
Concurrent Collections

Zoran Budimlić1 Michael Burke1 Vincent Cavé1 Kathleen Knobe2

Geoff Lowney2 Ryan Newton2 Jens Palsberg3 David Peixotto1

Vivek Sarkar1 Frank Schlimbach2 Sağnak Taşırlar1

1Rice University 2Intel Corporation 3UCLA

Abstract

We introduce the Concurrent Collections (CnC) programming model.
CnC supports flexible combinations of task and data parallelism while
retaining determinism. CnC is implicitly parallel, with the user provid-
ing high-level operations along with semantic ordering constraints that
together form a CnC graph.

We formally describe the execution semantics of CnC and prove
that the model guarantees deterministic computation. We evaluate the
performance of CnC implementations on several applications and show
that CnC offers performance and scalability equivalent to or better than
that offered by lower-level parallel programming models.

1 Introduction

With multicore processors, parallel computing is going mainstream. Yet most
software is still written in traditional serial languages with explicit threading.
High-level parallel programming models, after four decades of proposals, have
still not seen widespread adoption. This is beginning to change. Systems like
MapReduce are succeeding based on implicit parallelism. Other systems like
Nvidia CUDA are partway there, providing a restricted programming model to
the user but also exposing too many of the hardware details. The payoff for a
high-level programming model is clear—it can provide semantic guarantees and
can simplify the understanding, debugging, and testing of a parallel program.

In this paper we introduce the Concurrent Collections (CnC) programming
model, built on past work on TStreams [13]. CnC falls into the same family
as dataflow and stream-processing languages—a program is a graph of kernels,
communicating with one another. In CnC, those computations are called steps,
and are related by control and data dependences. CnC is provably determin-
istic. This limits CnC’s scope, but compared to its more narrow counterparts
(StreamIT, NP-Click, etc), CnC is suited for many applications—incorporating
static and dynamic forms of task, data, loop, pipeline, and tree parallelism.

Truly mainstream parallelism will require reaching the large community of
non-professional programmers—scientists, animators, and financial analysts—
but reaching them requires a separation of concerns between application logic
and parallel implementation. We say that the former is the concern of the
domain expert and the latter of the performance tuning expert. The tuning
expert is given the maximum possible freedom to map the computation onto the
target architecture and is not required to have an understanding of the domain.
A strength of CnC is that it is simultaneously a dataflow-like parallel model

1

and a simple specification language that facilitates communication between the
domain and tuning experts.

We have implemented CnC for C++, Java, .NET, and Haskell, but in this
paper we will primarily focus on the Java and C++ implementations. The
contributions of this paper include: (1) a formal description of an execution
semantics for CnC with a proof of determinism and (2) experimental results
demonstrating that CnC can effectively exploit several different kinds of paral-
lelism and offer performance and scalability equivalent to or better than what
is offered by lower-level parallel programming models.

2 What is CnC?

The three main constructs in CnC are step collections, data collections, and con-
trol collections. These collections and their relationships are defined statically.
But for each static collection, a set of dynamic instances is generated at runtime.

A step collection corresponds to a specific computation (a procedure), and
its instances correspond to invocations of that procedure with different inputs.
A control collection is said to prescribe a step collection—adding an instance
to the control collection will cause a corresponding step instance to eventually
execute with that control instance as input. The invoked step may continue
execution by adding instances to other control collections, and so on.

Steps also dynamically read and write data instances. If a step might touch
data within a collection, then a (static) dependence exists between the step and
data collections. The execution order of step instances is constrained only by
their data and control dependencies. A complete CnC specification is a graph
where the nodes can be either step, data, or control collections, and the edges
represent producer, consumer and prescription dependencies. The following is
an example snippet of a CnC specification (where bracket types distinguish the
three types of collections):

// control relationship: myCtrl prescribes instances of step

<myCtrl> :: (myStep);

// consume from myData, produce to myCtrl, myData

[myData] → (myStep) → <myCtrl>, [myData];

For each step, like myStep above, the domain expert provides an implementa-
tion in a separate programming language and assembles the steps using a CnC
specification. (In this sense CnC is a coordination language.) The domain expert
says nothing about how operations are scheduled, which depends on the target
architecture. The tuning expert then maps the CnC specification to a specific
target architecture, creating an efficient schedule. Thus the specification serves
as an interface between the domain and tuning experts. In the case where oper-
ations are scheduled to execute on a parallel architecture, the domain expert in
effect prepares the program for parallelism. This differs from the more common
approach of embedding parallelism constructs within serial code.

A whole CnC program includes the specification, the step code, and the
environment. Step code implements the computations within individual graph
nodes, whereas the environment is the external user code that invokes and
interacts with the CnC graph while it executes. The environment can produce

2

data and control instances, and consume data instances.
Inside each collection, control, data, and step instances are all identified by

a unique tag. These tags generally have meaning within the application. For
example, they may be tuples of integers modeling an iteration space. They can
also be points in non-grid spaces—nodes in a tree, in an irregular mesh, elements
of a set, etc. In CnC, tags are arbitrary values that support an equality test and
hash function. Each type of collection uses tags as follows:

• Putting a tag into a control collection will cause the corresponding steps
(in prescribed step collections) to eventually execute. A control collection
C with tag i is denoted < C : i >.

• Each step instance is a computation that takes a single tag (originating
from the prescribing control collection) as an argument. The step instance
of collection (foo) at tag i is denoted (foo : i).

• A data collection is an associative container indexed by tags. The entry
for a tag i, once written, cannot be overwritten (dynamic single assign-
ment). The immutability of entries within a data collection is necessary
for determinism. An instance in data collection x with tag “i, j” is denoted
[x : i, j].

The colon notation above can also be used to specify tag functions in CnC.
These are declarative contracts that constrain the data access patterns of steps.
For example, a step indexed by an integer i which promises to read data at i
and produce i+ 1 would be written as “[x: i] → (f: i) → [x: i+1]”.

Because control tags are effectively synonymous with control instances we
will use the terms interchangeably in the remainder of this paper. (We will
also refer to data instances simply as items, and read and write operations on
collections as gets and puts.)

2.1 Simple Example

The following simple example illustrates the task and data parallel capabilities
of CnC. This application takes a set (or stream) of strings as input. Each string
is split into words (separated by spaces). Each word then passes through a
second phase of processing that, in this case, puts it in uppercase form.

<stringTags> :: (splitString); // step 1
<wordTags> :: (uppercase); // step 2
// The environment produces initial inputs and retrieves results:
env → <stringTags>, [inputs];

env ← [results];

// Here are the producer/consumer relations for both steps:
[inputs] → (splitString) → <wordTags>, [words];

[words] → (uppercase) → [results];

The above text corresponds directly to the graph in Figure 1. Note that
separate strings in [inputs] can be processed independently (data parallelism),
and, further, the (splitString) and (uppercase) steps may operate simulta-
neously (task parallelism).

