
Data-Driven Tasks and their Implementation
Sağnak Taşırlar, Vivek Sarkar

Department of Computer Science
Rice University

6100 Main Street, Houston TX 77025
{sagnak,vsarkar}@rice.edu

Abstract—Dynamic task parallelism has been identified as
a prerequisite for improving productivity and performance on
future many-core processors. In dynamic task parallelism, com-
putations are created dynamically and the runtime scheduler
is responsible for scheduling the computations across processor
cores. The sets of task graphs that can be supported by a dynamic
scheduler depend on the underlying task primitives in the parallel
programming model, with various classes of fork-join structures
used most often in practice. However, many researchers have
advocated the benefits of more general task graph structures,
and have shown that the use of these task graph structures can
lead to improved performance.

In this paper, we propose an extension to task parallelism
called Data-Driven Tasks (DDTs) that can be used to create
arbitrary task graph structures. Unlike a normal task that starts
execution upon creation, a DDT specifies its input constraints
in an await clause containing a list of Data-Driven Futures
(DDFs). A DDF can be viewed as a container with a full/empty
state that obeys a dynamic single-assignment rule. The runtime
scheduler will then ensure that a task is only scheduled when all
the DDFs in its await clause become available (full). There is
no constraint on which task performs a put() operation on a
DDF.

We describe five scheduling algorithms (Coarse-Grain Block-
ing, Fine-Grain Blocking, Delayed Async, Rollback & Replay,
Data-Driven) that can be used to implement DDTs, and include
performance evaluations of these five algorithms on a variety
of benchmark programs and multi-core platforms. Our results
show that the Data-Driven scheduler is the best approach
for implementing DDTs, both from the viewpoints of memory
efficiency and scalable parallelism.

I. INTRODUCTION

The computer industry is at a major inflection point due to
the end of a decades-long trend of exponentially increasing
clock frequencies. It is widely agreed that parallelism in
the form of multiple power-efficient cores must be exploited
to compensate for this lack of frequency scaling. Unlike
previous generations of hardware evolution, this shift towards
homogeneous and heterogeneous many-core computing will
have a profound impact on software. The three programming
languages developed as part of the DARPA HPCS program
(Chapel [1], Fortress [2], X10 [3]) all identified dynamic task
parallelism as a prerequisite for improving productivity and
performance on future many-core processors. Dynamic task
parallelism has also been introduced as extensions to existing
languages such as the OpenMP 3.0 [4] and Cilk [5] extensions
to C, and the Java Concurrency [6] and Habanero Java (HJ) [7]
extensions to Java.

In dynamic task parallelism, computations are created
dynamically and the runtime scheduler is responsible for
scheduling the computations across processor cores. Dynamic
scheduling is expected to be even more important in future
processors, as power management considerations lead to in-
creases in non-uniformity and asymmetry across cores. The
sets of task graphs that can be supported by a dynamic
scheduler depend on the underlying task primitives in the
parallel programming model e.g., the task graphs created by
Cilk’s spawn and sync primitives are restricted to fully-strict
computation graphs [8], whereas the task graphs created by
async and finish constructs in X10 and HJ belong to the
set of terminally-strict computation graphs [9]. A number of
researchers have advocated the benefits of more general task
graph structures [10], [11], [12], and shown that the use of
these task graph structures can lead to improved performance.

In this paper, we propose an extension to task parallelism
called Data-Driven Tasks (DDTs) that can be used to create
arbitrary task graph structures. Unlike a normal task that
starts execution upon creation, a DDT specifies its input
constraints in an await clause containing a list of Data-
Driven Futures (DDFs). A DDF can be viewed as a container
with a full/empty state. A put() operation changes the state
of a DDF from empty to full, and at most one put() operation
can be performed on a DDF because of the dynamic single-
assignment rule. The runtime scheduler will then ensure that
a task is only scheduled when all the DDFs in its await
clause become available (full). It is illegal to perform a get()
operation on an empty DDF; instead, a task can safely perform
a get() on any DDF in its await clause. There is no
constraint on which task may perform a put() operation on
a DDF. A finish construct can be used to await completion
of a set of async task instances as usual, thereby allowing
DDTs to be used freely in conjunction with regular async-
finish task parallelism.

The main contributions of this paper are as follows:
• Definition of Data-Driven Tasks (DDTs), a new extension

to task parallelism.
• Specification of five scheduling algorithms (Coarse-Grain

Blocking, Fine-Grain Blocking, Delayed Async, Rollback
& Replay, Data-Driven) that can be used to implement
DDTs.

• A performance evaluation of these five algorithms on a
variety of benchmark programs and multicore platforms

that demonstrate that the Data-Driven scheduler is indeed
the best approach for implementing DDTs.

While the DDT construct is inspired by past work on dataflow
programming models, we are unaware of any past work
that integrates dataflow principles with task parallelism as
proposed in DDTs or that evaluates the scheduling algorithms
considered in our paper.

The rest of the paper is organized as follows. In section II,
we introduce DDTs. We discuss a code sample in section III.
Section IV describes a Data-Driven runtime scheduler for
DDTs. We discuss other scheduling policies from previous
work in Section V. Empirical results for our implementation
are presented in Section VI. Related work is covered in
section VII and, finally Section VIII contains our conclusions.
A more detailed version of this work is available in this
Master’s thesis [13].

II. OVERVIEW

A Data-Driven Task (DDT) is a task that synchronizes
with other tasks through synchronization constructs named
Data-Driven Futures (DDFs). A DDF can be viewed a con-
tainer with a full/empty state that obeys the dynamic single-
assignment rule. Therefore, all data accesses performed via
DDFs are guaranteed to be race-free and deterministic. In this
paper, we define DDTs in the context of Habanero Java but
they could just as easily be integrated in other task-parallel
languages such as OpenMP 3.0 [4] and Cilk [5].

