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Abstract. The computer industry is at a major inflection point in its
hardware roadmap due to the end of a decades-long trend of exponen-
tially increasing clock frequencies. Instead, future computer systems are
expected to be built using homogeneous and heterogeneous many-core
processors with 10’s to 100’s of cores per chip, and complex hardware
designs to address the challenges of concurrency, energy efficiency and
resiliency. Unlike previous generations of hardware evolution, this shift
towards many-core computing will have a profound impact on software.
These software challenges are further compounded by the need to enable
parallelism in workloads and application domains that traditionally did
not have to worry about multiprocessor parallelism in the past. A recent
trend in mainstream desktop systems is the use of graphics processor
units (GPUs) to obtain order-of-magnitude performance improvements
relative to general-purpose CPUs. Unfortunately, hybrid programming
models that support multithreaded execution on CPUs in parallel with
CUDA execution on GPUs prove to be too complex for use by mainstream
programmers and domain experts, especially when targeting platforms
with multiple CPU cores and multiple GPU devices.
In this paper, we extend past work on Intel’s Concurrent Collections
(CnC) programming model to address the hybrid programming challenge
using a model called CnC-CUDA. CnC is a declarative and implicitly par-
allel coordination language that supports flexible combinations of task
and data parallelism while retaining determinism. CnC computations are
built using steps that are related by data and control dependence edges,
which are represented by a CnC graph. The CnC-CUDA extensions in
this paper include the definition of multithreaded steps for execution on
GPUs, and automatic generation of data and control flow between CPU
steps and GPU steps. Experimental results show that this approach can
yield significant performance benefits with both GPU execution and hy-
brid CPU/GPU execution.

1 Introduction

The computer industry is at a major inflection point in its hardware roadmap due
to the end of a decades-long trend of exponentially increasing clock frequencies.
Instead, future computer systems are expected to be built using homogeneous
and heterogeneous many-core processors with 10’s to 100’s of cores per chip,
and complex hardware designs to address the challenges of concurrency, energy
efficiency and resiliency. Unlike previous generations of hardware evolution, this
shift towards many-core computing will have a profound impact on software.



These software challenges are further compounded by the need to enable
parallelism in mainstream workloads and application domains that have tradi-
tionally not had to worry about multiprocessor parallelism in the past. Despite
over four decades of research, there are few choices of high-level parallel program-
ming models available to domain experts who are not computer science experts.
Fortunately, this situation is starting to change. Systems like MapReduce [7] are
succeeding based on implicit parallelism, albeit with a restricted applicability.
Other systems like CUDA [20] and OpenCL [17] are partially there for GPU
accelerators, providing a restricted programming model to the user but also ex-
posing a fair amount of hardware details.

Intel’s Concurrent Collections1 (CnC) is a declarative and implicitly parallel
coordination language that supports flexible combinations of task and data par-
allelism while retaining determinism. CnC computations are built using steps that
are related by data and control dependence edges, which in turn are represented
by a CnC graph. CnC is provably deterministic [2]. While this restricts CnC’s
scope, it is more general than other deterministic programming models including
dataflow and stream-processing, and can incorporate static and dynamic forms
of task, data, loop, pipeline, and tree parallelism. However, all known implemen-
tations of CnC to date have been on homogeneous multicore SMP’s.

A recent trend in mainstream desktop systems is the use of general-purpose
graphics processor units (GPGPUs) to obtain order-of-magnitude performance
improvements. As an example, NVIDIA’s Compute Unified Device Architecture
(CUDA) has emerged as a popular hybrid programming model for CPUs and
GPGPUs [20]. While it can be fairly straightforward for mainstream programmers
to write the device code for specific kernels in CUDA, the CPU-GPU interactions
necessary for deploying a complete CUDA application can be complicated to
implement because of the necessary control flow for launching new kernels, data
flow for communicating inputs and outputs, and synchronization to ensure proper
coordination between the CPU and GPU. Further, debugging the execution of
a CUDA program across a multicore SMP and a GPU is especially onerous
because of the loose coupling via the device interface and the lack of integrated
debugging tools. For these reasons, we believe that writing and deploying full
CUDA applications is beyond the scope of mainstream domain experts, from the
viewpoints of both programmability and productivity.