3

(splitString) (uppercase)[words]

<stringTags>

[inputs]

<wordTags>

[results]

env

env

env

Figure 1: A CnC graph as described by a CnC specification. By convention, in the
graphical notation specific shapes correspond to control, data, and step collections.
Dotted edges represent prescription (control/step relations), and arrows represent pro-
duction and consumption of data. Squiggly edges represent communication with the
environment (the program outside of CnC)

The only keyword in the CnC specification language is env, which refers to
the environment—the world outside CnC, for example, other threads or processes
written in a serial language. The strings passed into CnC from the environment
are placed into [inputs] using any unique identifier as a tag. The elements
of [inputs] may be provided in any order or in parallel. Each string, when
split, produces an arbitrary number of words. These per-string outputs can
be numbered 1 through N—a pair containing this number and the original
string ID serves as a globally unique tag for all output words. Thus, in the
specification we could annotate the collections with tag components indicating
the pair structure of word tags: e.g. (uppercase: stringID, wordNum).

The step implementations (user-written code for splitString and uppercase
steps, ommitted here due to space constraints), specification file, and code for
the environment together make up a complete CnC application. The CnC graph
can be specified in a text file using the syntax described above, or it can be con-
structed using a graphical programming tool1. It can also be conveyed in the
host language code itself through an API, such as has been done for the Intel R©

CnC implementation.

3 Formal Semantics

In this section, we introduce Featherweight CnC and describe its semantics, which
is used to prove its determinism. Featherweight CnC simplifies the full CnC
model without reducing its power. A given CnC program can be translated to
Featherweight CnC by: (1) combining its data collections into a single, merged
collection (differentiated by an added field in the tags); (2) enumerating all tag
data types in the program (which assumes countable sets) and thereby mapping
them to integers; and (3) translating serial step code to the simple (but Turing
complete) step language embedded in Featherweight CnC.

1Since the 0.5.0 release, Intel R© has introduced a preliminary graphical programming tool
for creating CnC programs in Windows

4

3.1 Syntax

Featherweight CnC combines the language for specifying data and step collec-
tions with the base language for writing the step bodies. A Featherweight CnC
program is of the form:

f1(int a) {d1 s1}
f2(int a) {d2 s2}
...

fn(int a) {dn sn}

Combining the languages into one grammar allows us to give a complete se-
mantics for the execution of a Featherweight CnC program. The full grammar
is shown below. We use c to range over integer constants and n to range over
variable names.

Program : p ::= fi(int a){di si}, i ∈ 1..n
Declaration : d ::= n = data.get(e); d

| ε
Statement : s ::= skip

| if (e > 0) s1 else s2
| data.put(e1, e2); s
| prescribe fi(e); s

Expression : e ::= c (integer constant)
| n (local name)
| a (formal parameter name)
| e1 + e2

Each fi is a step, the a is the tag passed to a step instance, and the di and si

make up the step body. The di are the initial gets for the data needed by the step
and the si are the statements in the step bodies. Writing a data item to a data
collection is represented by the data.put(e1, e2) production. The expression e1
is used to compute the tag and the expression e2 is used to compute the value.
Control collections have been removed in favor of directly starting a new step
using the prescribe statement. A computation step consists of a series of zero
or more declarations followed by one or more statements. These declarations
introduce names local to the step and correspond to performing a get on a data
collection. A step must finish all of its gets before beginning any computation.
The computation in a step is limited to simple arithmetic, writing to a data
collection, and starting new computation steps.

3.2 Semantics

For an expression e in which no names occur, we use [[e]] to denote the integer
to which e evaluates. Further, we use A to denote the state of the array data,
a partial function whose domain and range are integers. If A[i] is undefined,
we say that A[i] = ⊥, and we use A[n1 := n2] to extend A. We use A0 to
denote the empty mapping, where dom(A) = {}. We define an ordering v on
array mappings such that A v A′ if and only if dom(A) ⊆ dom(A′) and for all
n ∈ dom(A) : A(n) = A′(n).

5

We will now define a small-step operational semantics for the language. Our
main semantic structure is a tree defined by the following grammar:

Tree : T ::= T ‖ T | (d s)

We assert that ‖ is associative and commutative, that is

T1 ‖ (T2 ‖ T3) = (T1 ‖ T2) ‖ T3

T1 ‖ T2 = T2 ‖ T1

A state in the semantics is a pair (A, T) or error. We use σ to range over
states. We define an ordering ≤ on states such that σ ≤ σ′ if and only if either
σ′ = error, or if σ = (A, T) and σ′ = (A′, T), then A v A′.

We will define the semantics via a binary relation on states, written σ → σ′.
The initial state of an execution of s is (A0, s). A final state of the semantics is
either of the form (A, skip), of the form error, or of the form (A, T) in which every
occurrence in T of (d s) has that property that d is of the form n = data.get(e); d′

and A[[[e]]] = ⊥ (e.g. a “blocked” read).

We now show the rules that define →.

(A, skip ‖ T2)→ (A, T2) (1) (A, T1 ‖ skip)→ (A, T1) (2)

(A, T1)→ error

(A, T1 ‖ T2)→ error
(3)

(A, T2)→ error

(A, T1 ‖ T2)→ error
(4)

(A, T1)→ (A′, T ′1)
(A, T1 ‖ T2)→ (A′, T ′1 ‖ T2)

(5)
(A, T2)→ (A′, T ′2)

(A, T1 ‖ T2)→ (A′, T1 ‖ T ′2)
(6)

(A, if (e > 0) s1 else s2)→ (A, s1) (if [[e]] > 0) (7)

(A, if (e > 0) s1 else s2)→ (A, s2) (if [[e]] ≤ 0) (8)

(A, data.put(e1, e2); s)→ (A[[[e1]] := [[e2]]], s)
(if A[[[e1]]] = ⊥)

(9)

(A, data.put(e1, e2); s)→ error

(if A[[[e1]]] 6= ⊥)
(10)

(A, prescribe fi(e); s)→ (A, ((di si)[a := [[e]]]) ‖ s)
(the body of fi is (di si))

(11)

(A,n = data.get(e); d s)→ (A, (d s)[n := A[[[e]]]])
(if A[[[e]]] 6= ⊥)

(12)

Notice that because Rules (11) and (12) perform substitution on step bodies,
in a well-formed program all evaluated expressions, [[e]], are closed. Now, given
the semantics above, we formally state the desired property of determinism:

If σ →∗ σ′ and σ →∗ σ′′, and σ′, σ′′ are both final states, then σ′ = σ′′.

6

3.2.1 Proof of Determinism

Lemma 3.1. (Error Preservation) If (A, T) → error and A v A′, then
(A′, T)→ error.

Proof. Straightforward by induction on the derivation of (A, T) → error; we
omit the details.

Lemma 3.2. (Monotonicity) If σ → σ′, then σ ≤ σ′.