Our proposed language interface for DDFs is as follows:
Read: get() is a non-blocking interface for reading the

value of a DDF. If the DDF has already been provided a
value via a put() operation, a get() delivers that value.
However, if the producer task has not yet performed its put()
at the time of the get() invocation, the get() throws an
exception.

Write: put() is the interface for writing the value of
a DDF. Since a DDF is a reference to a single-assignment
value, only one producer may set its value and any successive
attempt at setting the value results in an exception.

Creation: new() is the interface for creating a DDF
object. The producer and consumer tasks use DDF references
to perform put() and get()operations.

Registration: the await clause associates a DDT with
a set of input DDFs. The syntax we proposed for this regis-
tration is as follows: async await (DDF a, DDF b, · · ·)
〈Stmt〉.

The sample code snippet in Figure 1 shows the creation of
five tasks and the specification of their synchronization pattern
through DDFs. Initially, two DDFs are created as containers
for data items left and right. Then a finish scope
is created with five async tasks as in Habanero Java or
X10. Task3, Task4 and Task5 use await clauses to specify
their dependences. The methods suffixed Reader, are passed
references to perform a get() on the DDF instances that they
receive.

For instance, Task4 registers itself on both left and
right DDFs, which establishes data dependences on the first

// Create two DDFs
DataDrivenFuture left = new DataDrivenFuture();
DataDrivenFuture right = new DataDrivenFuture();
finish { // begin parallel region

async left.Put(leftBuilder());//Task1

async right.Put(rightBuilder());//Task2

async await(left) leftReader(left);//Task3

async await(left, right) {//Task4

bothReader(left, right);
}
async await(right) rightReader(right);//Task5

} // end parallel region

Fig. 1. A Habanero Java code snippet with Data-Driven Tasks and Data-
Driven Futures.

two asyncs that are the producers for those DDFs. Regardless
of the underlying scheduler, Task1 and Task2 are guaranteed
to complete execution before Task4. This ability for a DDT
to wait on two (or more) DDFs before starting is unique to
our DDT model, and was not supported by past work such as
blocking reads in I-structures [14].

In contrast to the future construct introduced in [15] as a
3-tuple of the form (resolvingProcess, storage, waitingTasks),
the control and the data aspects of a future are split into DDTs
and DDFs in our approach. A DDF can be viewed as a 2-tuple
of (storage, waitingTasks), whereas the DDT that performs a
put() operation on the DDF is the resolvingProcess.

A. Discussion

Most task-parallel programming languages enforce fork-join
orderings that unify control and data dependences. We use the
term control dependence to express the relationship between a
parent task and a child task, caused by the creation of that child
task; each child task thus has a unique control parent. A data
parent of a task is a task that provides data to it, and thus a task
can have more than one data parent. In most models, when
a task (control parent) creates a child computation, it also
provides the data the child computation needs. This burdens
the programmer by requiring them to ensure that all the data
parents of a child task have completed execution before the
child task is created. However, in general, the creator of a task
need not be the same task that computes the data needed by
that child computation i.e., a task’s control and data parents
may be distinct.

DDFs provide a first-class construct for expressing data-
dependences among dynamic tasks, thereby decoupling the
roles of the control parent and data parents. Figure 2 demon-
strates the expressive power of DDTs by showing how DDFs
can be used to synchronize DDTs in a reverse order relative to
their creation. DDTs and DDFs can be used to build arbitrary
task graphs without the need to couple data dependences with
control dependences in any way.

Nested fork-join models are restricted to creating series-
parallel task graphs. For example, looking back at Figure 1,
we see that the dependences among those five tasks cannot
be described by standard nested fork-join constructs without
constraining parallelism. The dependence graph for the tasks
in Figure 1 is shown on the left side of Figure 3. An

DataDrivenFuture[] A = new DataDrivenFuture[n];
for (int i = 0 ; i < N; ++i) {

A[i] = new DataDrivenFuture();
}
for (int i = N-1 ; i >= 1; --i) {

async await(A[i-1]) {
· · ·
A[i].put("");

}
}
A[0].put("");

Fig. 2. An example in which DDFs are used to synchronize DDTs in the
reverse order relative to their creation

Task1	

Task4	

Task2	

Task3	 Task5	

Task1	

Task4	

Task2	

Task3	 Task5	

Fig. 3. Dependence graphs for DDT program in Figure 1 (left) fork/join
equivalent of the same program (right)

alternate solution in a nested fork-join model would be to
hoist Task1 and Task2 to the parent task, thereby creating
an implicit barrier between producers and consumers. That
approach would result in the dependence graph shown on the
right side of Figure 3, which has less parallelism than the
graph on the left side. Additionally, the lack of a construct
like DDTs burdens the programmer with thinking about the
creation of fork-join structures that satisfy a given set of data
dependences [16].

Though the DDF construct provides a natural way to enforce
data dependences, it can also be used to enforce control
dependences. A control dependence can be expressed with a
DDF with dummy data. For example, we have used a null
string to enable DDTs in Figure 2.

A drawback of hoisting producer tasks, as in Figure 3,
is that it not only constrains parallelism but also increases
the memory footprint. The hoisting of tasks unnecessarily
extends the lifetime of produced data by creating them earlier.
However, with DDTs, the creation of DDFs can be delayed as
needed thereby shortening their lifetimes.

As with other async tasks, DDTs are also registered to
their immediately enclosing finish (IEF). If all tasks in the same
finish scope have completed or reached a quiescent state
waiting for their await clauses to be satisfied, the finish
scope can exit by discarding DDTs whose dependences are
unsatisfied. This is akin to garbage collection of unrequited
futures as in [15].

