
Customizable Domain-
Specific Computing
Jason Cong
University of California

Vivek Sarkar
Rice University

Glenn Reinman and Alex Bui
University of California

!TO MEET EVER-INCREASING computing needs and

overcome power density limitations, the computing

community has halted simple processor frequency

scaling and entered the era of parallelization, with

tens to hundreds of computing cores integrated in

a single processor, and hundreds to thousands of

computing servers in a warehouse-scale data center.

Such highly parallel, general-purpose computing

systems, however, still face serious challenges in

terms of performance, power, heat dissipation,

space, and cost. We believe that there is significant

opportunity to look beyond parallelization and

focus on domain-specific customization to bring

orders-of-magnitude power/performance efficiency

improvement to important application domains.

We are motivated in this endeavor by the following

three observations.

First, each user or enterprise typically has a high

computing demand only in one or a few selected

application domains (e.g., graphics for game devel-

opers, circuit simulation for IC designers, financial

analytics for investment banks), while its other com-

puting needs (e.g., email, word processing, web

browsing) can be easily satisfied by available

computing technologies. Therefore, it is possible

to develop a customizable computing platform

in which computing engines and interconnects

are specialized for that particular application

domain, gaining significant improvements in

power/performance efficiency over

that available with a general-purpose

architecture.

Second, the performance gap be-

tween a totally customized solution

(using an ASIC) and a general-purpose

solution can be very large. For example,

Schaumont and Verbauwhede presented a case

study of the 128-bit key AES (Advanced Encryption

Standard) algorithm.1 In that case study, an

ASIC implementation in 0.18-mm CMOS achieved

3.86 Gbits/second at 350 mW, while the same algo-

rithm coded in Java and executed on an embedded

Sparc processor yielded 450 bits/second at 120 mW.

This difference implies a power/performance effi-

ciency gap (measured in Gbits/second/W) of a factor

of roughly 3 million. (Other implementation alterna-

tives were also studied in the same paper, including

the use of FPGAs and StrongARM processors.)

Third, it is extremely costly and impractical to

implement each application in ASICs!!the non-

recurring engineering cost of an ASIC design in

current 45-nm CMOS technology is more than

$50,000,000, and the design cycle can easily ex-

ceed a year. There is a strong need for a novel

architecture platform that can be efficiently cus-

tomized to a wide range of applications in a do-

main or a set of domains to bridge the huge

power/performance gap between ASICs and

general-purpose processors. To a large extent, the

human brain is a good example of such a custom-

izable platform. Moore’s-law!like scaling has long

stopped in neuroanatomy!!the number of neu-

rons and their speed have not increased in tens

of thousands of years. Instead, most efficiency

comes from specialization. If we look back through

Domain-Specific Customization

To meet computing needs and overcome power density limitations, the com-

puting industry has entered the era of parallelization. However, highly parallel,

general-purpose computing systems face serious challenges in terms of perfor-

mance, energy, heat dissipation, space, and cost. We believe that there is sig-

nificant opportunity to look beyond parallelization and focus on domain-specific

customization to bring significant power-performance efficiency improvement.

0740-7475/11/$26.00 "c 2011 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers6

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 6



history, we see that more advanced societies usu-

ally had a higher degree of specialization, yet all

achieved with the same platform, the human

brain. Today, just as we train people to be special-

ists such as doctors, lawyers, and engineers, the

most effective way to cope with rapidly growing

computational complexity is through specializa-

tion of customizable computing platforms for

each application domain.

Rationale
Given these observations, it is important to de-

velop a general (and reusable) methodology for

designing highly efficient customizable architec-

ture platforms for domain-specific computing and

the associated compilation tools and runtime man-

agement environment to support such a methodol-

ogy. To pursue this idea, we formed the Center for

Domain-Specific Computing (CDSC), primarily

funded by the National Science Foundation with

an award from the 2009 Expeditions in Computing

Program. CDSC consists of 12 faculty members

from multiple disciplines, including computer

science and engineering, electrical engineering,

medicine, and applied mathematics, from four uni-

versities: University of California, Los Angeles (the

lead institution), Rice, UC Santa Barbara, and

Ohio State.