Proof. Straightforward by induction on the derivation of σ → σ′. The interest-
ing case is for Rule (9) which is where σ can change and the single-assignment
side-condition plays an essential role. We omit the details.

Lemma 3.3. (Clash) If (A, T) → (A′, T ′) and A[c] = ⊥ and A′[c] 6= ⊥ and
Ad[c] 6= ⊥ and then (Ad, T)→ error.

Proof. Straightforward by induction on the derivation of (A, T)→ (A′, T ′); we
omit the details.

Lemma 3.4. (Independence) If (A, T) → (A′, T ′) and A′[c] = ⊥, then
(A[c := c′], T)→ (A′[c := c′], T ′). ,

Proof. From (A, T) → (A′, T ′) and Lemma 3.2 we have A v A′. From A v A′

and and A′[c] = ⊥, we have A[c] = ⊥. The proof is now straightforward by
induction on the derivation of (A, T)→ (A′, T ′); we omit the details.

Lemma 3.5. (Diamond) If (A, Ta) → (A′, T ′a) and (A, Tb) → (A′′, T ′′b), then
there exists σc such that (A′, T ′a ‖ Tb)→ σc and (A′′, Ta ‖ T ′′b)→ σc.

Proof. We proceed by induction on the derivation of (A, Ta) → (A′, T ′a). We
have twelve cases depending on the last rule used to derive (A, Ta)→ (A′, T ′a).

• Rule (1). In this case we have Ta = (skip ‖ T2) and A′ = A and T ′a = T2. So
we can pick σc = (A′′, T2 ‖ T ′′b) because (A′, T ′a ‖ Tb) = (A, T2 ‖ Tb) and from
(A, Tb)→ (A′′, T ′′b) and Rule (6) we have (A, T2 ‖ Tb)→ (A′′, T2 ‖ T ′′b), and
because (A′′, Ta ‖ T ′′b) = (A′′, (skip ‖ T2) ‖ T ′′b) and from Rule (1) we have
(A′′, (skip ‖ T2)) → (A′′, T2), and finally from (A′′, (skip ‖ T2)) → (A′′, T2)
and Rule (5) we have (A′′, (skip ‖ T2) ‖ T ′′b))→ (A′′, T2 ‖ T ′′b).

• Rule (2). This case is similar to the previous case; we omit the details.
• Rules (3)–(4). Both cases are impossible.
• Rule (5). In this case we have Ta = T1 ‖ T2 and T ′a = T ′1 ‖ T2 and (A, T1)→

(A′, T ′1). From (A, T1)→ (A′, T ′1) and (A, Tb)→ (A′′, T ′′b) and the induction
hypothesis, we have σ′c such that (A′, T ′1 ‖ Tb)→ σ′c and (A′′, T1 ‖ T ′′b)→ σ′c.
Let us show that we can pick σc such that (A′, (T ′1 ‖ Tb) ‖ T2) → σc and
(A′′, (T1 ‖ T ′′b) ‖ T2)→ σc. We have two cases:

• If σ′c = error, then we use Rule (3) to pick σc = error.
• If σ′c = (Ac, Tc), then then we use Rule (5) to pick (Ac, Tc ‖ T2).

7

From (A′, (T ′1 ‖ Tb) ‖ T2) → σc and (A′′, (T1 ‖ T ′′b) ‖ T2) → σc, the result
then follows from ‖ being associative and commutative.
• Rules (6)–(8). All three cases are similar to the case of Rule (1); we omit

the details.
• Rule (9). In this case we have Ta = (item.put(e1, e2); s) and A′ = A[[[e1]] :=

[[e2]]] and T ′a = s and (A[[[e1]]] = ⊥). Let us do a case analysis of the last
rule used to derive (A, Tb)→ (A′′, T ′′b).

• Rule (1). In this case we have Tb = skip ‖ T2 and A′′ = A and
T ′′b = T2. So we can pick σc = (A′, s ‖ T2) because (A′, T ′a ‖ Tb) =
(A′, s ‖ (skip ‖ T2)) and from Rule (6) and Rule (1) we have (A′, s ‖ (skip ‖ T2))→
(A′, s ‖ T2) = σc, and because (A′′, Ta ‖ T ′′b) = (A, Ta ‖ T2) and from
Rule (5) we have (A, Ta ‖ T2)→ (A′, s ‖ T2) = σc.

• Rule (2). This case is similar to the previous case; we omit the details.
• Rule (3)–(4). Both cases are impossible.
• Rule (5). In this case we have Tb = T1 ‖ T2 and T ′′b = T ′′1 ‖ T2 and

(A, T1)→ (A′′, T ′′1). We have two cases:

• If [[e1]] ∈ dom(A′′), then we can pick σc = error because from (A′′[[[e1]]] 6=
⊥) and Rule (10) and Rule (5) we have (A′′, Ta ‖ T ′′b)→ σc, and be-
cause from (A, Tb)→ (A′′, T ′′b) and (A[[[e1]]] = ⊥) and (A′′[[[e1]]] 6= ⊥)
and (A′[[[e1]]] 6= ⊥) and Lemma 3.3, we have (A′, Tb)→ error, and so
from Rule (4) we have (A′, T ′a ‖ Tb)→ σc.

• If [[e1]] 6∈ dom(A′′), then we define Ac = A′′[[[e1]] := [[e2]]] and we
pick σc = (Ac, T

′
a ‖ (T ′′1 ‖ T2)). From (A[[[e1]]] = ⊥) and (A, Tb) →

(A′′, T ′′b) and [[e1]] 6∈ dom(A′′) and Lemma 3.4, we have (A′, Tb) →
(Ac, T

′′
b), and then from Rule (6) we have (A′, T ′a ‖ Tb)→ (Ac, T

′
a ‖ T ′′b) =

σc. From Rule (6) and Rule (9) and [[e1]] 6∈ dom(A′′), we have
(A′′, Ta ‖ T ′′b)→ σc.

• Rule (6). This case is similar to the previous case; we omit the details.
• Rule (7)–(8). Both cases are similar to the case of Rule (1); we omit the

details.
• Rule (9). In this case we have Tb = (item.put(e′1, e

′
2); s′) and A′′ =

A[[[e′1]] := [[e′2]]] and T ′′b = s′ and (A[[[e′1]]] = ⊥). We have two cases:

• If [[e1]] = [[e′1]], then we can pick σc = error because (A′[[[e1]]] 6= ⊥) and
(A′′[[[e1]]] 6= ⊥) and from Rule (10) we have both (A′, T ′a ‖ Tb) → σc

and (A′′, Ta ‖ T ′′b)→ σc.
• If [[e1]] 6= [[e′1]], then we define Ac = A[[[e1]] := [[e2]]][[[e′1]] := [[e′2]]] and

we pick σc = (Ac, s ‖ s′). From (A[[[e′1]]] = ⊥) and [[e1]] 6= [[e′1]], we
have (A′[[[e′1]]] = ⊥). From Rule (6) and Rule (9) and (A′[[[e′1]]] = ⊥)
we have (A′, T ′a ‖ Tb)→ σc. From (A[[[e1]]] = ⊥) and [[e1]] 6= [[e′1]], we
have (A′′[[[e1]]] = ⊥). From Rule (5) and Rule (9) and (A′′[[[e1]]] = ⊥)

8

we have (A′′, Ta ‖ T ′′b)→ σc.