DDTs and DDFs can also be used to implement standard
future constructs [15], [17]. Consider the Habanero Java
future construct in Figure 4 as an example. At creation time,
an async task is bound to the computation of the future’s

· · ·
final future<int> f = async<int> { return g(); };
· · ·
p.x = f.get();
· · ·

Fig. 4. Habanero Java interface for the language construct future

value, When the value has to be resolved, a get() blocks
until the value becomes available. Now, we will show how we
can use DDTs and Data-Driven Futures to express the same
constraints.

· · ·
DataDrivenFuture f = new DataDrivenFuture();
async { f.put(g()); };
· · ·
async await (f) { p.x = f.get(); };
· · ·

Fig. 5. Data-Driven Task and Data-Driven Future equivalent of Figure 4

Looking at Figure 5, we see that the proxy object f does not
have its producer task bound at definition time. Afterwards, a
logically parallel async task produces the value that f refers
to. The blocking get() call to ensure safety in Figure 4 is
now replaced by the non-blocking await clause in Figure 5.
Thus, the execution of that DDT will be delayed until f is
provided.

III. CODE SAMPLE

In this section, we walk through a code snippet in Figure 6
that is the main computation of the Heart Wall Tracking
benchmark [18]. The dependence graph for two iterations over
the j loop is shown in Figure 7.

The outermost loop, over numPoints in line 2, spawns a
computation for each pixel in a 2D image using an async. As
our input is a video, there is also a time dimension, declared
over numFrames on line 7 for this example. The computation
for each pixel has a loop-carried dependence on the j loop. We
use nextFrame to denote the next loop iteration produced
by step10 (line 26).

As we enter the loop over the variable j, we start by creating
the Data-Driven Futures (lines 9, 12–15) which will be used
in await clauses of Data-Driven Task declarations (lines 11,
18–23, 26). We then create ten DDTs that are synchronized
through those DDFs. If a DDT has no incoming dependence,
it can be declared as an async without an await clause.
The convention followed in these declarations is that the last
parameter of a DDT’s compute method produces its output
DDF. In this example, each DDT produces exactly one DDF.
The entire code in Figure 6 is enclosed in a single finish
construct.

IV. RUNTIME SCHEDULING OF DATA-DRIVEN TASKS

In this section, we introduce a data-driven runtime sched-
uler for DDTs that follows asynchronous dataflow semantics.
Following the dataflow principle, tasks are only spawned when
their input DDFs become available. It is the availability of data

1 finish { //Start a global synchronization scope
2 for(int i = 0 ; i < numPoints; ++i) { //For each pixel on a video
3 async { //spawn a computation with loop-carried dependences over the frame loop
4 //Create a synchronizer for the first frame
5 DataDrivenFuture prevFrame = new DataDrivenFuture();
6 prevFrame.Put(new java.lang.Boolean(true)); //Resolve the synchronizer
7 for(int j = 0 ; j < numFrames; ++j) { //for each frame
8 //Create a synchronizer for the next frame
9 DataDrivenFuture nextFrame = new DataDrivenFuture();

10 //When previous frame is produced, start an arbitrary task graph as follows
11 async await(prevFrame) {
12 DataDrivenFuture[] signals = new DataDrivenFuture[9];
13 for (int k = 0; k < 9; ++k) {
14 signals[k] = new DataDrivenFuture();
15 } // for
16 async { step1.compute([i,j], signals[0]); }
17 async { step2.compute([i,j], signals[1]); }
18 async await(signals[1]) { step3.compute([i,j], signals[2]); }
19 async await(signals[0], signals[1]) { step4.compute([i,j], signals[3]); }
20 async await(signals[0]) { step5.compute([i,j], signals[4]); }
21 async await(signals[2],signals[3],signals[4]){step6.compute([i,j],signals[5]);}
22 async await(signals[4]) { step7.compute([i,j], signals[6]); }
23 async await(signals[5],signals[6]){ step8.compute([i,j], signals[7]);}
24 async { step9.compute([i,j], signals[8]); }
25 //Spawn step10 that produces nextFrame when signal 7 and 8 are produced
26 async await(signals[7],signals[8]){step10.compute([i,j],numFrames,nextFrame);}
27 }
28 //production of nextFrame via step 10 described the loop-carried dependence
29 prevFrame = nextFrame;
30 }
31 }
32 }
33 }

Fig. 6. Code snippet from Heart Wall Tracking benchmark using Data-Driven Tasks and Data-Driven Futures

Step1

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step2

Step1

Step3

Step4

Step5

Step6

Step7

Step8

Step9

Step10

Step2

IterationJ IterationJ+1

Fig. 7. Unified control and data dependence graph of Heart Wall Tracking

that enables them for execution. Consequently, when a DDF
becomes resolved, each DDT registered as its consumer could
become ready, if it is the only DDF that the DDT is waiting
for. If there are multiple input DDFs for a DDT, one can think
of the last DDF to be produced, as the enabling one.

We have implemented a data-driven runtime scheduler for
DDTs, whose implementation details are discussed below and
performance results are discussed in later section VI. Our
implementation of the data-driven runtime scheduler is based
on Habanero Java [7] and its work sharing runtime [19], [9].
Accordingly, within this section’s scope, it is appropriate to
read a task as a Habanero Java async, an object as a Java
object and a list as linked list of Java objects.

Data-Driven Futures are implemented as objects that hold
a single-assignment value and a list of registered data-driven
tasks that are consumers of this value. In general, the value will
be assigned at runtime by a producer task. Since the value held
within a DDF is single-assignment, any attempt to reassign the
value results in an exception.

