
RICE UNIVERSITY

A Scalable Locality-aware Adaptive Work-stealing

Scheduler for Multi-core Task Parallelism

by

Yi Guo

A Thesis Submitted
in Partial Fulfillment of the
Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Vivek Sarkar, Chair
E.D. Butcher Professor of Computer
Science

Keith D. Cooper
L. John and Ann H. Doerr Professor of
Computer Science

William N. Scherer III,
Faculty Fellow
Dept. of Computer Science

Lin Zhong
Assistant Professor
Dept. of Electrical & Computer
Engineering

Rice University, Houston, Texas

Aug, 2010

A Scalable Locality-aware Adaptive Work-stealing

Scheduler for Multi-core Task Parallelism

Yi Guo

Abstract

Recent trend has made it clear that the processor makers are committed to the multi-

core chip designs. The number of cores per chip is increasing, while there is little or

no increase in the clock speed. This parallelism trend poses a significant and urgent

challenge on computer software because programs have to be written or transformed

into a multi-threaded form to take full advantage of future hardware advances.

Task parallelism has been identified as one of the prerequisites for software produc-

tivity. In task parallelism, programmers focus on decomposing the problem into sub-

computations that can run in parallel and leave the compiler and runtime to handle

the scheduling details. This separation of concerns between task decomposition and

scheduling provides productivity to the programmer but poses challenges to the

runtime scheduler.

Our thesis is that work-stealing schedulers with adaptive scheduling policies and

locality-awareness can provide a scalable and robust runtime foundation for multi-

core task parallelism. We evaluate our thesis using the new Scalable Locality-aware

Adaptive Work-stealing (SLAW) runtime scheduler developed for the Habanero-Java

programming language, a task-parallel variant of Java.

SLAW’s adaptive task scheduling is motivated by the study of two common

scheduling policies in a work-stealing scheduler, specifically, the work-first and the

help-first policy. Both policies exhibit limitations in performance and resource usage

in different situations. The variances make it hard to determine the best policy a

priori. SLAW addresses these limitations by supporting both policies simultaneously

and selecting policies adaptively on a per-task basis at runtime. Our results show

that SLAW achieves 0.98× to 9.2× speedup over the help-first scheduler and 0.97×

to 4.5× speedup over the work-first scheduler. Further, for large irregular parallel

computations, SLAW supports data sizes and achieves performance that cannot be

delivered by the use of any single fixed policy.

SLAW’s locality-aware scheduling framework aims to overcome the cache unfriend-

liness of work-stealing due to randomized stealing. The SLAW scheduler is designed

for programming models where locality hints are provided to the runtime by the

programmer or compiler. Our results show that locality-aware scheduling can improve

performance by increasing temporal data reuse for iterative data-parallel applications.

iii

Acknowledgments

I owe my deepest gratitude to my advisor, Prof. Vivek Sarkar, for his guidance and

support. He leads the Habanero Multicore Software Project with enthusiasm and is

always patient in advising students. It is my great honor and pleasure to work with

him. I would like to thank my thesis committee members, Prof. Keith Cooper, Dr.

Bill Scherer and Prof. Lin Zhong for their insightful comments on this work.

I am grateful to all members of the Habanero team for the collaboration, helpful

discussions and valuable feedback related to this thesis. Especially, I would like to

thank Jisheng Zhao and Raghavan Raman for providing the compiler support. This

work will not be possible without you. I would like to thank Rajikshore Barik for

some very useful discussions that shaped many aspects of this work. Yonghong Yan,

Jisheng Zhao and I had a heated and yet productive discussion on the design of the

Hierarchical Places Tree model.

My sincere thanks go to Vijay A. Saraswat and Igor Peshansky for insightful

discussions during their visit at Rice University.

This work was generously supported by the National Science Foundation under the

HECURA program, award number CCF-0833166, IBM Open Collaborative Faculty

Award and IBM CAS PhD Fellowship. I would like to thank Prof. Doug Lea for

access to the UltraSPARC T2 SMP system used to obtain the experimental results

in this thesis.

I am indebted to my parents, Zhongfang Guo and Limei Liu. They raised me

and poured me with love unconditionally and have always been supporting and

encouraging me during my PhD journey. Words are not enough to express my love

and gratitude to you.

iv

Last but not least, I would like to thank all my brothers and sisters in Rice Chinese

Christian Fellowship (RCCF). Thanks for your prayers and support. I will cherish all

moments we shared. Special thanks to Lily Lam for shepherding RCCF.