• Rule (10). This case is impossible.
• Rule (11)–(12). Both cases are similar to the case of Rule (1); we omit

the details.

• Rule (10). This case is impossible.
• Rules (11)–(12). Both of cases are similar to the case of Rule (1); we omit

the details.

The standard notion of Local Confluence says that: if σ → σ′ and σ → σ′′,
then there exists σc such that σ′ →∗ σc and σ′′ →∗ σc. We will prove a stronger
property that we call Strong Local Confluence.

Lemma 3.6. (Strong Local Confluence) If σ → σ′ and σ → σ′′, then there
exists σc, i, j such that σ′ →i σc and σ′′ →j σc and i ≤ 1 and j ≤ 1.

Proof. We proceed by induction on the derivation of σ → σ′. We have twelve
cases depending on the last rule use to derive σ → σ′.
• Rule (1). We have σ = (A, skip ‖ T2) and σ′ = (A, T2). Let us do a case

analysis of the last rule used to derive σ → σ′′.

• Rule (1). In this case, σ′ = σ′′, and we can then pick σc = σ′ and i = 0,
and j = 0.
• Rule (2). In this case we must have T2 = skip and σ′′ = (A, skip). So
σ′ = σ′′ and we can pick σc = σ′ and i = 0, and j = 0..
• Rule (3). This case is impossible because it requires (A, skip) to take a

step.
• Rule (4). In this case we have σ′′ = error and (A, T2)→ error. So we can

pick σc = error and i = 1 and j = 0 because (A, T2)→ error is the same
as σ′ → σc and σ′′ = σc.
• Rule (5). This case is impossible because it requires skip to take a step.
• Rule (6). In this case we have σ′′ = (A′, skip ‖ T ′2) and (A, T2) →

(A′, T ′2). So we can pick σc = (A′, T ′2) and i = 1 and j = 1 because from
Rule (1) we have σ′′ → σc, and we also have that (A, T2) → (A′, T ′2) is
the same as σ′ → σc.
• Rules (7)–(12). Each of these is impossible because T = skip ‖ T2.

• Rule (2). This case is similar to the previous case; we omit the details.
• Rule (3). We have σ = (A, T1 ‖ T2) and σ′ = error and (A, T1)→ error. Let

us do a case analysis of the last rule used to derive σ → σ′′.

• Rule (1). This case impossible because it requires T1 = skip which
contradicts (A, T1)→ error.
• Rule (2). In this case we have T2 = skip and σ′′ = (A, T1). So we can

9

pick σc = error and i = 0 and j = 1 because σ′ = σc and (A, T1)→ error
is the same as σ′′ → σc.
• Rule (3). In this case, σ′ = σ′′, and we can then pick σc = σ′ and i = 0

and j = 0.
• Rule (4). In this case, σ′ = σ′′, and we can then pick σc = σ′ and i = 0

and j = 0.
• Rule (5). In this case we have (A, T1)→ (A′, T ′1) and σ′′ = (A′, T ′1 ‖ T2).

From the induction hypothesis we have that there exists σ′c and i′ ≤ 1
and j′ ≤ 1 such that error →i′ σ′c and (A′, T ′1) →j′

σ′c. Given that
error has no outgoing transitions, we must have σ′c = error and i′ = 0.
Additionally, given that (A′, T ′1) 6= error we must have j′ = 1. So we can
pick σc = error and i = 0 and j = 1 because σ′ = σc and because from
Rule (3) and (A′, T ′1)→j′

σ′c and j′ = 1, we have σ′′ → error.
• Rule (6). In this case we have (A, T2)→ (A′, T ′2) and σ′′ = (A′, T1 ‖ T ′2).

In this case we can pick σc = error and i = 0 and j = 1 because σ′ = σc

and because from (A, T1)→ error and (A, T2)→ (A′, T ′2) and Lemma 3.2
and Lemma 3.1 we have (A′, T1) → error, so from Rule (3) we have we
have σ′′ → σc.

• Rules (7)–(12). Each of these is impossible because T = T1 ‖ T2.

• Rule (4). This case is similar to the previous case; we omit the details.
• Rule (5). We have σ = (A, T1 ‖ T2) and σ′ = (A′, T ′1 ‖ T2) and (A, T1) →

(A′, T ′1). Let us do a case analysis of the last rule used to derive σ →
σ′′.

• Rule (1). This case is impossible because for Rule (1) to apply we must
have T1 = skip, but for Rule (5) to apply we must have that (A, T1) can
take a step, a contradiction.

• Rule (2). In this case, we must have T2 = skip and σ′′ = (A, T1). So we
can pick σc = (A′, T ′1) and i = 1 and j = 1 because from Rule (2) we
have σ′ → σc, and we also have that (A, T1) → (A′, T ′1) is the same as
σ′′ → σc.

• Rule (3). In this case we have (A, T1)→ error and σ′′ = error. From the
induction hypothesis we have that there exists σ′c and i′ ≤ 1 and j′ ≤ 1
such that error →i′ σ′c and (A′, T ′1) →j′

σ′c. Given that error has no
outgoing transitions, we must have σ′c = error and i′ = 0. Additionally,
given that (A′, T ′1) 6= error we must have j′ = 1. So we can pick σc = error
and i = 1 and j = 0 because σ′′ = σc and because from Rule (3) and
(A′, T ′1)→j′

σ′c and j′ = 1, we have σ′ → error.
• Rule (4). In this case we have (A, T2)→ error and σ′′ = error. So we can

pick σc = error and i = 1 and j = 0 because σ′′ = error and because from
(A, T2) → error and (A, T1) → (A′, T ′1) and Lemma 3.2 and Lemma 3.1
we have (A′, T2)→ error, so from Rule (4) we have σ′ → error.

• Rule (5). In this case we must have σ′′ = (A′′, T ′′1 ‖ T2) and (A, T1) →

10

(A′′, T ′′1). From (A, T1) → (A′, T ′1) and (A, T1) → (A′′, T ′′1), and the
induction hypothesis, we have that there exists σ′c and i′ ≤ 1 and j′ ≤ 1
such that (A′, T ′1)→i′ σ′c and (A′′, T ′′1)→j′

σ′c. We have two cases.