Each DDT holds a list of input DDFs that it is designated
to consume. This list is populated during the creation of a
DDT at runtime. Readiness of a task can then be checked any
time by a traversal over the list of DDFs. Since the readiness
of a single DDF monotonically increases from empty to full,
readiness is a stable property. Once a DDF is found to be ready,
we can stop checking for its readiness. The state of a DDF list
includes a pointer (dashed arrow) to its first non-ready DDF.

TaskA
PlaceHolderβ

DDFβ

DDFβ

TaskB
DDFδ

XValueα

DDFα

TaskA
async await(DDFα, DDFβ)

TaskB
async await(DDFβ, DDFδ)

DDFβ
read

DDFδ
read

DDFα
read

DDFβDDFα

DDFβ
read

writewrite

TaskC
read

read

write
DDFβ

XValueδ

DDFδ

Fig. 8. Snapshot of a subset of Data-Driven Tasks and Data-Driven Future
during runtime

We can see a snapshot of some sample DDTs and DDFs in
Figure 8. This figure shows the data dependence relationships
among data-driven tasks A, B and C through the DDFs α, β
and δ. Here are some conclusions we can derive from this
snapshot. First of all, we know TaskA consumes data items
in DDFα and DDFβ , whereas TaskB consumes data items in
DDFβ and DDFδ . The task designated as the producer for
DDFβ is TaskC . Some producers have already provided the
values for DDFα and DDFδ . From the upper left corner of the
figure, we can see that a DDF has a list of DDTs, which are
its consumers and DDTs have a list of DDFs they consume.
At the time of this snapshot, TaskA has already passed over
DDFα since the value has been produced. However in TaskB’s

case, even though DDFδ is ready, the task is not aware of that
fact as it is waiting on DDFβ . In this scenario, let us assume
that the very next action is the execution of TaskC , which will
lead to the assignment of the value DDFβ . The assignment of
that value will induce the traversal of the designated consumer
task list. On each task, the waiting frontier, shown by a vertical
dashed arrow, is iterated, which is an asynchronous way of
moving each task to its next phase when the appropriate
put() is performed. Once all DDFs a task waits on are
provided, that task is deemed ready to execute.

We conform to the semantics for data-driven tasks and
data-driven futures described in section II with the following
Habanero Java implementation of DDTs and DDFs:

get(): is implemented as described in section II. If an
incorrect program attempts to access a data-driven future that
has not been resolved, an exception is thrown.

put(): A DDF being written may be polled during the
write by another thread for readiness, so writing is synchro-
nized. Once the write is complete, put() exits the critical
region to advance the iterators indicating where data-driven
tasks have been waiting, for all the data-driven tasks registered
themselves as consumers. Any data-driven task created from
then on will observe the DDF to be ready.

Creation: instantiates a DDF object that is a container
for the single-assignment value that DDF is a reference to
and initializes the list of DDTs registered as consumers to an
empty list.

Registration: is supported by the async await clause.
We require DDTs to declare the all the DDFs they may
perform a get() on. The creation of a DDT also initializes
the list of DDFs that DDT consumes. If all DDFs are resolved
prior to the creation of the task, then the task is ready to
execute.

V. TASK SCHEDULING POLICIES

For the four scheduling policies from past work, we im-
plemented synchronization through collections of Data-Driven
Futures that are globally accessible to all Data-Driven Tasks.
It should be noted that these schedulers are implemented for
a macro-dataflow parallel programming model, Concurrent
Collections [20], where one of its implementations is on top
of Habanero Java. The globally accessible collections of data
is inherent to that model in order to achieve synchronization
between producer and consumer tasks. As these collections of
data are implemented as Java concurrency utilities hashmaps
indexed by tags, there is a cost of hash computation for each
access. A tuple (collectioni,tagj) in these four schedulers is
analogous to a Data-Driven Future instance in the Data-Driven
scheduler. Since collections of DDFs are not amenable to
garbage collection, the previous schedulers have the drawback
of extending the lifetime of data.

There is also an implicit assumption for the Rollback &
Replay scheduler that Data-Driven Tasks that are synchronized
through Data-Driven Futures are side-effect free and functional
with respect to their inputs to guarantee that their replay is
safe.

A. Previous Proposals
Following past work [20], we implemented four possible

scheduling policies used in dataflow programs.
Coarse Grain Blocking Scheduler: This scheduler opti-

mistically assumes computations are ready to execute when
the async is created. However if a task attempts to read
a datum that has not been provided by a producer, the task
attempting the read blocks on the entire collection harboring
that data. The blocked task will be notified each time a data
item is added to the collection and unblock when the data
items needed becomes available.

Fine Grain Blocking Scheduler: This scheduler is similar
to the coarse grain blocking scheduler. However, a task at-
tempting a read an uninitialized data item blocks on the item’s
DDF rather than the collection. Therefore that task is notified
only when that data item is provided.

Delayed Async Scheduler: uses a guarded execution
construct, delayed async, supported in Habanero Java [21].
This guard is re-executed each time some task completes until
it evaluates to true which promotes a delayed async to an
async that is ready to execute. This scheduler wraps each
DDT that needs to synchronize on data into a delayed async,
where the guard computation checks if all the input data items
are available.

Rollback & Replay Scheduler: This scheduler also opti-
mistically assumes all tasks are ready on creation. It, however,
discards a scheduled computation instance if the task attempts
to read an uninitialized data item. These “rolled-back” tasks
are saved as closures with the uninitialized datum they tried
to access. Once the datum is provided, the scheduler checks
if it has any associated closures. If so, it “replays” those tasks
to be scheduled again. This approach assumes that tasks are
side effect free and functional with respect to their inputs so
they can be safely re-executed.

Coarse grain blocking scheduling blocks computation in-
stances whose data are not ready. Since a task that blocks on
data will block the whole thread harboring that task in a work-
sharing runtime, we need to introduce new threads to ensure
a progress guarantee. This increases the memory footprint as
each blocked task allocates a thread. Additionally, a blocked
task is unnecessarily awakened on each data production on
that item collection, even if that is not the data items that the
task is waiting on.