Contents

Abstract i

List of Illustrations viii

List of Tables xii

1 Introduction 1

1.1 Task-Parallel Runtime Scheduler . 3

1.2 Work-stealing scheduler . 4

1.3 Thesis Statement . 6

1.4 Research Contributions . 6

1.5 Thesis Organization . 7

2 Background 9

2.1 Parallel Programming Models . 9

2.1.1 Address Space . 9

2.1.2 SPMD Model . 10

2.1.3 Task Parallelism . 12

2.2 Task Scheduling . 13

2.2.1 Scheduling Model . 13

2.2.2 Scheduling Paradigms . 15

2.3 Work-stealing Implementation . 17

2.3.1 Basic multithreaded programming 17

2.3.2 Stack and Heap Allocation . 20

2.3.3 Cilk’s work-stealing runtime 23

2.3.4 Work-stealing deque . 25

vi

2.3.5 Language and Compiler Support 29

2.4 Locality . 32

3 Habanero-Java and Async-Finish Parallelism 35

3.1 Habanero-Java . 35

3.1.1 Asynchronous Task Creation: async 35

3.1.2 Task Synchronization: finish 36

3.1.3 Atomicity: isolated . 36

3.1.4 Places . 37

3.1.5 Task scheduling points and restrictions 38

3.1.6 Runtime Deployment . 38

3.2 Async-Finish Parallelism . 39

3.2.1 Spawn and Sync Trees . 42

3.2.2 Properties of Async-Finish Computation 42

4 HJ Work-Stealing Implementation 45

4.1 Work-stealing Task Scheduling Policies 45

4.2 Escaping Asyncs and Finish Node . 46

4.3 Asynchronous Calling Convention . 48

4.4 Work-stealing Compilation Strategy 51

4.5 Work-stealing Runtime Implementation 59

4.5.1 HJ Work-stealing Deque . 59

4.5.2 Task Synchronization . 61

4.5.3 Optimization . 64

5 Adaptive Work-stealing 74

5.1 Study of Task Scheduling Policies . 74

5.1.1 Context Switch . 74

5.1.2 Recursive and Flat Parallelism 75

vii

5.1.3 Performance . 76

5.1.4 Memory Issue . 78

5.2 Adaptive Scheduling Policies . 79

5.2.1 Taxonomy . 82

5.2.2 Scheduling Algorithm . 83

5.2.3 Theoretical Space Bound . 89

5.2.4 Runtime Implementation . 93

5.3 Experimental Results . 93

5.3.1 Setup . 93

5.3.2 Sensitivity Analysis of Parameters in SLAW Scheduler 94

5.3.3 Benchmark Results . 97

5.3.4 Modeling and Measurement of Overhead 100

6 Locality-aware Work-stealing 110

6.1 Locality-aware Framework . 110

6.2 Case Study . 112

6.3 Hierarchical Place Trees . 114

7 Related Work 121

7.1 Review of some task scheduling systems 121

7.2 Research in Task Parallelism . 124

8 Conclusion 129

Bibliography 131

Illustrations

2.1 Computation Dag . 14

2.2 Task Spawn Tree . 14

2.3 Work-sharing Scheduling Paradigm 16

2.4 Work-stealing Scheduling Paradigm 16

2.5 Sample use of volatile variables in Java 5 21

2.6 THE protocol (from [39] with variable renaming) 26

2.7 Pseudo code for CircularWSDeque class 28

2.8 Pseudo code of pushBottom operation 29

2.9 Growth function of the circular deque 30

2.10 Pseudo code of steal operation . 31

2.11 Pseudo code for CircularWSDeque class 32

2.12 Fib’s Cilk program and its compiler-generated fast clone (from [39]

with slight modification) . 34

3.1 HJ computation dag . 37

3.2 Locality-aware runtime deployment for a 4 Quad-Core Xeon SMP

machine . 39

3.3 This computation dag is terminally-strict computation but not

async-finish computation . 41

3.4 This computation dag is terminally-strict computation but not

async-finish computation . 41

3.5 HJ Code . 43

ix

3.6 Spawn Tree for the HJ Code Snippet in Figure 3.5 43

3.7 Sync Tree for the HJ Code Snippet in Figure 3.5 43

4.1 Example of task scheduling under the work-first and the help-first

policy vs. depth-first and breath-first traversal 46

4.2 Code for parallel DFS spanning tree algorithm in HJ 47

4.3 Support for sequential call to a parallel function 50

4.4 HJ Compiler . 51

4.5 Fib example in HJ using Integer Box to pass results 53

4.6 Continuation Frame . 54

4.7 Fib Activation Frame Class . 55

4.8 Fib Task Wrapper Class . 55

4.9 HJ Fib Fast Clone . 56

4.10 HJ Fib Slow Clone . 57

4.11 Compiler generated code for Do function 65

4.12 Compiler generated code for main function 66

4.13 Java queue implementation . 67

4.14 HJ Work-stealing Deque class, Circular Array class and the grow

function . 68

4.15 HJ work-stealing deque pushBottom 69

4.16 HJ work-stealing deque popBottom 70

4.17 HJ work-stealing deque steal . 71

4.18 FinishTreeNode class . 71

4.19 Task Synchronization Protocol . 72

4.20 Task Synchronization Protocol (cont) 73

5.1 Task T1 spawns N-1 tasks consecutively. 77

x

5.2 Analysis of Adaptive Schedule Parameter Sensitivity on the Niagara

2 system. The benchmark name, SLAW parameter values (S, F,

INT), and the number of workers (W) are specified in the sub-figure

captions. Better performance is indicated by smaller values in

(a),(b),(c) and larger values in (d),(e),(f). 105

5.3 Performance results for FJ(1024) microbenchmark (tasks are spawned

iteratively) on Niagara 2 using 1 to 64 workers. Number of fork-joins

performed per second is reported. (Bigger is better.) 106

5.4 Performance results for FJ(1024) microbenchmark (in FJ-rec, tasks

are spawned recursively.) on Niagara 2 using 1 to 64 workers. Number

of fork-joins performed per second is reported. (Bigger is better.) . . 106

5.5 Performance results on Niagara 2. Deployment is

locality-oblivious(1-place, 64 workers) with no processor binding. . . . 107

5.6 Performance results on Xeon SMP. Deployment is

locality-oblivious.(1-place, 16 workers) with no processor binding. . . 107

5.7 Iterative Fork-Join Example . 108

5.8 Recursive Fib benchmark with one global finish scope. 109

5.9 Recursive Fib benchmark in which every task synchronizes its child

tasks . 109

6.1 Locality-aware Scheduling Framework 111

6.2 Task spawn trees for two consecutive iterations in SOR 113

6.3 HJ code snippet with places as locality hint 114

6.4 Comparing Locality-aware scheduler with locality-oblivious scheduler

on SOR on Intel Xeon SMP. The locality-aware deployment for

adp+locality has 8 places with 1 or 2 workers per place. The workers

are binded to virtual processors. 115

6.5 Scheduling constraints in the HPT model 116

xi

6.6 Steps to program and execute an application using the HPT model . 116

6.7 A quad-core CPU machine with a three-level memory hierarchy.

Figures a, b, and c represent three different HPT configurations for

this machine. 117

6.8 Matrix multiplication example . 119

6.9 Physical place tree specification for a quad-core workstation 120

Tables

5.1 List of benchmarks implemented in HJ and their sources 104

5.2 Default Adaptive Schedule Parameters Value 104

5.3 Performance results for Fib(35) microbenchmark on Niagara 2 using

1 to 64 workers. Execution time (in seconds) is reported. (Smaller is

better.) . 105

5.4 Execution time (in microseconds) of the serial execution time and the

single thread HJ execution time of the program in Figure 5.7 with

k = 1, 2, 4, 8, ..., 1024 on the Xeon SMP machine 108

5.5 Execution time (in secs) of the serial and 1-thread execution time of

the code shown in Figure 5.8 and 5.9 under both policies. Both code

has the same serial version. 108

6.1 Subset of place-based API’s in the HPT model 118

7.1 Comparison of Task Parallel Systems 122

1

Chapter 1

Introduction

For decades, the computer industry has been delivering performance through parallel

computing, a form of computation in which multiple calculations are performed simul-

taneously. Early computer systems in the 1970’s exploited bit-level parallelism that

resulted from simultaneously computing multiple bits in a processor subword or word

during the execution of a single instruction. From the mid-1980’s to 1990’s, computer

architecture designs are dominated by instruction-level parallelism (ILP), a form of

parallelism in which multiple instructions are executed simultaneously. For example,

modern processors have multi-stage instruction pipelines so that multiple instructions

at different stages can all make progress at one CPU cycle. Superscalar processors

can issue multiple instructions per cycle. Other micro-architectural ILP techniques

include out-of-order execution, speculative execution and branch prediction. In order

to support these ILP techniques, the processor logic is becoming increasingly sophis-

ticated. For example, the Pentium 4 processor contain a 35-stage instruction pipeline,

and a large portion of the silicon area is consumed by algorithms to enable or increase

ILP [92, 86].

Gordon Moore predicted in 1965 that the number of transistors that can be

placed inexpensively on an integrated circuit would double approximately every two

years [66]. Historically, with the help of techniques that increase instruction-level

parallelism, processor manufacturers were able to deliver generations of processors

with a doubling of clock rate as the number of transistors doubled. Sequential pro-

gramming languages and compilers were able to convert these hardware improvements

to performance and productivity improvements without requiring programmers to

2

change their sequential code.