1. If σ′c = error, then we can pick σc = error and i = 1 and j = 1
because from (A′, T ′1) →i′ σ′c and i′ ≤ 1 we must have i′ = 1 so
from (A′, T ′1) →i′ σ′c and i′ = 1 and Rule (3) we have σ′ → σc, and
because from (A′′, T ′′1) →j′

σ′c and j′ ≤ 1 we must have j′ = 1 so
from (A′′, T ′′1)→j′

σ′c and j′ = 1 and Rule (3) we have σ′′ → σc.
2. If σ′c = (Ac, Tc), then we can pick σc = (Ac, Tc ‖ T2) and i = i′ and
j = j′ because from (A′, T ′1)→i′ σ′c and Rule (5) we have σ′ →i σc,
and because from (A′′, T ′′1)→j′

σ′c and Rule (5) we have σ′′ →i σc.

• Rule (6). In this case we must have σ′′ = (A′′, T1 ‖ T ′2) and (A, T2) →
(A′′, T ′2). From (A, T1)→ (A′, T ′1) and (A, T2)→ (A′′, T ′2) and Lemma 3.5,
we have that there exists σc such that (A′, T ′1 ‖ T2)→ σc and (A′′, T1 ‖ T ′2)→
σc, that is, σ′ → σc and σ′′ → σc. Thus we pick i = 1 and j = 1.

• Rules (7)–(12). Each of these is impossible because T = T1 ‖ T2.

• Rule (6). This case is similar to the previous case; we omit the details.
• Rules (7)–(12). In each of these cases, only one step from σ is possible so
σ′ = σ′′ and we can then pick σc = σ′ and i = 0 and j = 0.

Lemma 3.7. (Strong One-Sided Confluence) If σ → σ′ and σ →m σ′′,
where 1 ≤ m, then there exists σc, i, j such that σ′ →i σc and σ′′ →j σc and
i ≤ m and j ≤ 1.

Proof. We proceed by induction on m. In the base case of m = 1, then result
is immediate from Lemma 3.6. In the induction step, suppose σ →m σ′′ → σ′′′

and suppose the lemma holds for m. From the induction hypothesis, we have
there exists σ′c, i

′, j′ such that σ′ →i′ σ′c and σ′′ →j′
σ′c and i′ ≤ m and j′ ≤ 1.

We have two cases.

• If j′ = 0, then σ′′ = σ′c. We can then pick σc = σ′′′ and i = i′ + 1 and
j = 0.

• If j′ = 1, then from σ′′ → σ′′′ and σ′′ →j′
σ′c and Lemma 3.6, we have

σ′′c and i′′ and j′′ such that σ′′′ →i′′ σ′′c and σ′c →j′′
σ′′c and i′′ ≤ 1 and

j′′ ≤ 1. So we also have σ′ →i′ σ′c →j′′
σ′′c . In summary we pick σc = σ′′c

and i = i′ + j′′ and j = i′′, which is sufficient because i = i′ + j′′ ≤ m+ 1
and j = i′′ ≤ 1.

Lemma 3.8. (Strong Confluence) If σ →n σ′ and σ →m σ′′, where 1 ≤ n
and 1 ≤ m, then there exists σc, i, j such that σ′ →i σc and σ′′ →j σc and i ≤ m
and j ≤ n.

11

Proof. We proceed by induction on n. In the base case of n = 1, then result is
immediate from Lemma 3.7. In the induction step, suppose σ →n σ′ → σ′′′ and
suppose the lemma holds for n. From the induction hypothesis, we have there
exists σ′c, i

′, j′ such that σ′ →i′ σ′c and σ′′ →j′
σ′c and i′ ≤ m and j′ ≤ n. We

have two cases.

• If i′ = 0, then σ′ = σ′c. We can then pick σc = σ′′′ and i = 0 and j = j′+1.

• If i′ ≥ 1, then from σ′ → σ′′′ and σ′ →i′ σ′c and Lemma 3.7, we have
σ′′c and i′′ and j′′ such that σ′′′ →i′′ σ′′c and σ′c →j′′

σ′′c and i′′ ≤ i′ and
j′′ ≤ 1. So we also have σ′′ →j′

σ′c →j′′
σ′′c . In summary we pick σc = σ′′c

and i = i′′ and j = j′ + j′′, which is sufficient because i = i′′ ≤ i′ ≤ m
and j = j′ + j′′ ≤ n+ 1.

Lemma 3.9. (Confluence) if σ →∗ σ′ and σ →∗ σ′′, then there exists σc

such that σ′ →∗ σc and σ′′ →∗ σc.

Proof. Strong Confluence (Lemma 3.8) implies Confluence.

Theorem 1. (Determinism) If σ →∗ σ′ and σ →∗ σ′′, and σ′, σ′′ are both
final states, then σ′ = σ′′.

Proof. We have from Lemma 3.9 that there exists σc such that σ′ →∗ σc and
σ′′ →∗ σc. Given that neither σ′ or σ′′ have any outgoing transitions, we must
have σ′ = σc and σ′′ = σc, hence σ′ = σ′′.

The key language feature that enables determinism is the single assignment
condition. The single assignment condition guarantees monotonicity of the data
collection A. We view A as a partial function from integers to integers and the
single assignment condition guarantees that we can establish an ordering based
on the non-decreasing domain of A.

3.3 Discussion

Three key features of CnC are represented directly in the semantics for Feath-
erweight CnC. First, the single assignment property only allows one write to a
data collection for a given data tag. This property shows up as the side condi-
tion of Rules (9) and (10). Second, the data dependence property says a step
cannot execute until all of the data it needs is available. This property shows
up as the side condition of Rule (12). Third, the control dependence property,
captured by Rule (11), queues a step for execution without saying when it will
execute.

Turing completeness: We argue that the language provided for writing step
bodies is powerful enough to encode the set of all while programs, which are
known to be Turing complete. While programs have a very simple grammar
consisting of a while loop, a single variable x, assigning zero to x, and incre-
menting x by one. We can write a translator that will convert a while program

12

to a Featherweight CnC program by using recursive prescribe statements to en-
code the while loop. The value of x can be tracked by explicitly writing the
value to a new location in the data array at each step and passing the tag for
the current location of x to the next step.

Deadlock: We do not claim any freedom from deadlocks in Featherweight CnC.
We can see from the semantics that a final state can be one in which there
are still steps left to run, but none can make progress because the required
data is unavailable. We say the computation has reached a quiescent state
when this happens. In practice, deadlock is a problem when it happens non-
deterministically because it makes errors difficult to detect and correct. Because
we have proved that Featherweight CnC is deterministic, any computation that
reaches a quiescent final state will always reach that same final state. Therefore,
deadlocks become straightforward to detect and correct.

4 Implementing CnC on Different Platforms

Implementations of CnC need to provide a translator and a runtime. The trans-
lator uses the CnC specification to generate code for a runtime API in the target
language. We have implemented CnC for C++, Java, .NET, and Haskell, but
in this paper, we primarily focus on the Java and C++ implementations.

C++: uses Intel R©’s Threading Building Blocks (TBB) and provides several
schedulers, most of which are based on TBB schedulers, which use work steal-
ing [7]. The C++ runtime is provided as a template library, allowing control
and data instances to be of any type.