In this paper, we extend past work on Intel’s Concurrent Collections (CnC)
programming model to address the hybrid programming challenge using a model
called CnC-CUDA. The CnC-CUDA extensions in this paper include the defini-
tion of multithreaded steps for execution on GPUs, and automatic generation of
data and control flow between CPU steps and GPU steps. Further, given the
widespread use of managed-runtime execution environments, such as the Java
Virtual Machine (JVM) and .Net platforms, we have developed a Java-based
implementation of CnC which provides the foundation for the CnC-CUDA imple-
mentation. In this way, the programmer has the choice of writing CPU Steps in
Java or C (since C code can be invoked from Java) and GPU steps in CUDA,
and can leave all the remaining details of creating and managing parallel tasks

1 An earlier version of CnC was called TStreams [18].



and data transfers to the CnC-CUDA framework. Experimental results show that
this approach can yield significant performance benefits with both GPU execution
and hybrid CPU/GPU execution. To the best of our knowledge, this is the first
experience with mapping the CnC model on to hybrid systems with accelerators
(GPUs).

The rest of the paper is organized as follows. Section 2 briefly summarizes
the CnC and CUDA programming models. Section 3 introduces the CnC-CUDA
Programming Interface and Implementation. Section 4 presents preliminary ex-
perimental results for CnC-CUDA. Related work is discussed in Section 5, and
our conclusions are contained in Section 6.

2 Background

2.1 Concurrent Collections Programming (CnC) Model

In this section, we give a brief summary of the CnC model, as described in [3]. As
in dataflow and stream-processing languages, a CnC program is a graph of serial
kernels, communicating with one another. The three main constructs in CnC

are step collections, data item collections, and control tag collections. Statically,
each of these constructs is a collection representing a set of dynamic instances.
Step instances are the unit of distribution and scheduling. Item instances are the
unit of synchronization and communication. Control tag instances are the unit
of control.

The program is represented as a graph. In textual form, the graph is denoted
using () to suggest circles for computation steps, [] to suggest boxes for data
items and <> to suggest triangles for control tags. The edges in the graph specify
the partial ordering constraints required by the semantics. One type of ordering
constraint arises from a data dependence. This relationship occurs when an in-
stance of a step, say (F1), produces an instance of an item, say [X], which is
later consumed by an instance of another step, say (F2). Clearly the producing
step instance must occur before the consuming step instance. Another type of
ordering constraint arises from a control dependence, where one computation step
determines if another computation step will execute. In that case, the controller
step puts a control tag in a tag collection, which in turn prescribes the controllee
step. The execution order of step instances is constrained only by their dynamic
data and control dependences.

Control, data, and step instances are all identified by a unique tag within each
collection. In CnC, tags are arbitrary values that support an equality test and
hash function. Each type of collection uses tags as follows:

– Putting a tag into a control collection will cause the corresponding steps (in
the prescribed step collections) to eventually execute. A control collection C

with tag i is denoted 〈C : i〉.
– Each step instance is a computation that takes a single tag (originating from

the prescribing control collection) as an argument. The step instance of col-
lection (foo) at tag i is denoted (foo : i).

– A data collection is an associative container indexed by tags. The entry for a
tag i, once written, cannot be overwritten (dynamic single assignment). The



immutability of entries within a data collection is necessary for determinism.
An instance in data collection x with tag “i, j” is denoted [x : i, j].

A CnC specification can optionally include tag functions [13] and use them
to specify the mapping between a step instance and the data instances that it
consumes or produces. A tag function can be the identity function, or can define
nearest neighbor computations, a parent/child in a tree, neighbors in a graph, or
any other relationship useful in the application.

2.2 Habanero-Java implementation of CnC

Habanero-Java (HJ) is a programming language being developed in the Habanero
Multicore Software Research project at Rice University [1]. We chose it for the
baseline implementation of the CnC runtime system because it includes constructs
that serve as a convenient target for implementing CnC primitives. We were
pleasantly surprised to see how straightforward it has been to map CnC primitives
to HJ, as summarized in Table 1.

CnC construct Translation to HJ

Tag Java String object or point object
Prescription async or delayed async

Item Collection java.util.concurrent.ConcurrentHashMap

put() on Item Collection Nonblocking put() on ConcurrentHashMap

get() on Item Collection Blocking or nonblocking get() on ConcurrentHashMap

Table 1: Summary of mapping from CnC primitives to HJ primitives

Additional details of the mapping from CnC to HJ are summarized below.

Tags We allow tags to be instances of String or point value types. A point in HJ

is an integer tuple that can be declared with an unspecified rank. A multidimen-
sional tag is implemented by a multidimensional point.