Fine grain blocking scheduling ameliorates this problem by
blocking threads on items rather than collections. However
it still does not address the memory concerns introduced by
blocking threads.

In delayed async scheduling, since no task is scheduled
before it is guaranteed to complete, no threads block on this
scheduler and therefore there is no need for creation of new
threads. However, the continuous re-evaluation of guards is an
overhead introduced in this scheme.

Rollback and replay scheduling ameliorates the two prob-
lems discussed above. Since the task eagerly executes, fails
and executes again lazily when the prematurely read data
is ready, there is no busy wait on the data. However, one

downside to this approach is the possibility of eager execution
and eager replay. Assume that n reads to data items is
performed by a task. In the worst case, it is possible that a
computation gets replayed n times.

B. Data-Driven Scheduling with Data-Driven Tasks

Given a program, each task instance can be interpreted as
a DDT that reads DDFs as inputs. So if a DDT registers
on all its input DDFs, we can use the synchronization and
scheduling mechanism described in section IV by describing
tasks as asyncs with await clauses. A normal async is
simply assumed to have an empty DDF list.

One may see the natural progression when comparing DDTs
with the previous proposals discussed above. This scheduling
scheme does not eagerly execute tasks when they are encoun-
tered. It instead declares all the registrations on input DDFs at
a task’s creation. Therefore Data-Driven Scheduling avoids the
need to fail repetitively, which rollback and replay scheduling
has to do in order to learn data dependences lazily at runtime.
As this scheduler does not work with collections of DDFs but
rather with instances, it is amenable to garbage collection.

We postulate that the schedulers should perform better in
the order they are introduced and data-driven scheduling with
DDTs should outperform all.

VI. EXPERIMENTAL RESULTS

We have collected experimental results to show how bench-
marks implemented with DDTs perform with the four schedul-
ing policies from previous work, as well as the data-driven
policy introduced in this paper.

As we have noted before, the previous schedulers are im-
plemented for Concurrent Collections. The benchmarks used
below for the previous schedulers are Concurrent Collections
implementations of the benchmarks. In order to obtain results
on data-driven scheduling for DDTs, we have written the
DDT equivalent of the same benchmarks while retaining the
structure of the CnC code.

A. Experimental Method

All the tests presented below report the mean running times
of 30 runs of each benchmark from a single JVM invocation
to reduce biases from cache effects and effects of just-in-time
compilation. Heart Wall Tracking is the exception to the 30
test runs, for which we used 13 runs1. We were influenced by
[22] in our choice of 30 runs of a program in an invocation
and confidence intervals for the mean. The 90% confidence
intervals for the means are represented as error bars in the
charts in Figures 10–16.

We have dubbed the single worker execution of our parallel
benchmarks as the base case for our speedups in Figure 9,
where we use the DDT implementation under Data-Driven
scheduling as the baseline.

The systems we have collected performance results are:

1Due to the use of JNI in Heart Wall Tracking implementation, it can only
be run 13 times instead of 30 times.

• Xeon contains four quad-core Intel E7730 processors
running at 2.4 GHz. Each pair of cores share a L2 cache
of size 3MB. The total amount of main memory for this
machine is 32 GBs. For our tests on this machine we set
the number of workers to be 16, i.e. one worker per core.

• Niagara has a Sun UltraSPARC T2 microprocessor with
8 cores, and supports concurrent execution of 8 threads
per core. There is only one L2 cache of size 4MB that
is shared among all these cores. For our tests on this
machine we set the number of workers to be 64, i.e. one
worker per hardware thread.

B. Benchmarks

We obtained results for the following benchmarks:
Cholesky decomposition is a dense linear algebra applica-

tion that exploits loop, data, task and pipeline parallelism.
Exploitation of pipeline parallelism helps with performance
and scaling as the kernels of this application from different
iterations have data dependences in between, namely loop-
carried dependences. With a model like nested fork-join it is
not possible to achieve a pipelined execution without over-
constraining parallelism as in the right side of Figure 3. As
shown in [12], a macro-dataflow implementation can match
and even outperform state of the art task-parallel parallel
programming models and tuned domain specific libraries. That
work did not address data-driven task scheduling, which is the
focus of this paper.

Black-Scholes is a benchmark adopted from the PAR-
SEC [23] benchmark suite. This benchmark incurs lower
scheduling overhead than others.

Heart Wall Tracking is a medical image processing appli-
cation from the Rodinia benchmark suite [18], that tracks a
beating heart video by applying filters to the frames of that
video. The application has an outer serial loop with iterations
including data parallel computations, where the set of tasks
applied to the data has the dependence graph denoted in
Figure 7. As can be observed, this graph can not easily be
mapped to structured parallel programming models, but the
graph can be easily expressed using DDTs.

Rician Denoising [24] is a convergent benchmark, where
each iteration applies various computations to an image and
some of these steps are stencil computations. The benchmark
is memory and bandwidth bound. The premise for the DDT
model includes a dynamic single-assignment property, which
makes it not a very natural fit for convergent benchmarks as
discussed below.

C. Results

Figure 9 shows the speedup results for Data-Driven schedul-
ing, with respect to the single worker execution of the Ha-
banero Java code with DDTs. Minimum of 30 runs in a single
JVM invocation are taken into account to calculate the speedup
results.