The goal of the CDSC project is to demonstrate that

achieving an orders-of-magnitude computing effi-

ciency improvement for domain-specific applications

is possible, and, moreover, that we can obtain such

an improvement through a high degree of automa-

tion and reuse, so that our platform and methodology

can be deployed in a wide range of application

domains.

Although the basic concept of customizable

architecture was introduced in the 1960s by Gerald

Estrin,2 early successes in customizable computing

were demonstrated in the 1990s, where certain

computation-intensive kernels were manually mapped

to FPGAs for acceleration, achieving significant

speedup. Examples include the DECPeRLe-1 system

developed at DEC-PRL, the GARP project at UC Berke-

ley, and commercial efforts by Cray and SRC Com-

puters (please refer to the recent survey by Hauck

and DeHon for details;3 more examples of related

work can be found in various proceedings of

the IEEE International Symposium on Field-

Programmable Custom Computing Machines).

These early efforts, however, faced several limita-

tions, such as a communication bottleneck between

the host CPU and FPGAs; customization that was lim-

ited to FPGAs with little or no integration of the latest

multicore architectures; a lack of high-performance

reconfigurable interconnect structures; scalability lim-

itations; and a restricted programming environment

that often required manual coding in hardware de-

sign languages or extensive rewriting of existing soft-

ware for the FPGA implementation.

Our research on domain-specific computing has

addressed these challenges by providing

! a wide range of customizable computing ele-

ments, from coarse-grained customizable cores

to fine-grained field-programmable circuit fabrics;

! customizable and scalable high-performance

interconnects based on the RF-interconnect

(RF-I) or optical interconnect technologies;

! highly automated compilation tools and runtime

management systems to enable rapid develop-

ment and deployment of domain-specific comput-

ing systems, and

! a general, reusable methodology for retargeting to

different application domains.

To better understand the potential of customizable

domain-specific computing, we have analyzed the

medical image processing domain, which has a high

computing demand and is of great importance to

healthcare.

A case study: medical image
processing domain

Imaging is now a routine clinical tool in the diag-

nosis and treatment of most medical problems, but

many advances in this field have been constrained

to the research environment due to a lack of compu-

tational power. Several medical image processing

algorithms are infeasible for real-time clinical use;

and objective, automated quantitative methods that

can enhance detection and evaluation are not widely

used. Power and cost-efficient high-performance com-

putation in this domain can have a significant impact

on health care in terms of preventive medicine (e.g.,

virtual colonoscopy for colorectal cancer screening),

diagnostic procedures (e.g., automatic quantification

of tumor volume), and therapeutic procedures (e.g.,

presurgical decision-making and monitoring and

analysis during surgery).

7March/April 2011

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 7



Medical imaging consists of a processing pipeline,

typically with the following steps:

1. Image reconstruction: Computes a series of images

from physical sensor data (such as x-rays or mag-

netic pulse sequences).

2. Image restoration: Removes noise and image

artifacts from the image, such as those caused by

environmental conditions or patient movement.

3. Registration: Orients a given image to a reference

image (e.g., an image of a healthy person or an

earlier image of the same individual).

4. Segmentation: Identifies and extracts regions of in-

terest in the image (e.g., a tumor).

5. Analysis: Performs many kinds of feature analysis,

such as measuring the size of a tumor, computing

its growth rate (based on past segmentation

results), etc.

Table 1 lists some typical algorithms used in these

steps and their computation and communication pat-

terns. Algorithms can vary considerably from one step

to another, requiring different architecture support for

the best efficiency.

In our preliminary studies, we looked at the pos-

sibility of using graphics processing units (GPUs)

and FPGAs for acceleration. For example, for a

biharmonic registration algorithm, the GPU pro-

vided a 93# speedup, while the FPGA (Virtex-4

LX100) provided an 11# speedup (both measured

against a Xenon 2-GHz processor). However, for a

3D median denoising filter algorithm, the GPU pro-

vided a 70# speedup, while the FPGA achieved

close to a 1,000# speedup (due to bit-level parallel

operations).