Prescriptions We have optimized away all prescription tags in the HJ imple-
mentation. When a step needs to put a prescription tag in the tag collection, we
perform a normal async or a delayed async for each step prescribed by that tag.
The normal async statement, async 〈stmt〉 causes the parent activity to create
a new child activity to execute 〈stmt〉. Execution of the async statement returns
immediately i.e., the parent activity can proceed immediately to its next state-
ment. The delayed async statement, async (〈cond〉) 〈stmt〉, is similar to a normal
async except that execution of 〈stmt〉 is guaranteed to be delayed until after the
boolean condition, 〈cond〉, evaluates to true.



Item Collections We use the java.util.concurrent.ConcurrentHashMap

class to implement item collections. Our HJ implementation of item collections
supports the following operations:

– new ItemCollection(String name): create and return a new item collec-
tion. The string parameter, name, is used only for diagnostic purposes.

– C.put(point p, Object O): insert item O with tag p into collection C.
Throw an exception if C already contains an item with tag p.

– C.awaitAndGet(point p): return item in collection C with tag p. If necessary,
the caller blocks until item becomes available.

– C.containsTag(point p): return true if collection C contains an item with
tag p, false otherwise.

– C.get(point p): return item in collection C with tag p if present; return
null otherwise. The HJ implementation of CnC ensures that this operation
is only performed when tag p is present i.e., when C.containsTag(point p)

= true. Unlike awaitAndGet(), a get() operation is guaranteed to always
be nonblocking.

Put and Get Operations A CnC put operation is directly translated to a
put operation on an HJ item collection, but implementing get operations can
be more complicated. A naive approach is to translate a CnC get operation to
an awaitAndGet operation on an HJ item collection. However, this approach
does not scale well when there are a large number of steps blocked on get op-
erations, since each blocked activity in the current HJ work-sharing scheduler
gets bound to a separate Java thread. A Java thread has a larger memory foot-
print than a newly created async operation. Typically, a single heavyweight Java
thread executes multiple lightweight async’s; however, when an async blocks on
an awaitAndGet operation it also blocks the Java thread, thereby causing addi-
tional Java threads to be allocated in the thread pool [9]. In some scenarios, this
can result in thousands of Java threads getting created and then immediately
blocking on awaitAndGet operations.

This observation lead to some interesting compiler optimization opportunities
of get operations using delayed asyncs. Consider a CnC step S that performs two
get operations followed by a put operation as follows (where Tx, Ty, Tz are
distinct tags):

S: { x := C.get(Tx); y := C.get(Ty); z := F (x, y); C.put(Tz, z); }

Instead of implementing a prescription of step S with tag TS as a normal async
like “async S(TS)”, a compiler can implement it using a delayed async of the
form “async when(C.containsTag(Tx) && C.containsTag(Ty)) S(TS)”. With
this boolean condition, we are guaranteed that execution of the step will not
begin until items with tags Tx and Ty are available in collection C.

2.3 GPU Architecture and the CUDA Programming Model

The NVIDIA CUDA programming model is an interface designed to allow pro-
grammers access to the extremely parallel hardware of programmable Graphics



Processing Units (GPUs). With an architecture originally intended for graphics
rendering, the GPU’s strengths lie with highly parallel applications, streaming
data, and low inter-thread communication and synchronization. For instance, the
GPU used in our performance evaluation, an NVIDIA GTX 480, has 480 pro-
cessing cores. From this we can see that GPUs’ architecture make them easily
applicable to scientific and mathematical computing problems.

CUDA is an extension on the C/C++ programming language, with the CUDA
runtime library providing a collection of device memory management, host-device
stream synchronization, and execution control functions (among others). The
general flow of a CUDA program consists of the following steps [23], where all
allocation and copying of device memory is controlled explicitly or implicitly by
the host using the CUDA runtime library:

1. Copy data from main memory to GPU memory
2. CPU instructs GPU to start a kernel
3. GPU executes kernel in parallel and accesses GPU memory
4. Copy the results from GPU memory to main memory

CUDA is a data parallel SIMT architecture, in which the same programmer-
defined kernel executions on all launched threads. These threads are launched in
batches of blocks and grids, where blocks are collections of threads and grids are
collections of blocks.

3 Programming Interface and Implementation

We have implemented several extensions to the CnC programming model in order
to support CUDA steps, which we outline in this section.

3.1 Graph File

Some of the features added require using new syntax in the graph file. First, we
introduce a new syntax for CUDA steps. CUDA steps are declared with braces,
{}, instead of parentheses, (), for CPU steps. The graph file can now define both
CPU and GPU steps.