The Heart Wall Tracking benchmark has nested parallelism
where the outermost loop is a parallel loop and there also
is task parallelism to be exploited in the inner loop. In

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

1-‐thread	 2-‐threads	 4-‐threads	 8-‐threads	 16-‐threads	

Sp
ee
du

p	

Rician	 Denoising	

Cholesky	 Decomposi=on	

Black-‐Scholes	

Heart-‐Wall	 Tracking	

Fig. 9. Speedups for Data-Driven scheduling with respect to single worker
execution of the parallel code written in Habanero Java with DDTs. Minimum
execution times of 30 runs on a 4-socket 4-way SMP Xeon core are taken
into account.

Figure 9, we observe that even though we implemented the
benchmark by exposing the fine grain task parallelism within
loop iterations, which introduces extra synchronization that the
original implementation did not incur, we managed to observe
almost perfect scaling on a 16-core Xeon using DDTs.

For Black-Scholes, a data parallel benchmark where there
are no inter-task control or data dependences, we observe that
the synchronization cost of using a DDT is negligible.

The Cholesky factorization benchmark implemented with
DDTs shows almost perfect speedups for 2 and 4 workers. For
the 8-worker case, the speedup observed is 7.29 and on 16-
worker case, the speedup is 12.98, which can be explained by
the non-trivial pipeline parallelism that has to be exploited on a
benchmark like Cholesky. We have noted in section VI-B that
the fastest known parallel implementation of Cholesky also
uses the macro-dataflow parallel programming model [12].
We implemented the equivalent of the program using DDT
synchronization instead and we will see in the upcoming
figures that the data-driven scheduler outperforms the other
schedulers.

Rician Denoising does not have great speedup numbers
because the benchmark suffers from heavy memory use and
is bandwidth limited. The more data introduced to evaluate
this benchmark to provide more wavefront parallelism to the
stencil computation kernels, the more frequently the garbage
collector has to run. So the parallelism is hampered because
of the applications memory footprint but we will see later
that the data-driven implementation of this benchmark still
outperforms the other schedulers.

The remainder of this section provides comparisons of the
benchmarks implemented for DDTs with the four schedulers
from past work described earlier. The scheduling schemes
on the x-axis of the figures below refer to the scheduling
policies described in Section V. We postulated in that section
that the schedulers should perform better in the order they

are introduced and data driven scheduling with DDTs should
outperform all. Below are the results to validate that claim.

616	

250	 231	
194	 156	

0	

100	

200	

300	

400	

500	

600	

700	

800	

Coarse	 Grain	
Blocking	

Fine	 Grain	
Blocking	

Delayed	 Async	 Rollback&Replay	 Data-‐Driven	 Tasks	

Ex
ec
u@

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 10. Average execution times and 90% confidence interval of 30 runs
of 16-worker executions for blocked Cholesky factorization application with
Habanero Java and Intel MKL steps on Xeon with input matrix size 2000 ×
2000 and with tile size 125 × 125

7,035	 6,993	 6,958	

6,339	
5,681	

0	

1,000	

2,000	

3,000	

4,000	

5,000	

6,000	

7,000	

8,000	

9,000	

Coarse	 Grain	
Blocking	

Fine	 Grain	
Blocking	

Delayed	 Async	 Rollback&Replay	 Data-‐Driven	 Tasks	

Ex
ec
u@

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 11. Average execution times and 90% confidence interval of 30 runs
of 64-worker executions for blocked Cholesky factorization application with
Habanero-Java and Intel MKL steps on UltraSPARC T2 with input matrix
size 2000 × 2000 and with tile size 125 × 125

In Figures 10 and 11, we see how a Cholesky decomposition
algorithm from [12] performs on a 16-core Xeon and a 64-
thread parallel UltraSPARC T2 with 16 and 64 workers,
respectively. As can be seen, the Data-Driven scheduler out-
perform all known schedulers. Also, coarse grain blocking
was relatively worse on Xeon than on the UltraSPARC. These
results were obtained using a sequential Intel MKL call in
each step for the Intel architecture implementation (Xeon).

Figures 12 and 13 show performance results for Black-
Scholes. We see again that the data-driven scheduling outper-
forms the others. We also observe that the confidence intervals
for Rollback and Replay is wide, as Rollback and Replay pays
for safety even when tasks are guaranteed not to replay. That
cost for safety usually is amortized by replayed tasks, however
this benchmark shows doing so may introduce unnecessary
overhead.

Rician Denoising is a convergent fixed point algorithm
where the convergence check imposes a barrier at the end
of each iteration. However, as discussed before, the memory

4,300	 4,309	 4,279	

5,061	

2,353	

0	

1,000	

2,000	

3,000	

4,000	

5,000	

6,000	

Coarse	 Grain	
Blocking	

Fine	 Grain	
Blocking	

Delayed	 Async	 Rollback&Replay	 Data-‐Driven	 Tasks	

Ex
ec
u@

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 12. Average execution times and 90% confidence interval of 30 runs of
16-worker executions for blocked Black-Scholes application with Habanero
Java steps on Xeon with input size 1,000,000 and with tile size 62500

6,179	 6,159	 6,149	 6,145	

4,296	

0	

1,000	

2,000	

3,000	

4,000	

5,000	

6,000	

7,000	

Coarse	 Grain	
Blocking	

Fine	 Grain	
Blocking	

Delayed	 Async	 Rollback&Replay	 Data-‐Driven	 Tasks	

Ex
ec
u@

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 13. Average execution times and 90% confidence interval of 30 runs of
64-worker executions for blocked Black-Scholes application with Habanero
Java steps on UltraSPARC T2 with input size 1,000,000 and with tile size
15625

81,502	

58,313	
53,569	 53,817	

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

70,000	

80,000	

90,000	

Coarse	 Grain	 Blocking	 *	 Fine	 Grain	 Blocking	 *	 Delayed	 Async	 *	 Data-‐Driven	 Tasks	