Clearly, even in this rather narrow domain, no

single homogeneous architecture can perform

well on all these applications. This example under-

scores the need for customization: an ability

to adapt architectures to match an application’s

computation and communication requirements.

Overall approach
To realize the order-of-magnitude power/perfor-

mance efficiency improvement via customization,

yet still leverage economy of scale, we are developing

a customizable heterogeneous platform (CHP), con-

sisting of a heterogeneous set of adaptive computa-

tional resources connected by high-bandwidth, low-

power, nontraditional, reconfigurable interconnects.

Specifically, the CHP includes

! integration of customizable cores and coproces-

sors that will enable power-efficient performance

tuned to the specific needs of an application do-

main; and

! reconfigurable high-bandwidth and low-latency

on- and off-chip interconnects, such as RF-

interconnects and optical interconnects, which

can be customized to specific applications.

Figure 1 shows an example CHP configuration,

with a set of fixed cores, customizable cores, pro-

grammable fabric, and a set of distributed cache

banks. The design uses a reconfigurable off-chip

optical bus to supply the bandwidth necessary to

feed these components and a reconfigurable on-

chip RF-I bus for high-bandwidth, low-latency

communication between them. Figure 1 is a

single point in a large design space; the key

Domain-Specific Customization

Table 1. Algorithms in medical imaging pipeline.

Step Computation kernel Communication scheme

Representative

algorithm

Reconstruction Dense and sparse linear algebra,

optimization methods

Iterative; local or global communication Compressive sensing

Restoration Sparse linear algebra, structured grid,

optimization methods

Noniterative; highly parallel; local

and global communication

Total variational algorithms

Registration Dense linear algebra, optimization methods Parallel, global communication Optical flow/fluid registration

Segmentation Dense linear algebra, spectral methods,

MapReduce

Local communication Level set methods

Analysis Sparse linear algebra, n-body methods,

graphical models

Local communication Navier-Stokes equations

8 IEEE Design & Test of Computers

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 8



consideration in selecting a

design from this space is

flexibility.

Customizable computing
engines

Three component types that

exhibit different levels of custom-

ization and parallelism are con-

sidered in CHP designs.

! Fixed cores can vary dramati-

cally in their energy effi-

ciency, computational power,

and area, but have limited

reconfigurability: they can

mainly make use of techniques

like voltage or frequency

scaling to adapt power/

performance characteristics.

An example of this kind of architecture is the

IBM Cell, with a general-purpose power processor

element (PPE) core and the more numerous, but

simpler, synergistic processor element (SPE)

cores. In a recent study, we designed ParallAX,4

a chip multiprocessor with heterogeneous fixed

cores for physics-based animation. ParallAX com-

bines a larger number of simple, fine-grained

computing resources with a smaller number of

more powerful, coarse-grained computing resour-

ces to handle a diverse physics workload, along

with a flexible allocation scheme between

coarse- and fine-grained cores. Kumar et al.5

have demonstrated reductions in energy delay

product as high as 6.35# for certain applications

when dynamically switching between heteroge-

neous fixed cores.

! Customizable cores provide coarse-grained adap-

tation to application demand, offering a number

of discrete, tunable options that can be set, with

flexibility somewhere between FPGAs and fixed

cores. It is possible to design cores with a rich

set of tunable characteristics, such as register file

sizes, cache sizes, datapath bit width, operating

frequency, and supply voltages. Lee and Brooks6

found that for a single customized core, up to a

5.3# improvement in efficiency can be achieved

through intelligent adaptation (but the most useful

set of tunable architectural features varied

from application to application). We used the

customized core concept in our ParallAX architec-

ture for physics-based animation and observed

that a physics simulation for interactive entertain-

ment must be believable but need not be 100% ac-

curate.4 To leverage this observation, we used

customizable fine-grained cores with hierarchical

floating-point units that support dynamic precision

reduction, effectively reducing the area required at

each fine-grained core by sharing FPU resources.