Second, we have added support for the programmer to specify constants in
the graph file using the following notation:

|const name const value|;

where const value is of an integer type. This definition generates constant values
to be used both in HJ and CUDA. These constants are used for specifying the
exact type of item and tag collections that are passed to CUDA, ensuring the
copying of the correct amount of data from Java arrays onto the CUDA device.
For example, if each CUDA thread takes 1000 integers, this item collection would
be declared as:

[int items[1000]];, or |size 1000|; [int items[size]];

Using the second method allows the CnC programmer access to the constant
value inside the computation step and the program’s entry point, ensuring no
stale values for those constants caused by multiple definitions.



3.2 Item Collections

Access functions for all item collections are automatically generated from the
CnC parser in order to enforce strict typing rules on items and tags. Item col-
lections maintain the standard interface for adding or retrieving items, the Put
and Get methods for individual items. With this approach, each of the items is
put into a ConcurrentHashMap, similarly to what is done in CnC-HJ. Once a
threshold number of tags have been put, the items corresponding to those tags
are collected from the ConcurrentHashMap, converted to a C friendly format
(i.e., java.lang.Integer→int) and passed to CUDA. While this approach correctly
handles individual Put and Get operations, it also results in a significant perfor-
mance overhead.

In CUDA-CnC we introduce a much more efficient alternative. The PutRe-
gion/GetRegion primitives allow the programmer to put a (potentially multidi-
mensional) region of integers associated with a similarly dimensioned array of
items. This approach eliminates putting and then extracting individual items
since the array is directly passed to the kernel. Currently we only support ar-
rays of primitive types (int[], float[], e.t.c.), which we believe to be a reasonable
limitation as the CUDA kernels are usually coded using primitive types anyway.
Optimizing the individual item puts and gets, adding support for getting indi-
vidual items from region puts, and implementing PutRegion and GetRegion for
arrays of more complex structures (i.e., user defined classes) are beyond the scope
of this paper and a subject of future research.

Currently, if an error occurs in copying an item collection (i.e., insufficient
device memory) no error is reported to the user. This is simple to implement
as the library written for CnC-CUDA host-device memory transfer returns error
values, and will certainly be in future work in CnC-CUDA.

3.3 Tag Collection - PutRegion and GetRegion

Tag collections are automatically generated using type definitions in the graph
file. Our preliminary implementation only supports integer tags, which can be
easily extended to any type that can be hashed, as in traditional CnC.

As described earlier, tag collections control the execution and synchronization
of computation steps. Synchronization between computation steps using tag col-
lections is a different matter in CUDA. First, a pthread mutex is used to indicate
that the device is currently in use by a computation step and inaccessible by any
new computation steps for non-Fermi architecture GPUs which do not support
concurrent kernel execution. Second, we limit the number of CUDA computation
steps that can be prescribed by another CUDA computation step to 1, which
considerably simplifies the complexity of synchronizing multiple CUDA compu-
tation steps. If a CUDA step prescribes another CUDA step (as determined by
analyzing the CnC graph file), the second step is invoked immediately follow-
ing the first without returning to HJ. No limitation is placed on a CUDA step
prescribing multiple HJ steps. Last, synchronization between host and device
computation steps is used by a call to a CUDA tag collection’s Wait() method.



This call blocks until all launched CUDA kernels have returned and their output
has been placed in host memory.

Tag Collections also implement the PutRegion operation, which places a re-
gion of integer tags into the tag collection. PutRegion immediately launches a
CUDA kernel for all tags in the range once the required items are available. On
individual tag Puts, the tag collection waits for a threshold number of tags to
be put, and then launches a CUDA kernel with those tags and their associated
items. We have currently empirically set this threshold to 8192 tags. Once all
tags have been put into a GPU tag collection, the programmer has to issue a call
to that tag collection’s Wait() function to be certain that all CUDA threads have
completed as the transferring of data to and from device memory and launching
of CUDA kernels is handled by a separate CPU thread.

For more advanced CUDA programmers we introduce the option of defining
a two dimensional tag:

<int tag:two region>

This offers the opportunity of placing a tag with 2 regions on the graph. Those
two regions will be interpreted as number of blocks per grid and threads per
block to be used in a kernel launch. In addition, one can specify the number of
desired threads in a block by compiling the graph file with the flag: -t <number
of threads>.

We also support the item collection property One-For-All (OFA), which passes
the same data to each thread on a device. This property follows the format:

[int item:ofa]

where int can be any supported data type. This can result in both considerable
saving in device and host memory (less memory allocated to copy from and to)
as well as better performance with less time spent copying data to the device.