Java: uses Habanero-Java (HJ)[10], an extension of the X10 language described
in [6], as well as primitives from the Java Concurrency Utilities [14], such as
ConcurrentHashMap and Java atomic variables. For a detailed description of
the runtime mapping and the code translator from CnC to HJ see [2].

.NET: takes full advantage of language generics to implement type-safe put and
get operations on data and control collections. The runtime and code generator
are written in F#, the step bodies can be written in any .NET language (F#,
C#, VB.NET, IronPython, etc).

Haskell: uses the work stealing features of the Glasgow Haskell Compiler to
implement CnC, and provides an Haskell-embedded CnC sub-language. Haskell
both enforces that steps are pure (effect-free, deterministic) and allows complete
CnC graphs to be used within pure Haskell functions.

Following are some of the key design decisions made in the above implemen-
tations.

Step Execution and Data Puts and Gets: In all implementations, step prescrip-
tion involves creation of an internal data structure representing the step to be
executed. Parallel tasks can be spawned eagerly upon prescription, or delayed
until the data needed by the task is ready. The get operations on a data col-
lection could be blocking (in cases when the task executing the step is spawned

13

before all the inputs for the step are available) or non-blocking (the runtime
guarantees that the data is available when get is executed). Both the C++ and
Java implementations have a roll back and replay policy, which aborts the step
performing a get on an unavailable data item and puts the step in a separate list
associated with the failed get. When a corresponding put gets executed, all the
steps in a list waiting on that item are restarted. Both Java and C++ imple-
mentations can delay execution of a step until the items are actually available.

Initialization and Shutdown: All implementations require some code for initial-
ization of the CnC graph: creating step objects and a graph object, as well as
performing the initial puts into the data and control collections. In the C++
implementation, ensuring that all the steps in the graph have finished execution
is done by calling the run() method on the graph object, which blocks until all
runnable steps in the program have completed. In the Java implementation,
ensuring that all the steps in the graph have completed is done by enclosing all
the control collection puts from the environment in an Habanero-Java finish
construct [10], which ensures that all transitively spawned tasks have completed.

Safety properties: Different CnC implementations are more or less safe in terms
of enforcing the CnC specification. The C++ implementation performs runtime
checks of the single assignment rule, while the Java and .NET implementations
also ensure tag immutability and check for CnC graph conformance (e.g., a step
cannot perform a put into an data collection if that relationship is not specified
in the CnC graph). Finally, CnC guarantees determinism as long as steps are
themselves deterministic—a contract strictly enforceable only in Haskell.

Memory reuse: Releasing data instances is a separate problem from traditional
garbage collection. We have two approaches to determine when data instances
are dead and can safely be released (without breaking determinism). First, [3]
introduces a declarative slicing annotation for CnC that can be transformed into
a reference counting procedure for memory management. Second, our C++ im-
plementation provides a mechanism for specifying use counts for data instances,
which are discarded after their last use. (These can sometimes be computed
from tag functions, and otherwise are set by the tuning expert.) Irrespective of
which of these mechanisms is used, data collections can be released after a graph
is finished running. Frequently, an application uses CnC for finite computations
inside a serial outer loop, reclaiming all memory between iterations.

Distributed memory: All the above implementations assume a shared memory
platform for execution. In addition, Intel R©’s C++ implementation provides a
prototype of a distributed runtime, which requires only minimal additions to
a standard CnC program [17]. The runtime intercepts puts and gets to tag
and item collections. The runtime uses a simple default algorithm to determine
the host on which to execute the put or get, or the user can provide a custom
partitioning. Each item has its home on the process which produces it. If a
process finds an item unavailable when issuing a get, it requests it from all
other processes. The programmer can also specify the home of the item, in
which case the runtime requests the item only from the home process. The

14

owner sends the item as soon as it becomes (or is) available. This strategy is
generic and does not require additional information from the programmer, such
as step and item partitioning or mapping. Still, it is close to optimal for cases
with good locality, i.e., those that are good candidates for distributed memory.

5 Experimental Results

In this section, we present experimental results obtained using the C++ and
Java implementations of CnC outlined in the previous section.

5.1 CnC-C++ Implementation

We have ported Dedup, a benchmark from the PARSEC [1] benchmark suite,
to the TBB-based C++ implementation of CnC. The Dedup kernel compresses
a data stream with a combination of global and local compression. The kernel
uses a pipelined programming model to mimic real-world implementations.

Figure 2 shows execution time as a function of the number of worker threads
used, both for our implementation and a standard pthreads version obtained
from the PARSEC site. The figure shows that CnC has superior performance
to the pthreads implementation of Dedup. With a fixed number of threads per
stage, load imbalance between the stages limits the parallelism in the pthreads
implementation. The CnC implementation does not have this issue, as all
threads can work on all stages. With pthreads, data is never local to a thread be-
tween stages. CnC’s depth-first scheduler keeps the data local, and in the FIFO
case locality also occurs in our experiment. The use of conditional variables in
pthreads is expensive.

We have experimented with two CnC scheduling policies: TBB TASK and
TBB QUEUE. TBB TASK wraps a step instance in a tbb::task object and
eagerly spawns it, thereby delegating the scheduling to TBB without much
overhead. TBB QUEUE provides a global FIFO task queue, populated with
scheduled steps that are consumed by multiple threads. This policy is a good
match for a pipelined algorithm such as Dedup.

In addition to improved performance, the CnC version also simplifies the
work of the programmer, who simply performs puts and gets without the need to
think about lower-level parallelism mechanisms such as explicit threads, mutexes
and conditional variables.

The second CnC-C++ example that we evaluated was a Cholesky Factor-
ization [8] of size 2000×2000. The tiled Cholesky algorithm consists of three
steps: the conventional sequential Cholesky, triangular solve, and the symmet-
ric rank-k update. These steps can be overlapped with one another after initial
factorization of a single block, resulting in an asynchronous-parallel approach.
There is also abundant data parallelism within each of these steps.

This is an interesting example because its performance is impacted by both
parallelism (number of cores used) and locality (tile size), thereby illustrating
how these properties can be taken into account when tuning a CnC program.
Figure 3 shows the speedup relative to a sequential version on an 8-way Intel R©

dual Xeon Harpertown SMP system.
Finally, we have also tested CnC microbenchmarks such as NQueens and

15

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 

M
in
im

um
 e
xe
cu
*
on

 *
m
e 
in
 s
ec
on

ds
 

Number of threads 

dedup ( on file size 45Mb) 

TBB_TASK 

TBB_QUEUE 

pthread 

Figure 2: Execution time for pthreads and CnC-C++ implementations of the PARSEC
Dedup benchmark with 45MB input size on a 16-core Intel R© Caneland SMP, as a
function of number of worker threads used.

the Game of Life and observed that the CnC-C++ implementation matched the
scalability of the TBB and OpenMP implementations. We omit the detailed
performance results for these two benchmarks, but still discuss their behavior
below.