! Programmable fabrics provide maximal flexibility

by implementing custom instructions and special-

ized coprocessing engines to offload computation

or accelerate core performance. They can imple-

ment complex operations with completely cus-

tomizable architecture, in terms of the number

of computing units, the types of computing

units, the level of pipeline stages, and so on. Im-

plementation of such customized circuits on pro-

grammable fabrics can be achieved efficiently

with automatic C-to-FPGA compilation.7

In addition to these customizable components,

designers can include dedicated function blocks

(accelerators) that are frequently used in the given

application domain, such as discrete cosine trans-

form (DCT) and fast Fourier transform (FFT) func-

tions for medical image processing. We identify

custom instructions for customizable cores, custom-

ized coprocessors in programmable fabric, and

dedicated functionality using both top-down and

DRAM I/O CHP

DRAM CHP CHP

Cache Cache Cache Cache

Fixed
core

Custom
core

Prog.
fabric

Prog.
fabric

Prog.
fabric

Prog.
fabric

Custom
core

Custom
core

Custom
core

Fixed
core

Fixed
core

Fixed
core

Reconfigurable RF-I bus
Reconfigurable optical bus
Transceiver/Receiver

Optical interface

Customizable heterogeneous
platform (CHP)

Figure 1. Example platform for domain-specific computing.

9March/April 2011

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 9



bottom-up design approaches. In the top-down

approach, we rely on domain-specific extensions

to specify such complex functions. Based on the

usage frequency and potential power/performance

efficiency improvement of commonly used com-

plex functions, designers can decide whether they

should implement the functions by custom instruc-

tions, coprocessors, or dedicated logic. In the

bottom-up approach, we analyze the underlying

computational graphs for making such decisions.

For example, we have developed techniques

based on efficient cut enumeration in data-flow

graphs (DFGs) for identifying custom instruction can-

didates and efficient data-mining techniques for iden-

tifying approximate program patterns for either

custom instructions or dedicated functions.

The CDSC will also explore more sophisticated

forms of software-directed resource transformation,

including composing multiple simpler cores into a

more complex virtual core type for executing sequen-

tial code, via core-spilling8 or core fusion9, for instance.

Customizable interconnects
In addition to customizable computing engines,

our CHP architecture will provide low-latency,

high-bandwidth, and reconfigurable interconnects

for data sharing between cores, coprocessors,

cache banks, and memory banks. It will accommo-

date the communication requirements of a particu-

lar application (or even different phases of the same

application). We are first considering adapting con-

ventional interconnects to an application domain’s

demands (e.g., using express-virtual channels10).

Later efforts by the CDSC will explore the use of

novel interconnect technologies, in particular, RF-

interconnect.11 RF-I offers significant advantages:

higher bandwidth, lower latency, better power effi-

ciency, and compatibility with existing CMOS tech-

nology, making it particularly attractive for on-chip

communication. (Optical interconnect has similar

advantages but requires modification of existing

CMOS technologies, presently making it difficult

for on-chip integration. But our CHP is amendable

to optical interconnects.)

The most significant advantage of these intercon-

nects, in the context of customized computing, is

their ability to provide an application-specific inter-

connect topology. Such reconfiguration can be

achieved by selectively allocating RF-I bandwidth

between different components on-chip. Multiple

bandwidth channels can coexist on the shared

RF-I waveguide for simultaneous communication.

In application phases that stream data from memory

to a distributed set of processing resources or to co-

processors, we can set up dedicated communication

channels by selective frequency assignment. Or, in

phases where synchronization occurs at shared data

boundaries, we can set up communication channels

between logically related processing units. RF-I is also

amenable to multicast and can therefore be config-

ured to accelerate broadcast-based cache coherence

or synchronization primitives.11

Application modeling and software design
There is a natural tension between hardware-first

and software-first approaches to building domain-

specific systems. In the former, designers start with

a representative workload of existing domain appli-

cations and use their characteristics to create a cus-

tomized CHP that, in turn, drives the design of

a domain-specific language and compiler exten-

sions. The hardware-first approach represents the

usual practice of ‘‘software playing second fiddle

to hardware,’’ exemplified by recent multicore pro-

cessors such as the Cell, for which investigation of

general-purpose programming models and compiler

innovations started only after the hardware design

was completed.