However, an exponential increase in clock rate is no longer sustainable due to

power dissipation limits. The trend in the last few years has made it clear that the

processor makers are now committed to multi-core chip designs. Nowadays, almost

all computers, from high performance computers, to departmental and personal com-

puters, and even embedded processors, are being built with multi-core chips. The

number of cores per chip is increasing, while there is little or no increase in the clock

speed per core. This parallelism trend poses a huge and urgent challenge on computer

software because programs must be written or transformed into a multi-threaded form

to take full advantage of future hardware advances.

It would be ideal to have the compiler automatically convert sequential code to

multi-threaded code to take advantage of multi-core hardwares. Despite huge research

effort in the 80’s and 90’s, such techniques, known as automatic parallelization,

have had only limited success in specific situations such as regular loops and array

accesses [7]. Fully automatic parallelization of sequential programs remains an open

unsolved problem. Since no automatic parallelization solution is in sight, the search

for efficient and productive parallel programming models for software developers has

taken on a new urgency.

Parallelism programming models define how parallelism is expressed by program-

mers. Data parallelism and task parallelism are two common kinds of parallel pro-

gramming models that express the parallelism from the data and the computation

perspective respectively. Data parallelism focuses on data distribution across parallel

computing nodes [25]. Many scientific applications contain loops that access large

scale of data and such programs are suitable for data parallelism programming models.

Google’s MapReduce programming model [27] is a data parallel programming model

especially designed for large scale data processing.

In contrast to data parallelism, task parallelism, also called function parallelism,

expresses parallelism from the perspective of computations. In task parallelism,

3

programmers focus on decomposing the problem into sub-computations, or tasks,

that can run in parallel. Entirely different computations can perform on either the

same or different sets of data. How computations are actually scheduled and executed

on the underlying architecture is the responsibility of the compiler and runtime

systems. This separation of concerns between task decomposition and scheduling

provides productivity, as shown in recent studies on different parallel programming

models [32].

Task parallelism is considered a prerequisite for the productivity of generally paral-

lel programming. The three programming languages developed as part of the DARPA

High-Productivity-Computer-Systems (HPCS) project (Chapel [24], Fortress [65],

X10 [20]) are all task-parallel languages. The past decade sees a fast increase in

popularity of task-parallel systems. Among them are Java 5 Concurrency Library,

Java Fork-Join Framework [57], Intel Thread Building Blocks [48], Microsoft .NET

Task Parallel Library [58], Cilk [39], and etc. The task concept is also introduced into

OpenMP since version 3.0 [70] which is traditionally designed for data parallelism of

loops.

1.1 Task-Parallel Runtime Scheduler

A runtime serves as the environment in which computations are performed. It consists

of the whole operating systems, including sub-systems such as memory management,

thread/process management, and I/O management. A runtime usually appears in

the form of libraries. A program interacts with the environment through runtime

library calls dynamically. A program can only be executed in the compatible runtime

environment and must interact with the runtime in a correct way, or a runtime error

may occur. The runtime, on the other hand, is responsible for managing the resources

and performing accordingly to the library calls. In the C programming language, for

example, a program requests and free memory through malloc and free runtime

library calls of the standard runtime memory management system. The runtime is

4

responsible for effectively managing the available memory in the system, and the

program is responsible for using the runtime calls correctly. Errors such as memory

leak and dangling pointers are considered fault of the program instead of the runtime.

A parallel runtime is a runtime where computations may be run in parallel.

Running computations in parallel poses new challenges that demand the redesign of

almost all parts of the runtime systems [11, 59]. In task parallelism, the task-parallel

runtime scheduler is responsible for scheduling computations among threads. These

threads, often called workers, are OS threads controlled by the operating systems.

Compared to the traditional programming model known as Single-Program-Multiple-

Data (SPMD), scheduling computations among threads is a problem new to task

parallelism. In SPMD model, the computation of each thread is specified by the

programmer; In task parallelism, however, the separation of concerns between task

decomposition and scheduling puts the burden on the task-parallel runtime schedulers

to decide when to switch tasks and which task to execute for each worker. Though

theoretically correct, creating one thread per task is not practical for performance

concerns. For problems in which the number of tasks created is exponential to the

input size, this approach will significantly over-subscribe the processors, leading to

poor performance.

This dissertation focuses on the design and implementation of task-parallel run-

time schedulers, especially the scalability, the overhead, and the resource usage bound

under various kinds of task-parallel programs.

1.2 Work-stealing scheduler

A typical task-parallel system consists of a pool of workers, the number of which

is decided by the number of underlying computing nodes. Work sharing and work

stealing are two scheduling paradigms used to address the problem of scheduling

multithreaded computations among the workers.

In work-sharing, whenever a new task is generated, the scheduler works eagerly

5

to re-distribute tasks through a shared task pool. In work-stealing, each worker

maintains its own pool (queue) of tasks and the underutilized workers take the

initiative to steal work from other busy workers. The worker that creates the new

task pays a small overhead to enable stealing.

Compared to work-sharing, work-stealing schedulers have the following advan-

tages. First, work-stealing is more efficient: the busy worker pays only a small

overhead both to enable stealing on task creation and to execute tasks that are not

stolen. The bulk of the overhead is shouldered by underutilized workers whose CPUs

are idle anyway. Second, work-stealing is more scalable than work-sharing: in work-

sharing, there is contention on a single shared task pool when pushing and popping

tasks. This contention is distributed in work-stealing [29]. Third, it has been shown

that work-stealing with certain policies can schedule tasks using bounded memory

resource [15].

Although work-stealing has many advantages over work-sharing, the implemen-

tation of a work-stealing system is more complicated than that of a work-sharing

scheduler. Implementation techniques for work-stealing systems has received a lot of

attention since the advent of the Cilk work-stealing runtime developed by MIT [39].

Scheduling Policy

In work-stealing, the task scheduling policy determines the order in which tasks are

executed. Work-first and help-first are two commonly used task scheduling policies

used when spawning a task. Under the work-first policy, the worker will execute

the spawned task eagerly, i.e., th worker first works on the spawned task. Under

the help-first policy, the worker will defer the execution of the spawned task and

instead execute the spawned task by continue execution on the parent task, i.e., the

worker first asks for help from the other workers for executing the spawned tasks.

This thesis shows that the work-first and help-first policies have different stack and

memory bounds and also exhibit scalability limitations in different scenarios.

6

Locality

Locality is the phenomenon of the same value or related storage locations being

frequently accessed by the same CPU. Modern computer architectures are built with

multiple memory hierarchies, such as registers, L1, L2, L3 cache etc, in order to

exploit locality at different levels. It is much more expensive to access data that lie

further from the processor in the memory hierarchy than to access data that reside

closer to the processor. As the memory hierarchy grows deeper, the relative gap in

access time increases by orders of magnitude.

In task parallelism, although the programmer does not express the parallelism

from the data perspective, it is still important to exploit locality to achieve good

performance. Past research has shown that significant speedup can be achieved by

making the work-stealing schedulers aware of the data locality of the tasks being

scheduled [3]. This thesis presents a locality-aware scheduling frame and show exam-

ples of using the framework to improve the data locality in task parallelism.

1.3 Thesis Statement

Our thesis statement is as follows:

Work-stealing schedulers with policy adaptation and locality-awareness can provide

a scalable and robust runtime foundation for dynamic task parallelism on multi-core

systems.