NQueens We compared three parallel implementations of the same NQueens
algorithm in C++: OpenMP, TBB (parallel for) and CnC. We used the CnC
implementation with the default tbb::parallel while scheduler. CnC per-
formed similarly to OpenMP and TBB. TBB and particularly OpenMP provide
a convenient method to achieve parallelization with limited scalability. CnC’s
straightforward specification of NQueens allows extreme scalability, but the fine
grain of such steps prevents an efficient implementation. To create sufficiently
coarse-grain steps, we used a technique which unrolls the tree to a certain level.
We found that implementing this in CnC was more intuitive than with OpenMP
and TBB, since with CnC we could express the cutoff semantics in a single place
while TBB and OpenMP required additional and artificial constructs at several
places.

Game of Life When implementing Game of Life with CnC, grain size was
an issue again. With a straightforward specification, a CnC step would work
on a cell, but again such a step is too fine grained. For sufficiently coarse
granularity, the CnC steps work on tiles rather than on cells. Interestingly,
even our OpenMP version shows better performance when applied to the tiled
algorithm. CnC performs similarly with OpenMP and TBB(parallel for) on
the same algorithm. CnC’s potential to concurrently execute across generations
results in good scalability.

16

Cholesky Speedup (n = 2000)

No of threads

0 2 4 6 8 10

Sp
ee

du
p

0

2

4

6

8

10

b = 2000
b = 1000
b = 500
b = 250
b = 125
b = 50
b = 25

Figure 3: Speedup results for C++ implementation of 2000×2000 Cholesky Factor-
ization CnC program on an 8-way (2p4c) Intel R© dual Xeon Harpertown SMP system.
The running time for the baseline (1 thread, tile size 2000) was 24.9 seconds

5.2 CnC-Java Implementation

The Blackscholes [1] application is an Intel R© RMS benchmark. It calculates the
prices for a portfolio of European options analytically with the Black-Scholes
partial differential equation. Figure 4 shows the speedup of the HJ CnC Cholesky
factorization and Blackscholes implementations on a 16-way Intel R© Xeon SMP,
using four different strategies for data synchronization when performing puts
and gets on the data collection: (1) coarse-grain blocking on the whole data
collection, (2) fine-grain blocking on individual items in the data collection, (3)
data-driven computation using a roll-back and replay, and (4) a non-blocking
strategy using the delayed async construct. The speedups reported in Fig-
ure 4 are relative to the sequential Cholesky and Blackscholes implementations
in Java. For Cholesky, we observe that the CnC infrastructure adds moder-
ate overhead (28%-41%, depending on the synchronization strategy) in a single
thread case, while Blackscholes only shows minimal (1%-2%) overhead. Data-
driven and non-blocking strategies scale very well, while we can see the negative
effects of coarse-grain and even fine-grain blocking beyond 8 processors. For
Blackscholes, since all of the data is available to begin with, and we can evenly
partition the data, we do not see much difference between implementation strate-
gies.

Figure 5 shows the speedup for the 64-threads case for Cholesky and Blacksc-
holes on the UltraSPARC T2 (8 cores with 8 threads each). We see very good
scaling for Blackscholes using 64-threads but we can start to see the negative
effects of the coarse-grain blocking strategy for both applications. Even though

17

0 

2 

4 

6 

8 

10 

12 

14 

16 

1  2  4  8  16 

Sp
ee
du

p 
vs
. J
av
a 
Se
qu

en
.
al
 

Number of cores used 

Cholesky & Blackscholes Speedup (16‐core Intel Xeon) 

Blocking Coarse 

Blocking Fine 

Reroll & Replay 

Delayed Async 

Cholesky  Cholesky  Cholesky  Cholesky  Cholesky BlackSch. BlackSch. BlackSch.  BlackSch. BlackSch. 

Figure 4: Speedup results for CnC-Java implementation of 2000×2000 Cholesky Fac-
torization CnC program with tile size 100 and Blackscholes CnC program on a 16-way
(4p4c) Intel R© Xeon SMP system.

the data is partitioned among the workers, the coarse-grain blocking causes
contention on data collections which results in worse scalability than the fine-
grained and non-blocking versions. Cholesky, which is mostly floating point
computation, achieves a better than 8x speedup for 64 threads, which is a very
reasonable result considering that the machine has only 8 floating point units.

6 Related Work

We use Table 1 to guide the discussion in this section. This table classifies pro-
gramming models according to their attributes in three dimensions: Declarative,
Deterministic and Efficient. For convenience, we include a few representative
examples for each distinct set of attributes, and trust that the reader can ex-
trapolate this discussion to other programming models with similar attributes
in these three dimensions.

A number of lower-level programming models in use today — e.g., Intel R©

TBB [15], .Net Task Parallel Library, Cilk, OpenMP [5], Nvidia CUDA, Java
Concurrency [14] — are non-declarative, non-deterministic, and efficient2. De-
terministic Parallel Java [16] is an interesting variant of Java; it includes a
subset that is provably deterministic, as well as constructs that explicitly indi-
cate when determinism cannot be guaranteed for certain code regions, which is
why it contains a “hybrid” entry in the Deterministic column.

The next three languages in the table — High Performance Fortran (HPF)

2We call a programming model efficient if there are known implementations that deliver
competitive performance for a reasonably broad set of programs.

18

0

5

10

15

20

25

30

35

40

Sp
ee

du
p

vs
. J

av
a

Se
qu

en
tia

l

64 threads used

Parallel speedups, 8-core 64-threads UltraSparc T2 Niagara

 DA RR BCL BFL DA RR BCL BFL

Cholesky Black-Scholes

Figure 5: Speedup results for CnC-Java implementation of 2000×2000 Cholesky Fac-
torization CnC program with tile size 80 and Blackscholes CnC program on a 8 core
64 thread UltraSPARC T2 Sun Niagara system. The acronyms stand for Blocking
Coarse-Locking (BCL), Blocking Fine-Locking (BFL), Rollback and Replay (RR), and
Delayed Async (DA).

[12], X10 [6], Linda [9] — contain hybrid combinations of imperative and declar-
ative programming in different ways. HPF combines a declarative language
for data distribution and data parallelism with imperative (procedural) state-
ments, X10 contains a functional subset that supports declarative parallelism,
and Linda is a coordination language in which a thread’s interactions with the
tuple space is declarative. Linda was a major influence on the CnC design, but
CnC also differs from Linda in many ways. For example, an in() operation in
Linda atomically removes the tuple from the tuple space, but a CnC get() op-
eration does not remove the item from the collection. This is a key reason why
Linda programs can be non-deterministic in general, and why CnC programs are
provably deterministic. Further, there is no separation between tags and values
in a Linda tuple; instead, the choice of tag is implicit in the use of wildcards.
In CnC, there is a separation between tags and values, and control tags are first
class constructs like data items.