In the software-first approach, designers use the

workload characteristics to drive the definition of a

domain-specific programming language and com-

piler extensions that, in turn, drive the CHP’s creation.

The software-first approach has been pursued less

often and has the danger of leading to special-

purpose hardware with applicability to narrow appli-

cation domains. Because there are well-known

limitations in both approaches, we instead use the fol-

lowing three-stage approach to carefully balance soft-

ware and hardware considerations in the spirit of

software-hardware codesign:

1. Domain-specific modeling. In this stage, we create

a representative set of executable application

models, using domain-specific language extensions

and a domain-specific coordination graph notation,

both designed to be accessible to domain (pro-

gramming) experts. We can use these models to

reveal inherent high-level properties of the appli-

cation domain, such as intrinsic parallelism and

communication topologies. This domain-specific

Domain-Specific Customization

10 IEEE Design & Test of Computers

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 10



modeling serves as an input to later CHP creation

and CHP mapping stages.

2. CHP creation. Next, we use the application models

to design and implement an optimized set of hard-

ware resources (that is, the CHP) for a particular

application domain (or a set of related domains).

The CHP creation determines how many cores,

how much cache, which custom instructions, how

much customization and reconfiguration, and

what sorts of mapping transformations are useful

for customization. The decision is driven by a

set of representative applications with domain-

specific modeling specifying their computation

requirements.

3. CHP mapping. Given a set of application models

and an optimized CHP for a given domain, the

third problem is CHP mapping. This develops

domain-specific compilation and runtime systems

that enable optimized mappings of the applica-

tions in the domain to the heterogeneous resour-

ces of the CHP. This stage also determines the

configuration and transformation settings that we

should select for configurable CHP resources in

different program phases. For example, we might

determine that a sequential part of an application

should map to the most powerful out-of-order

core in our CHP!!and it may be that the only

way to provide such a powerful core is with

some core composition technique (i.e., a transfor-

mation that is presumed available to us). Or we

may determine that a large number of simple in-

order cores must be configured to communicate

using a 3D mesh (e.g., for a volumetric image

set decomposition).

Figure 2 shows this three-stage approach. Support-

ing such an approach is difficult with current general-

purpose programming models for heterogeneous

hardware, such as Nvidia’s CUDA (compute unified

device architecture) or the Cell SDK (software devel-

oper kit). These models force the programmer to ex-

ploit customizable hardware at the lowest possible

levels of hand-partitioned code and explicit data

transfers tied to specific hardware structures. Such

frameworks result in significant rewrites when the ap-

plication must be repartitioned for execution on dif-

ferent hardware configurations or platforms. These

approaches also miss out on opportunities for hard-

ware customization for different application phases.

In contrast, we expect that our three-stage approach

will balance software and hardware considerations

to better expose opportunities for improvements

in computing efficiency, while using a software

approach that supports automation and reuse and

that is accessible to domain experts.

Figure 3 outlines the structure of the software stack

we are building to support mapping of a domain-

specific application to a CHP. The domain experts

start with a domain-specific programming model,

which includes a domain-specific coordination

graph that describes the inherent concurrency, de-

pendency, and locality of the applications in the

given domain. The model also includes domain-

specific language extensions that can be used to eas-

ily describe, for example, the domain’s data types and

computational patterns. Then, an automated map-

ping and synthesis flow performs source-to-source

transformation and compilation to generate opti-

mized binaries for heterogeneous multicore process-

ors and the RTL code for the customized accelerators

in the CHP. A lightweight runtime system supports

runtime resource management and customization.

Although we are targeting medical imaging appli-

cations as a demonstration vehicle for our project,

the three-stage approach and the hardware-software

design techniques proposed for each stage are gen-

eral and reusable for domain-specific computing

and applicable to other domains. Such a reusable

design methodology and software mapping flow

will significantly lower the cost of creating new

Domain-specific modeling
(Health care applications)

Design once

• Customizable
  computing engines
• Customizable
   interconnects

• Source-to-source
  CHP mapper
• Reconfiguring and
  optimizing back end
• Adaptive runtime

Invoke many times

Architecture
modeling

Customization
settings

Domain characterization Application modeling

CHP mappingCHP creation

Figure 2. The Center for Domain-Specific Computing approach

to designing customizable architecture platforms involves

three development stages: domain-specific modeling,

customizable heterogeneous platform (CHP) creation,

and CHP mapping.