1.4 Research Contributions

This dissertation makes the following contributions:

• A new work-stealing runtime system called SLAW for the Habanero-Java pro-

gramming language, which is a Java-based task-parallel language. SLAW stands

for Scalable Locality-aware Adaptive Work-stealing. SLAW has the compiler

support to ensure the runtime APIs are always called correctly.

7

• A new work-stealing scheduling framework that support both work-first and

help-first policies in async-finish parallelism.

• A non-blocking work-stealing deque implementation for garbage collected run-

time systems like Java.

• A study of both pros and cons of different task scheduling policies in different

applications considering both performance and resource usage bound.

• An adaptive work-stealing scheduling algorithm that can obtain the best of

different scheduling policies with little or no additional overhead.

• A locality-aware work-stealing framework for programmers or compilers to ex-

ploit data locality (affinity) among tasks.

1.5 Thesis Organization

The rest of this thesis is organized as the following:

• Chapter 2 introduces the necessary background, definitions, notations and con-

cepts used in the thesis. The Cilk language and runtime as well as the basic

work-stealing implementation is discussed in this chapter.

• Chapter 3 presents the Habanero-Java programming language, which produces a

class of computations characterized by async-finish parallelism. The properties

of the async-finish parallelism is discussed in this chapter.

• Chapter 4 presents the implementation of SLAW including SLAW’s task syn-

chronization protocol and work-stealing deque extension.

• Chapter 5 presents an evaluation of task scheduling policies, the adaptive task

scheduling algorithms, its theoretical bounds and the experimental results of

locality-oblivious scheduling.

8

• Chapter 6 presents SLAW’s locality-aware scheduling and examples to use the

framework to improve data locality in task parallelism.

• Chapter 7 discusses the related work by comparing SLAW to other work-stealing

systems.

• Chapter 8 concludes the thesis.

9

Chapter 2

Background

This chapter introduces the necessary background, definitions, notations and concepts

used in the thesis.

2.1 Parallel Programming Models

Parallel programming models define how parallelism is expressed by programmers and

how applications are matched to underlying parallel systems. Parallel programming

models are judged by simplicity, expressibility and ability to deliver performance.

The ultimate goal is to provide a simple and expressive parallel programming model

without compromising much on performance.

Research on parallel programming models has a long history. Lots of parallel

programming models have been proposed. In this section, we discuss the address

space of parallel programming models, the traditional single-program-multiple-data

(SPMD) model and the task parallelism model that has become increasingly popular

in the past decade.

2.1.1 Address Space

In parallel programming, the address space defines how data are referred to. Two

common address space models are the distributed memory model and the global

address space model. In the distributed memory model, each data entity belongs

to exactly one processor and can only be addressed by that processor. Access to

remote data must be completed explicitly through communication. The distributed

memory model is a natural match for parallel systems in which each processor has its

10

own private memory. These include most supercomputer clusters and heterogeneous

accelerators such as GPUs. The advantage of the distributed memory model is that

it forces programmers to think about data distribution and communication. As a

result, it is more likely to produce a scalable program. The major disadvantages of

distributed memory model are lack of simplicity and productivity as most sequential

programmers are not used to the distributed memory model.

The global address space (GAS) model offers a single address space in which all

data can be found. It is a natural match for parallel systems with shared memory,

such as symmetric multi-processors (SMP). This model is a natural extension of

commonly used sequential programming models. One drawback of the pure global

address model is the lack of locality exploitation, which is required to achieve good

performance on many modern architectures.

The partitioned global address space (PGAS) model aims to combine the pro-

ductivity of the global address space model with the performance of the distributed

memory model. PGAS assumes a global memory address space that is logically

partitioned into portions. Each portion is local to one processor. Each data entity

logically resides in one portion and has affinity with the processor that is local to the

portion.

2.1.2 SPMD Model

Single-Programming-Multiple-Data (SPMD) is a commonly used traditional parallel

programming model in which the same program is launched on multiple processors

while each processor operates on its own portion of data. The term was first coined

by Darema et al. [26] In the SPMD model, each thread has a unique identifier to

distinguish itself with other threads. The thread identifier maps the computations of

the application to the threads.

Message Passing Interface (MPI) is the de facto standard for communications

between threads in parallel systems. MPI is based on the SPMD model and the

11

distributed memory model. Programmers using MPI write a single program that

is launched on multiple processes while each process has its own separate address

space. Processes communicate and synchronize with each other explicitly through

a standard message passing interface. MPI is widely used in computer clusters and

supercomputers due their high performance and portability. However, developing

MPI programs can be time-consuming and error-prone. For example, when the

programmer has the burden of managing all communication and synchronization in

MPI, the program is prone to deadlock.

OpenMP is a popular standard for shared memory parallel programs. OpenMP

is based the global address space model and uses the SPMD model for parallel

regions. OpenMP programmers typically start with a sequential program and enable

parallelism by adding program directives. Prior to OpenMP 3.0, OpenMP primarily

focused on data parallelism of loops. Since version 3.0, OpenMP adopts the task

concept and is a mix of SPMD and task parallelism.

Some PGAS languages are also based on the SPMD model. For example, UPC [33]

and CAF [68] are PGAS languages that extend C and Fortran respectively with SPMD

and a partitioned global address space.

Load Balancing in SPMD

During the execution of parallel programs, threads often synchronize with each other

through synchronization points such as barriers or blocking operations. Load imbal-

ance happens when faster threads reach the synchronization pointer before slower

threads, and the faster threads have to wait for the slower threads. Load imbalance

slows down the overall performance.

In modern applications and architectures, many factors may cause load imbalance,

including asymmetric processor speed, processor over-subscription and unevenly di-

vided work between synchronization points. For some irregular applications, it is

hard to evenly divide and map the work to threads.

12

Load balancing is especially challenging SPMD programs in which the mapping be-

tween computations and threads are specified by the programmer, and faster threads

may not be able to help with the computations of slower threads. Load balancing

for SPMD has been a topic of lots of research [59, 47, 16, 35]. For OpenMP parallel

loops, the programmer can specify the chunk size of the loop and how these chunks

should be scheduled. Hofmeyr et al. designed a tool to performance load balancing

of threads at the OS level in cases of processor over-subscription [46].

2.1.3 Task Parallelism

Task parallelism is a kind of parallel programming model in which programmers

focus on decomposing the problem into sub-computations, called tasks, that can run

in parallel. The task can be any piece of code, and the amount of work contained

varies from task to task. Programmers creating tasks without worrying about how

these tasks are mapped to the underlying threads. From the programmer’s view,

task scheduling and load balancing are automatically handled by the runtime. The

task-parallel runtime is responsible for scheduling tasks and migrating task from busy

threads to idle threads for load balancing.