3.4 CUDA Kernel

The advantage of using CnC CUDA is that the user need not worry about the
allocating and copying of data, but just about writing the actual CUDA kernel.
The translator is the one responsible for generating stub codes that will allocate
memory and copy the data structures to the device before a step is executed as
well as free the device memory after these finish. During the execution of a kernel,
no puts or get are done on GPUs. The actual step code is written as a CUDA
device function by the CnC programmer in a file named ”XXXXXKernel.cu”

where ’XXXXX’ is the CUDA step name as declared in the graph file. The step
function needs to be defined as a device function because the global entry
point to the device is auto-generated by the translator to protect against un-
wanted threads entering the programmer-defined kernel (i.e. 513 tags are put, but
2x512 threads are launched. The auto-generated global function will ensure
the upper 511 threads of the second block do not enter the programmer-defined
kernel). Also, CUDA kernels are limited to putting a single item on each output
item collection. This limitation is a result of CUDA requiring preallocation of all
device memory before kernel launch. Future work will allow the programmer to
specify the number of items output from a kernel.



3.5 Implementation Details

The CnC-CUDA execution model requires a Java-to-native code interface. The
approach outlined below builds on our past experience with the JCUDA sys-
tem [23].

Java provides the native keyword which is used to define functions that are
implemented in native code. Our implementation creates a libJVMToC.so library
which contains CUDA and C code needed to communicate the data to and from
the device and execute the kernel. This library encapsulates the C and CUDA
code auto-generated by the translator and is generated by the compiler. In CnC-
CUDA, all of the complexity of inter-language function-calls and device memory
management is hidden from the CnC programmer and auto-generated at compile
time, allowing them to focus on developing and implementing the algorithms in
their application.

Habanero Java also offers the extern keyword — similar to native in Java —
which greatly simplifies programming with native code. Compiling an HJ class
with extern functions generates C stubs which will be included in the file with
the native function implementation, named ClassName FunctionName.

The C and CUDA code that are generated by our CnC translator are respon-
sible for creating a data collection for every data structure declared in the graph
file, copying the said data structure to the GPU before launching the kernel and
from the device back to the CPU afterwards, and actual launching of the CUDA
computation step(s). The CnC graph is analyzed to determine which item and
tag collections are only accessed from the device (i.e., Put from one CUDA step
and Get from another), and this analysis is used to remove extraneous device
memory copies from the generated code.

4 Preliminary Experimental Results

4.1 Experimental Setup

In order to compare the performance of CnC-CUDA to CnC-HJ (available at
[6]) and other programming models and languages we used three benchmarks
from the Java Grande Forum (JGF) benchmark suite [15], as well as the Heart
Wall Tracking program from the Rodinia benchmark suite [5]. The three bench-
marks from the JGF suite are Fourier coefficient analysis (Series), successive over-
relaxation (SOR), and IDEA encryption (Crypt). Each was run on varying data
sizes using CnC-CUDA, CnC-HJ, Serial C, hand-coded CUDA, and the original
single-threaded JGF Java benchmark. Additionally, the Crypt benchmark was
run using CnC-CUDA and CnC-HJ computation steps running in parallel. The
timing of each benchmark was started just before the first set of tag puts were
performed to launch the CnC graph or the function call to launch the actual
computation for non-CnC benchmarks. Timing was stopped when all CnC steps
completed (as detected by the HJ finish construct) or the core function com-
pleted. For GPU execution, this included the overhead of copying data to and
from device memory.

For these evaluations, we used an NVIDIA GTX 480 GPU. The GTX 480
has 480 processing cores and 1.6 GB of memory. The CPU host of this GPU



is a AMD Phenom 9850 Quad-Core Processor with a 1.25 GHz clock, 512 KB
cache, and 8 GB of memory. The installed software includes a Java HotSpot 64-
bit virtual machine from version 1.6.0 20 of the Java Development Kit (JDK), a
GNU C compiler v. 4.1.2, and version 3.1 of the NVIDIA CUDA Toolkit.

There are a few limitations in the current CnC-CUDA implementation which
will need to be addressed in future work. First, the current implementation limits
tags to only be integers. Second, both parent and CUDA steps are assumed to
always have the same block/grid structure; giving the CnC programmer the abil-
ity to change the number of threads used across parent-child CUDA computation
steps could further increase the flexibility of our CnC-CUDA implementation.