11March/April 2011

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 11



domain-specific CHPs. In fact, a generic CHP could

even be introduced for general-purpose computing.

It would include a mix of general-purpose cores

with different capabilities, field-programmable logic

(via on-chip or 3D integration) for accelerators

(instead of customized logic fixed at the design or

fabrication time), and a customizable network-on-

chip (NoC). In general, there will be a trade-off be-

tween the domain scope covered by a CHP and its

energy efficiency.

Progress and early results
As the first step of CHP creation, we have devel-

oped an elaborative simulation infrastructure based

on Virtutech’s Simics and the open-source General

Execution-driven Multiprocessor Simulator (GEMS)

originally developed by the University of Wisconsin,

but with a number of significant extensions. These

extensions include support of heterogeneous cores;

tightly coupled and loosely coupled accelerators; hy-

brid cache structures; new hierarchical memory co-

herence protocols; heterogeneity in NoCs; support

for reconfigurable alternative interconnects; and ac-

curate power, performance, and area models.

Using this simulation infrastructure, we are explor-

ing and validating several novel architectural ideas

and options as part of the CHP designs. For example,

we designed a customizable hardware cache that

supports

! dynamic allocation of a shared pool of cache

blocks between a conventional cache and

scratchpad memory (SPM),

! a flexible SPM mapping scheme that maps SPM

blocks onto cache sets with adaptive reconfigura-

tion at runtime, and

! software pipelining operations through SPM

prefetching.

Domain-Specific Customization

Domain-specific applications

Programmer
Abstract

execution

Application
characteristics

Architecture
models

Domain-specific programming model
(Domain-specific coordination graph and domain-specific language extensions)

C/C++ code

C/C++ front end

Reconfiguring and optimizing back end

C/SystemC behavioral specAnalysis
annotations

RTL
synthesizer

(xPilot/AutoPilot)

Binary code for fixed and customized cores

CHP architectural prototypes
(CHP hardware testbeds, CHP simulation testbed, full CHP)

RTL for prog. fabric

Adaptive runtime: Lightweight threads and adaptive reconfiguration

Customized
target code

Performance
feedback

Source-to-source CHP mapper

Figure 3. Overview of compilation and runtime system structure. The domain experts build a domain-

specific programming model; then an automated mapping and synthesis flow performs source-to-

source transformation and compilation to generate optimized binaries for multicore processors and

RTL code. A lightweight runtime system supports runtime resource management and customization.

12 IEEE Design & Test of Computers

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 12



Our experimental results on SPEC2006 benchmarks

and medical imaging applications show that this

proposed scheme can achieve considerable perfor-

mance improvement and energy reduction, com-

pared with a hardware cache alone or a limited

reconfigurable hybrid cache.

Another example is a hardware resource manage-

ment scheme we developed for accelerator sharing.

The scheme supports sharing and arbitration of mul-

tiple cores for a common set of accelerators and

includes an efficient cache management scheme for

accelerators to mitigate memory latency by overlap-

ping data transfer with computation. Simulation

results show significant improvements in both perfor-

mance and energy efficiency compared with

approaches using OS-based accelerator management.

Our approach achieved an average 9# improvement

in performance and a 32# improvement in energy ef-

ficiency, with minimal hardware overhead (less than

0.01% of chip area).12

For domain-specific modeling, the CDSC team has

been collaborating with Intel on the Concurrent Col-

lections (CnC) model, which forms the foundation of

the domain-specific coordination graph. CnC is a de-

clarative and implicitly parallel coordination lan-

guage that supports flexible combinations of task

and data parallelism while retaining determinism.

CnC computations are built in sequential steps re-

lated by data and control dependence edges, which

are represented by a CnC graph.