Studies have shown that the task parallel model is more productive than the

SPMD model [32]. Task parallelism is becoming increasingly popular in the past

decade, and both task-parallel languages and libraries have been introduced. All

three programming languages supported by DARPAs High Productivity Computer

Systems (HPCS) project, which aims for developing a new generation of economically

viable high productivity computing systems, are dynamic task parallel language (X10,

Chapel, Fortress). StackThreads/MP and Intel Thread Building Block (TBB) are C-

based task parallel libraries. Doug Lea’s Java ForkJoin Framework [57] is a Java-based

task parallel library.

13

2.2 Task Scheduling

This section presents the task scheduling model assumed in this thesis and discuss

task scheduling paradigms.

2.2.1 Scheduling Model

A multithreaded computation can be modeled as a computation dag (directed acyclic

graph) of dynamic instruction instances connected by dependency edges as in [15, 5].

The instructions within a task are connected by continue edges, which represent the

sequential ordering of instructions.

During the execution of a program, a task may create, or spawn a child task so

that the spawned child task may run in parallel with the parent task. In this case,

a spawn edge is used to represent the dependency from the spawn instruction in the

parent task to the first instruction of the child task. Each task except the root task

has exactly one parent task. All tasks are connected into a spawn tree by spawn edges.

Besides, continue edges and spawn edges, join edges are used to represent depen-

dencies that may cause a task to stall at some instruction, waiting for the completion

of other instructions.

An example of a computation dag is shown in Figure 2.1. There are 6 tasks in

the computation dag, Γ1 to Γ6. The spawn tree is shown in Figure 2.2.

Continuation is a term originally used to represent the rest of a computation after

some point. The continuation of a task γ after some instruction v consists of all

instructions that can be reached by continue edges in task γ from instruction v. For

example, the continuation after v3 consists of instructions v6, v9, v10, v11andv15. The

term continuation is closely related to the term execution context, which represents

the information need to resume execution of a computation. The execution context

of a computation at one point is all the information needed to resume the execution

of the continuation after that point. Without ambiguity, these terms are often used

interchangeably.

14

v1 v2 v16 v17 v18 v19

v3 v6 v9 v10 v11 v15 v20 v21 v22

v23

v4 v5 v7 v8 v12 v13 v14

Continue edge Spawn edge Join edge

Γ1

Γ2

Γ3 Γ4 Γ5

Γ6

Figure 2.1 : Computation Dag

Γ1

Γ3

Γ6

Γ4 Γ5

Figure 2.2 : Task Spawn Tree

Given a computation dag, if every join edge goes from a task to its spawn tree

ancestor, the computation is called a strict computation. If every join edge goes from a

task to its spawn tree parent, the computation is called a fully-strict computation [15].

If a computation is strict and every join edge goes from the last instruction of a task

to its spawn tree ancestor, the computation is called terminally-strict [5].

A P -processor execution schedule of a multithreaded computation dag determines

which processor of a P-processor parallel computer executes which instruction at each

time step. A legal execution schedule must observe all dependencies, and, at any given

step, each processor may execute at most one instruction.

15

Each task allocates a chunk of memory, called its activation frame, when it starts

execution. This activation frame is used to store the local state of the task. The

activation frame may be deallocated after the last instruction of the task is executed.

In the serial depth-first execution of a multithreaded program, activation frames

represent the activation records on the call stack. The total maximum amount of

the memory used in the serial depth-first execution of the computation is denoted as

S1.

Given a computation dag, we use T1 to denote the total execution time of all

instructions in the computation dag and T∞ to denote the execution time spent on

the critical path. T1 is also called the work of the computation and is the execution

time on a single processor. T∞ is also called the span of the computation and is the

minimal execution time on an unbounded number of processors. The parallelism P̄

of the computation is defined as P̄ = T1/T∞.

Note that the computation dag should be studied in an a posteriori fashion. The

computation dag of a multithreaded program often depends factors that are not

known until runtime.

2.2.2 Scheduling Paradigms

Work-sharing and work-stealing are two task scheduling paradigms for task paral-

lelism. In work-sharing, when a new task is created, the creator works eagerly

to re-distribute the new task. The task re-distribution in work-sharing is usually

implemented by a centralized task pool. As shown in Figure 2.3, new tasks are

inserted to the task pool by busy workers (e.g., w1, w2), while idle workers (e.g., w3,

w4) are polling tasks from the pool. In a multithreaded environment, all accesses

to the task pool need to be synchronized. The centralized task pool can become a

scalability bottleneck when the number of workers increases, or when many fine-grain

tasks are created. The X10 v1.5 runtime implements the work-sharing paradigm using

java.util.concurrent ThreadPool Executor class [10].

16

......

w1 w2 w3 w4

Figure 2.3 : Work-sharing Scheduling Paradigm

w1 w2 w3 w4

......

Figure 2.4 : Work-stealing Scheduling Paradigm

In work-stealing, however, the underutilized workers take the initiative to steal

work from other busy workers. The busy worker only pays a small overhead to enable

the stealing. Work-stealing is CPU-efficient because the major overhead is incurred

by the underutilized idle workers for which the CPU cycle is wasted anyway. As

shown in Figure 2.4, work-stealing is implemented through distributed task pools.

The idea of work-stealing dates back at least to Burton and Sleep’s research in

1980s on execution models for functional programs on large number of computing

elements [18] and Halstead’s Multilisp implementation [42]. In 1990s, Blumofe and

Leiserson presented a work-stealing scheduling algorithm and provided time, space

and communication bounds for the parallel execution using the work-stealing algo-

rithm on the class of fully-strict computation [15]. Their work justified the folk wis-

17

dom that work-stealing is more efficient than work-sharing. Blumofe’s work-stealing

algorithm is employed in the runtime of the C-based task parallel language called

Cilk [39]. Blumofe and Leiserson’s pioneer work in work-stealing and Cilk greatly

inspire the design and implementation of Habanero-Java’s work-stealing runtime.

The implementation of work-stealing is critical in order to achieve good per-

formance and bounded resource usage. Section 2.3 describes the background of

the work-stealing implementation. In particular, Section 2.3.3 discusses the Cilk

implementation.

2.3 Work-stealing Implementation

This section describes the background of the work-stealing implementation. We

first describe some basic concurrency constructs. Then we discuss two common

forms of memory allocation, stack and heap allocation. Finally, we describe the

implementation of work-stealing systems using Cilk as an example. In particular, we

discuss the resource bound of work-stealing, the work-stealing deque implementation

and the work-stealing compiler support.

2.3.1 Basic multithreaded programming

This section describes three basic concurrency structures in multithreaded program-

ming as well as the the Java 5 memory model.

Lock

A lock is a synchronization mechanism for enforcing exclusive access to a resource in

an environment where there are many threads of execution. Locks are one way of

resolving concurrency conflicts.

Locks are supported in most modern operating systems; however, locks have

known performance disadvantages: First, locks may cause the thread that tries to

acquire the lock be blocked by the operation system until the lock is released. In the

18

worst case, the computation may be restricted to a single thread execution at any

given time. Second, locking adds overhead, even for situations when the chance of

conflict is known to be small.

Atomic Operations and Lock-free Algorithms

Many non-blocking algorithms, or lock-free algorithms, have been proposed to over-

come the performance disadvantages of locks [63, 84, 87, 77]. Non-blocking algorithms

relies on atomic operations. For example, compare-and-swap operation atomically

compares the content of a memory location to the given value and, if they are the

same, modifies the content of that memory location to the new value given. The

return result of the compare-and-swap operation must indicate whether it performed

the substitution or not.