Ex
ec
u=

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 14. Average execution times and 90% confidence interval of 30 runs of
16-worker executions for blocked Rician Denoising application with Habanero
Java steps on Xeon with input image size 2937 × 3872 pixels and with
tile size 267 × 484 (Scheduling algorithms with * required explicit memory
management by the programmer to avoid running out of memory)

footprint of this program can grow without bounds since
the dynamic single-assignment property in our model leaves
each iteration’s data alive throughout the computations, which
depleted the machine’s memory for the four schedulers from
past work. So, for our implementation, we have bent the

192,451	 190,600	

81,707	

58,017	

0	

50,000	

100,000	

150,000	

200,000	

250,000	

Coarse	 Grain	 Blocking*	 Fine	 Grain	 Blocking*	 Delayed	 Async*	 Data-‐Driven	 Tasks	

Ex
ec
u=

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 15. Average execution times and 90% confidence interval of 30 runs of
16-worker executions for blocked Rician Denoising application with Habanero
Java steps on UltraSPARC T2 with input image size 2937 × 3872 pixels and
with tile size 267 × 484 (Scheduling algorithms with * required explicit
memory management by the programmer to avoid running out of memory)

rules by introducing an interface to explicitly reclaim memory
for those schedulers. Schedulers that needed explicit memory
management are annotated with a * in Figure 14 and 15.
Rollback & Replay scheduling can not be intertwined with
explicit memory management and therefore results for that
scheduler is lacking from these two charts. It should be
noted that data-driven scheduling needed no explicit memory
management since the garbage collector automatically frees
the DDFs that are no longer needed.

50,287	

11,351	 10,097	

0	

10,000	

20,000	

30,000	

40,000	

50,000	

60,000	

Delayed	 Async	 Rollback&Replay	 Data-‐Driven	 Tasks	

Ex
ec
u;

on
	 in
	 m

ill
i-‐s
ec
s	

Fig. 16. Average execution times and 90% confidence interval of 13 runs
of 16-worker executions for Heart Wall Tracking application with C steps on
Xeon with 104 frames

As mentioned earlier, Heart Wall Tracking has an outermost
data parallel computation with an intricate task dependence
graph for each sub-task. Blocking schedulers for this bench-
mark are not feasible as the sub-tasks are too fine grained
and the blocking schedulers causes the execution to run out of
memory with too many blocked threads. In this benchmark,
we observe that data-driven scheduling outperforms the other
two non-blocking schedulers (Figure 16). We have not as yet
obtained results for Heart Wall Tracking on Niagara.

VII. RELATED WORK

While the DDT construct is inspired by past work on the
dataflow programming model, it also differs from dataflow

in some key ways. A unique characteristic of DDTs is the
ability to dynamically create a task with an await clause that
specifies multiple DDFs as inputs, and to freely use such tasks
in conjunction with regular async-finish task parallelism.
For example, we are unaware on any past work on dataflow
that could support the task parallelism shown in Figure 6.
The combination of dynamic put(), get() operations on
DDFs with dynamic async task constructs make it possible
to express many kinds of algorithmic patterns that would not
be considered to be pure dataflow.

Futures have been proposed by Baker and Hewitt in [15].
Implementations of the concept can be seen in MultiLISP by
Halstead [17], and in many other languages since. It is possible
to create arbitrary task graphs with futures, but each get()
operation on a future may be a blocking operation unlike
the await clause in DDTs. Similarly, I-Structures [14] have
blocking get() semantics, but did not support task creation
with an await clause as in data-driven tasks. Additionally,
futures effectively requires that the DDF and async creation
be fused, whereas DDTs allow a separation between DDFs
and asyncs.

Macro-dataflow languages have been proposed in models
like Cedar [25] and more recently in the Concurrent Col-
lections (CnC) coordination language [20]. In this work, we
showed how DDTs and DDFs and enable the macro-dataflow
model to be integrated with task parallelism. The CnC model
was an important motivation for the introduction of DDTs,
since CnC can be easily compiled down to DDTs by treating
a CnC item collection as a collection of DDFs. TRASGO [26]
is an example of another coordination language in which the
programmer specifies nested series-parallel synchronization
structures and leaves the task of generating more general
synchronization structures to the compiler. In contrast, DDTs
enable the programmer to specify any directed synchronization
structure that they may wish to create.

The Nabbit [11] library extension to Cilk++ allows the user
to declare arbitrary task dependences so as to create task
graphs that cannot be created with nested fork-join operations.
Unlike DDTs, where the task graph is specified implicitly via
await clauses on async statements, it is created explicitly
in Nabbit via calls to an AddDep() method before the start
of graph execution. In addition, DDFs are directly amenable
to garbage collection, but that is harder to accomplish with
the use of keys in Nabbit.

In section VI-B, we observed that a macro-dataflow im-
plementation for Cholesky decomposition in [12] outperforms
the alternate parallel implementations studied in that work.
The scheduling algorithm used in [12] is akin to the delayed
async [21] scheduling policy described in section V. The
results in section VI-C show that the Data-Driven Scheduling
policy outperforms its delayed async scheduling counterpart.

In summary, DDTs have benefited from influences from past
work, but we are not aware of any other parallel programming
model that shares DDTs fundamental properties as a data-
driven extension to task parallelism.

VIII. CONCLUSIONS

In this paper, we proposed an extension to task parallelism
called Data-Driven Tasks (DDTs) that can be used to create
arbitrary task graph structures. Unlike a normal task that starts
execution upon creation, a DDT specifies its input constraints
in an await clause containing a list of Data-Driven Futures
(DDFs). Another advantage of this approach is that all data
accesses performed via DDFs are guaranteed to be race-
free and deterministic. We described five scheduling algo-
rithms (Coarse-Grain Blocking, Fine-Grain Blocking, Delayed
Async, Rollback & Replay, Data-Driven) that can be used
to implement DDTs, and discussed performance results for
these five algorithms on a variety of benchmark programs
and multicore platforms. Our results showed that the Data-
Driven scheduler is the best approach for implementing DDTs,
both from the viewpoints of memory efficiency and scalable
parallelism.