4.2 Evaluation and Analysis

Tables 2, 3, and 4 display the average execution times across ten runs of
the respective benchmarks in different programming models or languages. In the
CnC versions (HJ or CUDA), the CnC Parser was used to auto-generate all the
glue code, leaving the programmer to only provide the CnC step code in CUDA
or HJ and the code for launching the CnC graph in the main HJ program. The
CnC-CUDA measurements on the GPU were compared to CnC-HJ runs of the
same benchmarks on the CPU and the results listed in the Speedup column
of each table. Each CUDA kernel launch was performed with a constant 256
threads per block, with the grid size determined by the iteration size2. Each
CnC-HJ execution was performed using 16 worker threads. (Over-provisioning
the number of worker threads per CPU degraded performance for the benchmarks
and hardware studied in this paper.)

No special CUDA memory (e.g., texture, shared, constant) was used in the
execution of these benchmarks.

These results demonstrate that performance potential of GPUs can be made
accessible to non-expert programmers through CnC-CUDA. Without any knowl-
edge of CUDA’s memory or threading model, a CnC-CUDA programmer can
go from working with CnC-HJ to exploiting the computational power of a GPU
using CnC-CUDA quickly and easily, achieving a magnitude of performance bet-
ter than a quad-core CPU. For example, building the SOR benchmark from a
CnC-HJ version required 3 hours of time to port the step code to CUDA, and re-
sulted in a 35× speedup. Auto-generation of CUDA code using techniques such as
those reported in [19] could result in a further productivity boost for non-expert
programmers.

We observe that the speedup of CUDA over HJ increases as the size of the
data set increases, with the maximum average speedup (406.00×) observed for the
embarrassingly parallel Series benchmark at its largest data size. The minimum
average speedup of 1.77× was observed for SOR executed with its smallest data
size. While not observed in these results, it is of course possible for a GPU version
of an application to run slower than a CPU version, when the relative overheads
of host-device data transfers, CUDA initialization, or of control flow divergence
lead to performance degradation on the GPU.

2 An evaluation of alternate grid/block sizes is a subject for future work.



Crypt GPU Performance CPU Performance
Data Size (bytes) CnC-CUDA CUDA CnC-HJ Serial C Serial Java Speedup

(16 cores)
50,000,000 (JGF Size C) 0.886 0.161 2.067 7.367 2.92 2.33

75,000,000 1.208 0.253 3.239 11.033 4.387 2.68
100,000,000 1.488 0.341 4.460 14.678 5.818 3.00
150,000,000 2.311 0.550 6.903 22.039 8.716 2.99

Table 2: Execution times in seconds of JGF Crypt benchmark implemented in
several programming models, and Speedup of CnC-CUDA relative to CnC-HJ.

Series GPU Performance CPU Performance
Data Size CnC-CUDA CUDA CnC-HJ (16 cores) Serial C Serial Java Speedup

10,000 (JGF Size A) 0.332 0.0095 3.587 3.157 6.777 10.80
100,000 (JGF Size B) 0.441 0.116 36.588 31.832 69.074 60.78

1,000,000 (JGF Size C) 1.411 1.279 572.86 321.553 N/A 406.00

Table 3: Execution times in seconds of JGF Series benchmark implemented in
several programming models, and Speedup of CnC-CUDA relative to CnC-HJ.

SOR GPU Performance CPU Performance
Data Size (Dim) CnC-CUDA CUDA CnC-HJ (16 cores) Serial C Serial Java Speedup

1,000 (JGF Size A) 0.403 0.021 0.714 1.691 1.247 1.77
1,500 (JGF Size B) 0.448 0.045 3.015 3.811 3.872 6.73
2,000 (JGF Size C) 0.498 0.078 5.400 6.769 6.891 10.84

3.000 0.602 0.186 12.079 15.309 15.677 20.06
4,000 0.795 0.475 21.512 27.262 27.658 27.06
5,000 0.952 0.813 33.547 42.600 43.129 35.24

Table 4: Execution times in seconds of JGF SOR benchmark implemented in
several programming models, and Speedup of CnC-CUDA relative to CnC-HJ.

Crypt (150,000,000 bytes) Hybrid Performance
Percent of Data on GPU Average Slowest Fastest Speedup (Relative to CnC-CUDA)

10 3.042 3.806 2.493 0.76
20 3.066 3.765 2.727 0.75
30 2.720 3.048 2.223 0.85
40 2.289 2.750 1.878 1.01
50 2.139 2.397 1.973 1.08
60 2.035 2.242 1.538 1.14
70 2.076 2.799 1.755 1.11
80 2.189 2.511 1.883 1.06
90 2.143 2.344 1.968 1.08

Table 5: Execution times in seconds, and Speedup of a hybrid CnC-CUDA/HJ
version of Crypt against only CnC-CUDA.