We developed a semantic model for CnC, called

Featherweight CnC, which simplifies the full CnC lan-

guage without reducing its power. The Featherweight

CnC model was used to obtain the first known formal

proof of the determinism property for the CnC lan-

guage. We have also extended CnC by creating a

model called CnC-CUDA that supports execution of

steps on both CPUs and GPUs.13 The CnC-CUDA

extensions include the definition of multithreaded

steps for execution on GPUs and automatic genera-

tion of data and control flow between CPU steps

and GPU steps. Experimental results show that this

approach can yield significant performance benefits

with both GPU execution and hybrid CPU/GPU exe-

cution. Various medical imaging applications are

now being modeled with CnC.

For CHP mapping, we selected the open-source

Rose compiler infrastructure developed at Lawrence

Livermore National Laboratory as the baseline infra-

structure for the high-level mapper, and the

open-source LLVM (Low Level Virtual Machine) as

the baseline infrastructure for the optimizing back

end. An important development in our work is the

creation of Habanero-C, a language, compiler, and

runtime that integrates the following four orthogonal

constructs with the C language to support task

parallelism:

! the async and finish constructs for lightweight dy-

namic task creation and termination,14

! the place construct for locality control in task and

data distributions,

! the isolated construct for mutual exclusion and

isolation among tasks, and

! the phasers construct for collective and point-to-

point synchronization and reduction.

Our CHP mapping infrastructure also interfaces

with UCLA’s C/C+ + to RTL high-level synthesis tool

xPilot7 and its successor AutoPilot (from AutoESL,

now part of Xilinx) for generation of various accel-

erators implemented with dedicated circuits or

using the programmable fabric on the CHP.

ALTHOUGH THE FINAL CHP is intended to be a

system-on-a-chip implementation, we have built an

initial heterogeneous prototype for testing the soft-

ware mapping flow. This prototype comprises one

Intel Core i7 CPU, two Nvidia Tesla C1060s, and one

Xilinx ML605 (Virtex6 LX240T) card. The motherboard

of this system has four PCI-express slots. The Tesla

computing cards and FPGA card are all integrated

by the PCI-express subsystem. We have developed

multiple implementation templates, corresponding

device drivers, and basic APIs for direct memory ac-

cess data transfer, computing kernel invocation, and

synchronization. Currently, we are developing a CnC-

based flow for partitioning the tasks in the medical

image-processing pipeline to heterogeneous compo-

nents, including processors, GPUs, and FPGAs. !

Acknowledgments
The Center for Domain-Specific Computing is

funded by the National Science Foundation’s Expedi-

tion in Computing Award CCF-0926127. Other CDSC

faculty members are Denise Aberle, Richard Bara-

niuk, Frank Chang, Tim Cheng, Jens Palsberg, Mio-

drag Potkonjak, P. Sadayappan, and Luminita Vese.

We greatly appreciate their participation in this

13March/April 2011

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 13



project. We also thank Yi Zou at UCLA for providing

GPU and FPGA acceleration results on several medi-

cal imaging applications.

!References
1. P. Schaumont and I. Verbauwhede, ‘‘Domain-Specific

Codesign for Embedded Security,’’ Computer, vol. 36,

no. 4, 2003, pp. 68-74.

2. G. Estrin, ‘‘Organization of Computer Systems!!The

Fixed Plus Variable Structure Computer,’’ Proc. Western

Joint Computer Conf., AFIPS Press, 1960, pp. 33-40.

3. S. Hauk and A. DeHon, Reconfigurable Computing:

The Theory and Practice of FPGA-Based Computation,

Morgan Kaufmann, 2007.

4. T. Yeh et al., ‘‘ParallAX: An Architecture for Real-Time

Physics,’’ Proc. Ann. Int’l Symp. Computer Architecture

(ISCA 07), ACM Press, 2007, pp. 232-243.

5. R. Kumar et al., ‘‘Single-ISA Heterogeneous Multi-Core

Architectures: The Potential for Processor Power Reduc-

tion,’’ Proc. 36th Ann. IEEE/ACM Int’l Symp. Microarchi-

tecture (MICRO 36), IEEE CS Press, 2003, pp. 81-92.

