programming:
Proc. Fifth Int’l Conf. and Symp., pages 1070-1080, 1988.

Michael Gelfond and Vladimir Lifschitz. Logic programs with classical negation.
In David Warren and Peter Szeredi, editors, Logic Programming: Proc. Seventh
Int’l Conf., pages 579-597, 1990.

Vladimir Lifschitz. Answer set programming and plan generation. Artificial Intel-
ligence, 138:39-54, 2002.

V.H. Mair, editor. The Bronze Age and Early Iron Age Peoples of Eastern Central
Asia. Institute for the Study of Man, Washington, 1998.

J.P. Mallory. In Search of the Indo-Europeans. Thames and Hudson, London, 1989.
Victor Marek and Mirostaw Truszczynski. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: a 25-Year Perspec-
tive, pages 375-398. Springer Verlag, 1999.

L. Nakhleh, D. Ringe, and T. Warnow. Perfect phylogenetic networks: A new
methodology for reconstructing the evolutionary history of natural languages. Sub-
mitted for publication, 2002.

Ilkka Niemeld. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25:241—
273, 1999.

Ilkka Niemeld and Patrik Simons. Extending the Smodel system with cardinality
and weight constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence.
Kluwer, 2000.

D. Ringe, T. Warnow, and A. Taylor. Indo-European and computational cladistics.
Transactions of the Philological Society, 100(1):59-129, 2002.

R.G. Roberts, R. Jones, and M.A. Smith. Thermoluminescence dating of a 50,000-
year-old human occupation site in Northern Australia. Science, 345:153-156, 1990.
Patrik Simons, Ilkka Niemeld, and Timo Soininen. Extending and implementing
the stable model semantics. Artificial Intelligence, 138:181-234, 2002.

Tommi Syrjanen. Omega-restricted logic programs. In Proceedings of the 6th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), 2001.

Tommi Syrjénen. Lparse 1.0 user’s manual® 2002.

J.P. White and J.F. O’Connell. A Prehistory of Australia, New Guinea, and Sahul.
Academic Press, New York, 1982.

® http://www.tcs.hut.fi/software/smodels/lparse.ps .