Compare-and-swap operation is now supported in hardware by many computer

architectures and results in lower overhead than locks if the chance of conflict is

small. Besides, compare-and-swap operation will not cause the thread to be blocked

by the operation system.

Memory Barrier

Memory barriers are instructions that cause a processor to enforce ordering con-

straints on memory operations issued before and after the barrier instruction. A

barrier can also be a high level programming language statement that prevents

the compiler from reordering certain operations over the barrier statement during

optimization passes.

Different classes of barrier exist and may apply to specific sets of operations. A

load-load barrier prevents the reordering of two load instructions before and after

the barrier. A store-store barrier prevents the reordering of two store instructions

before and after the barrier. A load-store barrier prevents the reordering of load

instructions before the barrier with the store instruction after the barrier. A store-

19

load barrier prevents the reordering of store instructions before the barrier with the

load instruction after the barrier.

Memory barriers are used in many concurrency protocols involving parallel threads

to ensure proper ordering of instructions [28, 55, 71]. Memory barrier is also used to

implement the memory model.

Java 5 memory model

In parallel computing, the memory model specifies, for each read operation, what is

the set of store operations whose result can be returned [60, 4]. Sequential consistency

is the memory model that most programmers can naturally reason about [54]. It

requires that the result of any execution is the same as if the operations of all

the processors were executed in some sequential order, and the operations of each

individual processor appear in this sequence in the program order. The simplicity of

the sequential consistency model is achieved at the cost of performance. Most modern

architectures support consistency models that are weaker than sequential consistency.

The current Java memory model is a result of JSR 133 [73], which fixed serious

flaws in the memory model before Java 5 [74]. In the new Java 5 memory model,

all synchronization actions (e.g., read or write to a volatile variable) form a partial

order called happens-before order. This happens-before order subsumes the program

order: if one action occurs before another in the program order in one thread, it will

occur before the other in the happens-before order. The happens-before order for

synchronization actions from different threads can vary from execution to execution.

For a particular execution, one read is allowed to return the value of a write if that

write is the last write to that variable before the read along some path in the happens-

before order, or if the write is not ordered with respect to that read in the happens-

before order. Atomic variable is implemented through a volatile variable and all access

to an atomic variable is considered as access to volatile variable.

The example in Figure 2.5 illustrates how the programmer can reason about the

20

value that returns from the read operation. In the program, variable done is volatile

and save is not. One thread executes function done() and another thread executes

function check(). In this example, when the read of done returns true (line 10) in

check() and the branch is taken, the new Java memory model assures that any read

of save in the branch will return 5.

The reasoning is as follows: The write to save precedes the write to done in

program order. So there is a happens-before order from the write to save (line 5),

to the write to the volatile variable done (line 6). Similarly, the read of the volatile

variable done (line 10) happens-before the read of variable save in the branch (line

11). If the branch is taken, this implies the read of done at line 10 returns true,

which further implies that line 6 happens-before line 10 in this execution. By the

transitivity of the happens-before partial ordering, the write to the save at line 5

happens-before the read of the variable save in the branch. Thus the read of save

in the branch must return 5. Under the old Java memory model before Java 5, the

compiler may reorder the write to save at line 5 after the line 6 even done is declared

volatile.

The implementation of the work-stealing runtime in this thesis assumes on the

Java 5 memory model.

2.3.2 Stack and Heap Allocation

Memory usage is an important consideration in task scheduling. Stack and heap

allocation are two forms of memory allocation at runtime. If the memory usage

is not managed carefully, the parallel execution of the program may be terminated

prematurely due to either stack overflow or heap overflow.

In most modern computer architectures, each process or thread has a reserved

memory space referred to as its stack (also known as execution stack, runtime stack

or call stack). The stack is composed of activation records. Each activation record

corresponds to a call to a function: a new activation record is pushed onto the stack

21

1 class Volat i leExample {

2 int save = 0 ;

3 volat i le boolean done = fa l se ;

4 public void done () {

5 save = 5 ;

6 done = true ;

7 }

8

9 public void check () {

10 i f (done) {

11 // guarantees t ha t save = 5

12 }

13 }

14 }

Figure 2.5 : Sample use of volatile variables in Java 5

when a function is called and the topmost activation record is popped when the

function returns. The content of the activation record is machine dependent and

typically includes return address to the caller, parameter values and local variables.

Stack allocation is also called automatic allocation as the memory is automatically

allocated and freed as the function is called and returns.

The execution context of a thread refers to all information need to be saved when

a thread’s execution is interrupted and will resume later. The call stack of the thread

contains the value of local variables and is an important part of the thread’s execution

context.

Besides the stack allocation described above, heap allocation is another form of

memory allocation during the runtime of a program. Heap allocation is also called

dynamic allocation. The life time of the dynamically allocated memory exists until

it is freed by the programmer or collected by a garbage collector at runtime. The

pool of unused memory structured for dynamic allocation is called the heap. In the C

programming language, heap allocation is realized using the malloc function in the

22

standard library.

In multithreaded programming, each system-level thread has a separate stack, the

size of which is fixed by the operating system when the thread is created; however,

although the implementation of the heap allocation varies, each thread should be able

to dynamically request more memory from other threads or the operation system.

The major advantage of stack allocation over heap allocation is its simple and

efficient implementation. Different CPU architectures, operating systems, and pro-

gramming languages may use different calling conventions; however, most calling

conventions can be implemented with a few assembly instructions. For example,

the x86 processors family has hardware support for manipulating the stack of the

executing thread.

Due to the dynamic nature of heap allocation, the implementation of dynamic

memory allocation is not simple. Most research focuses on two problems: the in-

efficient space usage caused by fragmentation and the concern of scalability when

multiple threads are allocating and freeing objects frequently. Although, we have

seen great progress towards space-efficient and scalable dynamic memory allocators,

the bottom line is that the dynamic allocation is still much slower than the stack

allocation. In order to reduce the object allocation overhead, some compilers allocate

objects on stack instead of on heap when legal to do so.

Despite the advantages, stack allocation also comes with limitations. First, some

objects have to be heap allocated if they need a longer lifetime than that of the

function that creates them. Second, the maximum size of the stack is fixed when the

thread is created by the operating system, and can be as small as several Kilobytes

or Megabytes, while the size of the heap size is much larger. Using more stack than is

available will result in a crash due to stack overflow. We use the term, stack pressure,

to indicate how close a thread is to incurring stack overflow. The stack pressure is

increased when a function is called and decreased when the function returns. The

stack pressure can also be reduced by special forms of return operations such as a

23

longjmp instruction or throwing an exception. Recursive programs and programs that

make a lot of function calls are especially prone to stack overflow. One optimization

to reduce stack pressure is tail-call optimization. A tail call in a function f() is a

function call which is followed by a return to the caller of f(). Tail call optimization

removes the call stack manipulation of a tail call, and replaces the call by a jump to

the callee. Tail call optimization is used in many functional programming languages

which have higher stack pressure than traditional imperative language. In Scheme,

tail call optimization is mandatory.