6. B. Lee and D. Brooks, ‘‘Efficiency Trends and Limits

from Comprehensive Microarchitectural Adaptivity,’’ Proc.

13th Int’l Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS 08), ACM

Press, 2008, pp. 36-47.

7. J. Cong et al., ‘‘Platform-Based Behavior-Level and

System-Level Synthesis,’’ Proc. IEEE Int’l SOC Conf.,

IEEE Press, 2006, pp. 199-202.

8. J. Cong et al., ‘‘Accelerating Sequential Applications on

CMPs Using Core Spilling,’’ IEEE Trans. Parallel and

Distributed Systems, vol. 18, no. 8, 2007, pp. 1094-1107.

9. E. Ipek et al., ‘‘Core Fusion: Accommodating Software

Diversity in Chip Multiprocessors,’’ Proc. Ann. Int’l Symp.

Computer Architecture (ISCA 07), ACM Press, 2007,

pp. 186-197.

10. A. Kumar et al., ‘‘Express Virtual Channels: Towards

the Ideal Interconnection Fabric,’’ Proc. Ann. Int’l Symp.

Computer Architecture (ISCA 07), ACM Press, 2007,

pp. 150-161.

11. M.F. Chang et al., ‘‘Power Reduction of CMP Communi-

cation Networks via RF-Interconnects,’’ Proc. 41st IEEE/

ACM Ann. Int’l Symp. Microarchitecture (MICRO 41),

IEEE CS Press, 2008, pp. 376-387.

12. J. Cong et al., ‘‘AXR-CMP: Architecture Support in

Accelerator-Rich CMPs,’’ Proc. 2nd Workshop on SoC

Architecture, Accelerators and Workloads (SAW-2),

IEEE CS Press, 2011, in press.

13. M. Grossman et al., ‘‘CnC-CUDA: Declarative Program-

ming for GPUs,’’ Proc. Int’l Workshop on Languages and

Compilers for Parallel Computing (LCPC), 2010; to ap-

pear in Springer-Verlag LNCS 6548.

14. Y. Guo et al., ‘‘SLAW: A Scalable Locality-Aware Adap-

tive Work-Stealing Scheduler,’’ Proc. IEEE Int’l Parallel

and Distributed Processing Symp. (IPDPS 10), IEEE CS

Press, 2010, pp. 1-10.

Jason Cong is Chancellor’s Professor and director of

the Center for Domain-Specific Computing (CDSC) at

the University of California, Los Angeles (UCLA). His

research interests include synthesis of VLSI circuits

and systems, programmable systems, novel computer

architectures, and nanosystems. He has a PhD in com-

puter science from the University of Illinois at Urbana-

Champaign. He is a Fellow of the ACM and IEEE.

Vivek Sarkar is a professor of computer science,

E.D. Butcher Chair in Engineering, at Rice University

and the associate director of CDSC, where he leads

the domain-specific modeling and CHP mapping

thrusts. His research interests include multiple aspects

of parallel software including programming languages,

program analysis, compiler optimizations, and run-

times for parallel and high-performance computer sys-

tems. He has a PhD in computer science from Stanford

University. He is an ACM Fellow.

Glenn Reinman is an associate professor in the

Computer Science Department at UCLA and leads

the customizable heterogeneous platform creation

thrust in the CDSC. His research interests include

microprocessor design, parallel programming, and

virtual/augmented reality. He has a PhD in computer

science from University of California, San Diego.

Alex Bui is an associate professor in the Department

of Radiological Sciences at UCLA and leads the appli-

cation driver thrust in CDSC. His research interests in-

clude distributed medical information systems, data

modeling, medical data visualization, and applications

of medical image processing. He has a PhD in computer

science from UCLA in 2000. He is a member of IEEE.

!Direct questions and comments about this article to

Jason Cong, UCLA Computer Science Department,

4731J Boelter Hall, Los Angeles, CA 90095; cong@

cs.ucla.edu.

Domain-Specific Customization

14 IEEE Design & Test of Computers

[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 14



[3B2-11] mdt2011020006.3d 2/3/011 10:57 Page 15