Heart Wall Tracking GPU CPU
Data Size CnC-CUDA CUDA Serial Open MP CnC-HJ

(# of frames) 16 cores 16 cores
1 0.427 0.985 0.005 0.005 0.246

104 4.4842 3.6133 156.977 13.863 11.058

Table 6: Execution times in seconds on GPU - CnC-CUDA and hand-coded
(Rodinia) CUDA versions - and CPU - Serial, OpenMP on 16 cores and CnC-HJ
on 16 cores - of the Heart Wall Tracking benchmark.



The results in Table 5 shows the potential for performance improvement us-
ing hybrid CPU-GPU execution in the CnC model. For consistency, the hybrid
CUDA/HJ tests were performed using 256 threads per block for GPU execution.
These results were obtained by evaluating different load distributions between
the CPU and GPU for the Crypt benchmark with its largest size, for which the
average speedup of the GPU over the CPU in Table 2 was 1.82×. In Table 5, we
see that an additional 1.14× speedup can be obtained over the pure CnC-CUDA
version by a hybrid execution in which 60% of the load is placed on the GPU and
40% of the load on the CPU. An interesting topic for future research is to extend
the CnC runtime to perform this load distribution adaptively and automatically,
allowing for a single CnC-CUDA graph to dynamically and efficiently handle a
wide range of data set sizes.

Finally, Table 6 shows the execution times in seconds for the CnC-CUDA and
hand-coded CUDA versions of the Heart Wall Tracking benchmark (the hand-
coded version was obtained from the Rodinia benchmark set [5]). When compar-
ing the fastest times, we see that both versions have comparable performance
when processing a single frame, but the CnC-CUDA version is 1.25× slower than
the hand-coded version for 104 frames thereby reflecting the extra coordination
overhead in CnC involved in sequencing the computation across frames.

5 Related Work

We discuss related work according to their attributes in three dimensions: Declar-
ative, Deterministic and Efficient. A number of lower-level programming models
in use today — e.g., Intel TBB [22], .Net Task Parallel Library, OpenMP [4],
Nvidia CUDA, Java Concurrency [21] — are non-declarative, non-deterministic,
and efficient3. Deterministic Parallel Java [10] is an interesting variant of Java;
though imperative (non-declarative), it includes a subset that is provably deter-
ministic, as well as constructs that explicitly indicate when determinism cannot
be guaranteed for certain code regions.

Higher-level languages such as High Performance Fortran (HPF) [16], X10
[8], and Linda [14] contain hybrid combinations of imperative and declarative
programming in different ways. HPF combines a declarative language for data
distribution and data parallelism with imperative (procedural) statements, X10
contains a functional subset that supports declarative parallelism, and Linda is
a coordination language in which a thread’s interactions with the tuple space is
declarative. Linda was a major influence on the CnC design, but CnC also differs
from Linda in many ways. For example, an in() operation in Linda atomically
removes the tuple from the tuple space, but a CnC get() operation does not remove
the item from the collection. This is a key reason why Linda programs can be
non-deterministic in general, and why CnC programs are provably deterministic.
Further, there is no separation between tags and values in a Linda tuple; instead,
the choice of tag is implicit in the use of wildcards. In CnC, there is a separation
between tags and values, and control tags are first class constructs like data items.

3 We call a programming model efficient if there are known implementations that de-
liver competitive performance for a reasonably broad set of programs.



Both streaming and dataflow languages have also had major influence on the
CnC design. The CnC semantic model is based on dataflow in that steps are func-
tional and execution can proceed whenever data is ready, without unnecessary
serialization. However, CnC differs from dataflow in some key ways. The use of
control tags elevates control to a first-class construct in CnC. In addition, item
collections allow more general indexing (as in a tuple space) compared to dataflow
arrays (I-structures). CnC is like streaming in that the internals of a step are not
visible from the graph that describes their connectivity, thereby establishing an
isolation among steps. A producer step in a streaming model need not know
its consumers; it just needs to know which buffers (collections) to perform read
and write operations on. However, CnC differs from streaming in that put and
get operations need not be performed in FIFO order, and (as mentioned above)
control is a first-class construct in CnC. We observe that CnC’s dynamic put/get
operations on data and control collections is a general model that can be used to
express many kinds of applications (such as Cholesky factorization) that would
not be considered to be dataflow or streaming applications.