The last four programming models in the table are both declarative and
deterministic. Asynchronous Sequential Processes [4] is a recent model with a
clean semantics, but without any efficient implementations. In contrast, the
remaining three entries are efficient as well. StreamIt is representative of a
modern streaming language, and LabVIEW [18] is representative of a modern
dataflow language. Both streaming and dataflow languages have had major
influence on the CnC design.

The CnC semantic model is based on dataflow in that steps are functional and
execution can proceed whenever data is ready, without unnecessary serialization.

19

Parallel prog. model Declarative Deterministic Efficient Impl.
Intel TBB [15] No No Yes
.Net Task Par. Lib. No No Yes
Cilk No No Yes
OpenMP [5] No No Yes
CUDA No No Yes
Java Concurrency [14] No No Yes
Det. Parallel Java [16] No Hybrid Yes
High Perf. Fortran [12] Hybrid No Yes
X10 [6] Hybrid No Yes
Linda [9] Hybrid No Yes
Asynch. Seq. Processes [4] Yes Yes No
StreamIt Yes Yes Yes
LabVIEW [18] Yes Yes Yes
CnC [this paper] Yes Yes Yes

Table 1: Comparison of several parallel programming models.

However, CnC differs from dataflow in some key ways. The use of control tags
elevates control to a first-class construct in CnC. In addition, data collections
allow more general indexing (as in a tuple space) compared to dataflow arrays
(I-structures).

CnC is like streaming in that the internals of a step are not visible from the
graph that describes their connectivity, thereby establishing an isolation among
steps. A producer step in a streaming model need not know its consumers; it just
needs to know which buffers (collections) to perform read and write operations
on. However, CnC differs from streaming in that put and get operations need not
be performed in FIFO order, and (as mentioned above) control is a first-class
construct in CnC.

We observe that CnC’s dynamic put/get operations on data and control
collections is a general model that can be used to express many kinds of ap-
plications (such as Cholesky factorization) that would not be considered to be
dataflow or streaming applications. In summary, CnC has benefited from in-
fluences in past work, but we’re not aware of any other parallel programming
model that shares CnC’s fundamental properties as a coordination language,
a declarative language, a deterministic language, and a language amenable to
efficient implementation.

For completeness, we also include a brief comparison with graphical coordi-
nation languages in a distributed system, using Dryad [11] as an exemplar in
that space. Dryad is a general-purpose distributed execution engine for coarse-
grain data-parallel applications. It combines sequential vertices with directed
communication channels to form an acyclic dataflow graph. Channels contain
full support for distributed systems and are implemented using TCP, files, or
shared memory pipes as appropriate. The Dryad graph is specified by an em-
bedded language (in C++) using a combination of operator overloading and
API calls. The main difference with CnC is that CnC can support cyclic graphs
with first-class tagged controller-controllee relationships and tagged data col-
lections. Also, the CnC implementations described in this paper are focused on
multicore rather than distributed systems.

20

7 Conclusions
This paper presents a programming model for parallel computation. A compu-
tation is written as a CnC graph, which is a high-level, declarative representation
of semantic constraints. This representation can serve as a bridge between do-
main and tuning experts, facilitating their communication by hiding information
that is not relevant to both parties. We prove deterministic execution of the
model. Deterministic execution simplifies program analysis and understanding,
and reduces the complexity of compiler optimization, testing, debugging, and
tuning for parallel architectures. We also present a set of experiments that
show several implementations of CnC with distinct base languages and distinct
runtime systems. The experiments confirm that the CnC model can express
and exploit a variety of types of parallelism at runtime. When compared to
the state of the art lower-level parallel programming models, our experiments
indicate that the CnC programming model implementations deliver competitive
raw performance and equal or better scalability.

Acknowledgments

We would like to thank our research colleagues at Intel, Rice University, and
UCLA for valuable discussions related to this work. We thank Aparna Chan-
dramowlishwaran and Richard Vuduc at Georgia Tech for providing some of the
benchmarks evaluated in this paper, and Philippe Charles at Rice for imple-
menting the CnC parser. This research was partially supported by the Center
for Domain- Specific Computing (CDSC) funded by the NSF Expedition in
Computing Award CCF-0926127 and by a sponsored research agreement be-
tween Intel and Rice University.

References

[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th International Conference on Parallel Architectures and Compilation
Techniques, October 2008.

[2] Zoran Budimlić, Michael Burke, Vincent Cavé, Kathleen Knobe, Geoff Lowney,
Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach,
and Sağnak Taşırlar. Cnc programming model (extended version). Technical
Report TR10-5, Rice University, February 2010.

[3] Zoran Budimlić, Aparna M. Chandramowlishwaran, Kathleen Knobe, Geoff N.
Lowney, Vivek Sarkar, and Leo Treggiari. Declarative aspects of memory man-
agement in the concurrent collections parallel programming model. In DAMP
’09: the workshop on Declarative Aspects of Multicore Programming, pages 47–
58. ACM, 2008.

[4] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous se-
quential processes. Information and Computation, 207(4):459–495, 2009.

[5] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and
Ramesh Menon. Programming in OpenMP. Academic Press, 2001.

[6] Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian Grothoff, Al-
lan Kielstra, Vivek Sarkar, and Christoph Von Praun. X10: An object-oriented

21

approach to non-uniform cluster computing. In Proceedings of OOPSLA’05, ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, pages 519–538, 2005.

[7] Intel Corporation. Intel(R) Threading Building Blocks reference manual. Docu-
ment Number 315415-002US, 2009.

[8] A.Chandramowlishwaran et al. Performance evaluation of Concurrent Collections
on high-performance multicore computing systems. In IPDPS ’10: International
Parallel and Distributed Processing Symposium (To Appear), April 2010.

[9] David Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

[10] Habanero multicore software research project. http://habanero.rice.edu.

[11] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: distributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev., 41(3):59–72, 2007.

[12] Ken Kennedy, Charles Koelbel, and Hans P. Zima. The rise and fall of High
Performance Fortran. In Proceedings of HOPL’07, Third ACM SIGPLAN History
of Programming Languages Conference, pages 1–22, 2007.

[13] Kathleen Knobe and Carl D. Offner. Tstreams: A model of parallel computation
(preliminary report). Technical Report HPL-2004-78, HP Labs, 2004.

[14] Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David
Holmes. Java Concurrency in Practice. Addison-Wesley Professional, 2005.

[15] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-Core
Processor Parallelism. O’Reilly Media, 2007.

[16] Jr. Robert L. Bocchino, Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. A type and effect system for Deterministic Parallel Java.
In Proceedings of OOPSLA’09, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 97–116, 2009.

[17] Frank Schlimbach. Distributed CnC for C++. In Second Annual Workshop on
Concurrent Collections. October 2010. Held in conjunction with LCPC 2010.

[18] Jeffrey Travis and Jim Kring. LabVIEW for Everyone: Graphical Programming
Made Easy and Fun. Prentice Hall, 2006. 3rd Edition.

22