2.3.3 Cilk’s work-stealing runtime

Cilk is a C-based task parallel programming language. In Cilk, the keyword spawn

indicates the function call that follows can safely run in parallel with other executing

code. The keyword sync indicates that execution of the current procedure cannot

proceed until all previously spawned functions have completed and returned their

results to the parent frame. There is an implicit sync before the end of each function.

As a result, all computations produced by Cilk are fully-strict.

Theoretical bounds

Cilk’s work-stealing runtime [39] is based on Blumofe’s work-stealing algorithm for

fully-strict computation [15]. Theoretical analysis shows that the work-stealing algo-

rithm has the following properties:

time efficient: the expected time to execute a fully strict computation on P proces-

sors is T1/P +O(T∞). This suggests that if there is abundant parallelism in the

computation, the scheduler can achieve almost linear speedup on P processors.

space efficient: the space required by the execution is at most S1P , i.e., P times the

space requirement of the depth-first execution. The space includes all memory

allocations and does not distinguish between stack and heap allocation.

24

communication efficient: the expected total communication between processors

of the algorithm is at most O(PT∞(1 + nd)Smax), where Smax is the size of

the largest activation frame and nd is the maximum number of times that any

thread synchronize with its parent. The communication can be considered as

the product of the expected number of steals O(PT∞(1 + nd)) and the amount

of data migrated during each steal Smax. The number of steals is expected to

increase with the growth of the number of processors and the critical path.

These theoretical properties justified the folk wisdom that work-stealing is more

efficient than work-sharing.

Work-first principle and its assumptions

Let TS be the execution time of the serial C-equivalent (also called the C-elision) of

the Cilk program. Cilk’s compiler and runtime tend to remove overhead away from

the work of the computation (T1) and minimizes the work overhead T1/TS. This is

called the work-first principle, which pervades many designs of the Cilk’s work-stealing

runtime, such as the THE protocol of deque operations described in Section 2.3.4 and

the two-clone compilation strategy described in Section 2.3.5. The work-first principle

allows Cilk to significantly reduce the cost of spawning a parallel task.

The work-first principle is justified based on three assumptions:

1. First, the Cilk’s work-stealing runtime runs in practice according to the theo-

retical analysis described above.

2. Second, parallel slackness exists in the computation, i.e., P̄ /P is sufficiently

large. Thus, the number of steals expected is relatively small.

3. Third, the execution time of the C-elision of the Cilk program TS can be

measured. In other words, it assumes the serial depth-first execution must

complete execution successfully within the resource limit.

25

Although the design of the Habanero-Java work-stealing runtime largely follows

the work-first principle, there are cases in which some extra code is introduced in

T1. Our thesis is that these extra code introduces only a small amount of overhead,

but significantly improve the scalability and robustness of the runtime when some

assumptions of the work-first principle do not hold.

The work-first principle shall not be confused with the work-first task scheduling

policy described in this thesis. The work-first principle refers to the principle that

removes overhead from the work of the computation (T1) . The work-first task

scheduling policy determines the order in which the tasks are executed. The work-

first task scheduling policy is also called the depth-first scheduling policy in some

literature.

2.3.4 Work-stealing deque

Most work-stealing runtimes use double-end queues (deques) to store tasks. The

performance of the deques is crucial to a work-stealing runtime and has attracted

much research [8, 44, 21, 64].

In a typical work-stealing runtime, every worker thread has a local double-ended

queue (deque) to store tasks. When a new task is created, it is pushed to the bottom-

end of the local deque of the worker. When a worker is idle, it first attempts to get

a new task by popping task from the bottom-end of the local deque, before making

attempts to steal from the top-end of other threads’ deques. Because there is only one

worker, i.e., the owner of the deque, can push and pop the deque from the bottom-

end, there is no contention between the operations at the bottom-end of the deque;

The conflicts between workers are caused by the steal operations, and thus called steal

conflict. Multiple workers can steal from the top-end of the deque, so there can be

steal conflict between the thieves. Steal conflict can also happens between the thieves

and the owner when there is only one task in the deque.

Cilk uses the THE protocol to manage deque operations as illustrated in Figure 2.6.

26

1 push () {

2 bottom++;

3 }

4

5 pop () {

6 bottom−−;

7 i f (top > bottom) {

8 bottom++;

9 lock (deque) ;

10 bottom−−;

11 i f (top > bottom) {

12 bottom++;

13 unlock (deque) ;

14 return FAILURE;

15 }

16 unlock (deque) ;

17 }

18 return SUCCESS;

19 }

20

21 s t e a l () {

22 lock (deque) ;

23 top++;

24 i f (top > bottom) {

25 top−−;

26 unlock (deque) ;

27 return FAILURE;

28 }

29 unlock (deque) ;

30 return SUCCESS;

31 }

Figure 2.6 : THE protocol (from [39] with variable renaming)

27

Under the 1-processor execution, the push and pop operations will contribute to the

work overhead T1/TS, while the steal operation does not. So under the work-first

principle, push and pop should be optimized even at the cost of an expensive steal

operation. Under the THE protocol, push operation does not grab a lock. The

pop operation does not grab a lock in most cases unless there can possibly be steal

conflicts. The steal operation, on the other hand, always grabs a lock to resolve steal

conflicts.

The pseudo-code in Figure 2.6 assumes sequential consistency. On most architec-

tures, memory barriers are inserted in the code to maintain sequential consistency.

Two store-load barriers are required between line 10 and 11 in the pop function and

between line 23 and 24 in the steal function respectively. THE protocol is blocking

because it uses lock to achieve mutual exclusion.

Some approaches have been proposed to improve the THE protocol.

Arora, Blumofe and Plaxton proposed a non-blocking deque algorithm for task

scheduling. Their deque implementation is called ABP deque [8]. ABP deque uses of

a pre-allocated fixed array and cannot properly handle the deque overflow situation.

This problem is fixed by the Chase-Lev’s deque implementation [21] described below.

Figure 2.7 to 2.11 shows the pseudo-code of Chase-Lev’s work-stealing deque.

Chase-Lev’s work-stealing deque has a dynamic circular array and two index pointers:

top and bottom. The circular array can grow dynamically. In order to prevent the

growth from interfering with other operations, the new array is constructed in such

a way that the index of the elements in the old circular array remain the same in

the new circular array. Therefore, old index pointers can be used to refer elements in

both old and new arrays.