With respect to our experimental results, we are not claiming that the GPU
by itself offers a certain speedup [12], rather that the speedup we get is from
taking advantage of the high amount of data parallelism in our test applications,
having 256-512 GPU threads run in parallel instead of 16-32 on a CPU, and an
easy to use programming model that hides the use of resources from the user
while offering lower execution times. The overhead of copying data from and
to the device is hidden by a much larger number of tasks run in parallel. The
innovation we offer is an easy way for a programmer to specify the algorithm while
taking advantage of the available resources. Like Oregami [11], CnC is based on
a graph description of the algorithm, however in Oregami the programmer needs
to design the program as a “set of parallel processes that communicate through
explicit message passing. The identity of all of the processes are known at compile
time [...]”. Such restrictions are not applicable to CnC-CUDA.

In summary, CnC has benefited from influences in past work, but we are not
aware of any other parallel programming model that shares CnC’s fundamental
properties as a coordination language, a declarative language, a deterministic
language, and a language amenable to efficient implementation. To the best of
our knowledge, this is the first experience with mapping the CnC model on to
hybrid systems with accelerators (GPUs).

6 Conclusions and Future Work

In this paper, we extended past work on Intel’s Concurrent Collections (CnC)
programming model to address the hybrid programming challenge using a model
called CnC-CUDA. The CnC-CUDA extensions in this paper include the defini-
tion of multithreaded steps for execution on GPUs, and automatic generation
of data and control flow between CPU steps and GPU steps. Further, given the
widespread use of managed-runtime execution environments, such as the Java
Virtual Machine (JVM) and .Net platforms, we have developed a Java-based
implementation of CnC which provides the foundation for the CnC-CUDA imple-
mentation. In this way, the programmer has the choice of writing CPU Steps in



Java or C (since C code can be invoked form Java) and GPU steps in CUDA, and
can leave all the remaining details of creating and managing parallel tasks and
data transfers to the CnC-CUDA framework. The CnC-CUDA extensions in this
paper include the definition of multithreaded steps for execution on GPUs, and
automatic generation of data and control flow between CPU steps and GPU steps.
Experimental results show that this approach can yield significant performance
benefits with both GPU execution and hybrid CPU/GPU execution.

There are multiple opportunities for future research. We would like to sup-
port richer (non-primitive) element data types in the PutRegion and GetRegion
primitives. In addition, we would like to extend the types accepted for tags to
more than integers. There is a large amount of overhead incurred by transfers
to and from device memory, and further experimentation with transfer patterns
may yield better performance. Finally, our longer-term plan is to extend the
CnC-CUDA implementation to serve as a unified runtime for heterogeneous com-
binations of CPUs, GPUs, and FPGAs in the CDSC project.
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Ryan Newton, Jens Palsberg, David Peixotto, Vivek Sarkar, Frank Schlimbach,
and Sağnak Taşırlar. The CnC Programming Model. SIAM PP10, Special Issue
on Scientific Programming, 2010.

3. Michael G. Burke, Kathleen Knobe, Ryan Newton, and Vivek Sarkar. The Concur-
rent Collections Programming Model. David Padua (Ed.), Encyclopedia of Parallel
Computing, Springer New York, to be published 2011.

4. Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, and
Ramesh Menon. Programming in OpenMP. Academic Press, 2001.

5. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, Sang-Ha Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In IEEE International
Symposium on Workload Characterization, October 2009.

6. Concurrent Collections in Habanero-Java (HJ). http://habanero.rice.edu/cnc-
download, 2010.

7. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, 2008.

8. P.Charles et al. X10: An object-oriented approach to non-uniform cluster comput-
ing. In Proceedings of OOPSLA’05, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 519–538, 2005.



9. R.Barik et al. Experiences with an smp implementation for x10 based on the
java concurrency utilities. In Workshop on Programming Models for Ubiquitous
Parallelism (PMUP), held in conjunction with PACT 2006, September 2006.

10. Robert L. Bocchino et al. A type and effect system for Deterministic Parallel Java.
In Proceedings of OOPSLA’09, ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pages 97–116, 2009.

11. V. M. Lo et al. Oregami: Tools for mapping parallel computations to parallel
architectures. IJPP: International Journal of Parallel Programming, 20(3):237–
270, June 1991.

12. Victor W Lee et al. Debunking the 100x gpu vs. cpu myth: An evaluation of
throughput computing on cpu and gpu. ISCA 2010: ACM IEEE International
Symposium on Computer Architecture, June 2010.
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