ACKNOWLEDGMENTS

We would like to thank Aparna Chandramowlishwaran
and Zoran Budimlić for their help with the Cholesky De-
composition benchmark. We also would like to thank David
Peixotto for the Black-Scholes implementation and Alina
Simion-Sbı̂rlea for the Heart Wall Tracking implementation.
The Rician Denoising application used in this paper was
derived from an earlier version provided by Yu-Ting Chen. The
motivation for this paper was strongly influenced by weekly
discussions between the Intel CnC and Rice Habanero groups,
and we are grateful to everyone who contributed to those
discussions. We thank the anonymous reviewers and Kunal
Agrawal, Mauricio Breternitz, Jack Dennis, Deepak Majeti,
Dragoş Sbı̂rlea, and Justin Teller for their feedback on the
paper. We gratefully acknowledge support from an Intel award
during 2009-2010. This research is partially supported by the
Center for Domain-Specific Computing (CDSC) funded by the
NSF Expedition in Computing Award CCF-0926127.

REFERENCES

[1] “The Chapel Language Specification,” Tech. Rep., February 2005.
[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,

G. Steele, and S. Tobin-Hochstadt, The Fortress Language Specification,
Sun Microsystems, Inc., May 2006.

[3] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, ser. OOPSLA ’05. New York,
NY, USA: ACM, 2005, pp. 519–538.

[4] OpenMP Architecture Review Board, OpenMP Application
Program Interface, 3rd ed., May 2008. [Online]. Available:
http://www.openmp.org

[5] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and im-
plementation, ser. PLDI ’98. New York, NY, USA: ACM, 1998, pp.
212–223.

[6] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes, Java
Concurrency in Practice. Addison-Wesley Professional, 2005.

[7] V. Cavé, J. Zhao, and V. Sarkar, “Habanero-Java: the New Adventures of
Old X10,” 9th International Conference on the Principles and Practice
of Programming in Java, August 2011.

[8] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
in Journal of parallel and distributed computing, 1995, pp. 207–216.

[9] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first
scheduling policies for async-finish task parallelism,” in Proceedings
of the 2009 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Washington, DC, USA: IEEE Computer Society,
2009, pp. 1–12.

[10] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov,
“The impact of multicore on math software,” in Proceedings of the 8th
international conference on Applied parallel computing: state of the art
in scientific computing, ser. PARA’06. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 1–10.

[11] K. Agrawal, C. E. Leiserson, and J. Sukha, “Executing task graphs using
work-stealing,” in Proceedings of the 24th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Atlanta, GA, USA,
Apr. 2010.

[12] A. Chandramowlishwaran, K. Knobe, and R. Vuduc, “Performance
evaluation of concurrent collections on high-performance multicore
computing systems,” in International Parallel and Distributed Process-
ing Symposium (IPDPS), April 2010, pp. 1 –12.

[13] S. Taşırlar, “Scheduling Macro-DataFlow Programs on Task-Parallel
Runtime Systems,” Master’s thesis, Rice University, April 2011.

[14] Arvind, R. S. Nikhil, and K. K. Pingali, “I-structures: data structures
for parallel computing,” ACM Trans. Program. Lang. Syst., vol. 11, pp.
598–632, October 1989.

[15] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of
processes,” SIGPLAN Not., vol. 12, pp. 55–59, August 1977.

[16] V. Sarkar, “Instruction reordering for fork-join parallelism,” in Proceed-
ings of the ACM SIGPLAN 1990 conference on Programming language
design and implementation, 1990, pp. 322–336.

[17] R. H. Halstead, Jr., “Implementation of multilisp: Lisp on a multipro-
cessor,” in Proceedings of the 1984 ACM Symposium on LISP and
functional programming, ser. LFP ’84. New York, NY, USA: ACM,
1984, pp. 9–17.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), ser. IISWC ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 44–54.

[19] R. Barik, V. Cavé, C. Donawa, A. Kielstra, I. Peshansky, and V. Sarkar,
“Experiences with an SMP implementation for X10 based on the
Java Concurrency Utilities,” in Workshop on Programming Models for
Ubiquitous Parallelism (PMUP 2006), September 2006.

[20] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton,
J. Palsberg, D. Peixotto, V. Sarkar, F. Schlimbach, and S. Taşırlar,
“Concurrent Collections,” Sci. Program., vol. 18, pp. 203–217, August
2010.

[21] Z. Budimlić, A. Chandramowlishwaran, K. Knobe, G. Lowney,
V. Sarkar, and L. Treggiari, “Multicore implementations of the concur-
rent collections programming model,” Proceedings of the 2009 Work-
shop on Compilers for Parallel Computing (CPC), January 2009.

[22] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java
performance evaluation,” in Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-oriented programming systems and
applications, ser. OOPSLA ’07. New York, NY, USA: ACM, 2007,
pp. 57–76.

[23] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
characterization and architectural implications,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008, pp.
72–81.

[24] J. Cong, G. Reinman, A. Bui, and V. Sarkar, “Customizable domain-
specific computing,” Design Test of Computers, IEEE, vol. 28, no. 2,
pp. 6 –15, march-april 2011.

[25] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “Cedar: a large scale
multiprocessor,” SIGARCH Comput. Archit. News, vol. 11, pp. 7–11,
March 1983.

[26] A. Gonzalez-Escribano and D. Llanos, “Trasgo: a nested-parallel pro-
gramming system,” The Journal of Supercomputing, pp. 1–9, 2009.