Both index pointers are 64-bit long and monotonic. The monotonicity of the top

pointer guarantees the object o retrieved at line 61 is indeed the top entry of the

deque when the cas operation at line 62 returns true. Imagine the situation when

the thief thread is suspended after line 61 and the deque is reconstructed before the

28

1 public class CircularWSDeque {

2 public f ina l stat ic Object Empty = new Object () ;

3 public f ina l stat ic Object Abort = new Object () ;

4 private f ina l stat ic int Lo g I n i t i a l S i z e = . . . /∗ Log o f

5 the i n i t i a l array s i z e ∗/ ;

6 private volat i le long bottom = 0 ;

7 private volat i le long top = 0 ;

8 private volat i le Circu larArray act iveArray =

9 new Circu larArray (L o g I n i t i a l S i z e) ;

10 private boolean casTop (long oldVal , long newVal) {

11 boolean preCond ;

12 a tomica l l y {

13 preCond = (top==oldVal) ;

14 i f (preCond)

15 top=newVal ;

16 }

17 return preCond ;

18 }

Figure 2.7 : Pseudo code for CircularWSDeque class

thief thread resumes at line 62. Although the top pointer may return the same value

at line 61 and 62, the top entry of the deque may not be the same as the deque is

reconstructed. In parallel programming, this kind of problem is known as the ABA

problem.

The work-stealing deque of Habanero-Java runtime is a modified version of Chase-

Lev’s dynamic circular work-stealing deque. The modification is to fix the memory

leak problem of the Java implementation of Chase-Lev’s algorithm. The implemen-

tation is described in Section 4.5.1.

29

19 public void pushBottom (Object o) {

20 long b = this . bottom ;

21 long t = this . top ;

22 Circu larArray a = this . ac t iveArray ;

23 long s i z e = b − t ;

24 i f (s i z e >= a . s i z e ()−1) {

25 a = a . grow (b , t) ;

26 this . ac t iveArray = a ;

27 }

28 a . put (b , o) ;

29 bottom = b+1;

30 }

Figure 2.8 : Pseudo code of pushBottom operation

2.3.5 Language and Compiler Support

A program can only be executed in the compatible runtime environment and must

interact with the runtime in a correct way, or a runtime error may occur. Some work-

stealing runtimes deliver in the form as a library without compiler support [57, 58, 48].

The library approach is backward compatible: old programs still run correctly and

programmers who wish to exploit parallelism can rewrite them using the new work-

stealing library. However, the lack of compiler support reduces productivity and

limits the full functionality of task scheduling. The productivity is reduced because

programmers are given the burden to correctly interactive with the library when

creating and synchronizing tasks. The functionality of task scheduling is limited

because important information, the continuation of a task, is not available to the task

scheduler without compiler support. It is awkward to make programmers explicitly

specify the continuation of a task.

Dynamic task parallel languages simplify the effort to parallelize a sequential

program and allow programmers to take full advantage of the runtime. The dynamic

task parallel language is typical based on a sequential programming language to

30

31 class Circu larArray {

32 private int l o g s i z e ;

33 private Object [] segment ;

34 Circu larArray (int l o g s i z e) {

35 this . l o g s i z e = l o g s i z e ;

36 this . segment = new Object [1<<this . l o g s i z e] ;

37 }

38 long s i z e () {

39 return 1<<this . l o g s i z e ;

40 }

41 Object get (long i) {

42 return this . segment [i% s i z e ()] ;

43 }

44 void put (long i , Object o) {

45 this . segment [i% s i z e ()] = o ;

46 }

47 Circu larArray grow (long b , long t) {

48 Circu larArray a = new Circu larArray (this . l o g s i z e +1) ;

49 for (long i=t ; i<b ; i++) {

50 a . put (i , this . get (i)) ;

51 }

52 return a ;

53 }

54 }

Figure 2.9 : Growth function of the circular deque

express the semantics of the program and has parallel extensions to express par-

allelism. For example, the Cilk programming language is C-based and uses spawn

and sync to create and synchronize tasks. The compiler support is required to bridge

the gap between a dynamic task parallel language with its runtime. In fact, the

compiler and the runtime need to work together to support a new language or runtime

feature [39, 89, 85, 75]. The compilation strategy of the Cilk compiler is shown below.

31

55 public Object s t e a l () {

56 long t = this . top ;

57 long b = this . bottom ;

58 Circu larArray a = this . ac t iveArray ;

59 long s i z e = b − t ;

60 i f (s i z e <= 0) return Empty ;

61 Object o = a . get (t) ;

62 i f (! casTop (t , t+1))

63 return Abort ;

64 return o ;

65 }

Figure 2.10 : Pseudo code of steal operation

The Cilk compiler generates two clones for each cilk function: the fast clone and

the slow clone. The fast clone is always invoked on a spawn and is the clone executed

in 1-thread execution. According Cilk’s work-first principle, the fast clone is designed

to bear as few overhead as possible. The slow clone is invoked when the thief steals

a frame from a victim and then needs to resume execution from its appropriate

continuation. The slow clone contains operations to restore execution context such

as global and local variables etc.

Figure 2.12 shows the fast clone generated for the classical Fib example in Cilk.

Upon a spawn, the continuation is saved in a frame which is pushed onto the worker’s

deque (line 20) so that other workers can steal it. Continuation represents the work

in the current task after the spawn point. It contains the entry point (line 18) and the

value of the necessary variables that are required to resume execution in the slow clone

(line 19). After the continuation is pushed to the deque, the worker will execute the

spawned task eagerly (line 21). Whenever the worker returns from a spawned task,

it will first check if its deque is empty (line 22). If so, the worker aborts and becomes

a thief (line 23). Otherwise, it pops the bottom-most frame and continue execution.

32

66 public Object popBottom () {

67 long b = this . bottom ;

68 Circu larArray a = this . ac t iveArray ;

69 b = b − 1 ;

70 this . bottom = b ;

71 long t = this . top ;

72 long s i z e = b − t ;

73 i f (s i z e < 0) {

74 bottom = t ;

75 return Empty ;

76 }

77 Object o = a . get (b) ;

78 i f (s i z e > 0)

79 return o ;

80 i f (! casTop (t , t+1))

81 o = Empty ;

82 this . bottom = t+1;

83 return o ;

84 }

Figure 2.11 : Pseudo code for CircularWSDeque class

2.4 Locality

Blumofe’s work-stealing has both advantages and disadvantages in terms of cache

locality. On one hand, Blumofe’s work-stealing algorithm tends to execute tasks in

the same order as if it were in the sequential execution, and it is believed that there

is inherent data locality in the sequential execution [14, 67, 3]. On the another hand,

the randomized stealing in Blumofe’s work-stealing algorithm is cache-unfriendly.

In particular, for iterative data-parallel programs, the randomized stealing prevents

temporal data reuse between iterations. Acar et al. presents the lower and upper

bound on the number of cache misses using Blumofe’s work-stealing algorithm on

hardware-controlled shared-memory machines [3].

33

To exploit data locality between tasks, Habanero-Java uses a PGAS address

model and has a locality-aware scheduling framework. The details are presented

in Chapter 6.

34

1 int c i l k f i b (int n) {

2 i f (n<2) return n ;

3 int x = spawn f i b (n−1) ;

4 int y = spawn f i b (n−2) ;

5 sync ;

6 return x+y ;

7 }

8

9 int f i b (int n) {

10 f i b f r ame ∗ f ;

11 . . .

12 i f (n<2) {

13

14 return n ;

15 }

16 else {

17 int x , y ;

18 f−>entry = 1 ; // sav ing con t inua t ion (entry po in t)

19 f−>n = n ; // sav ing con t inua t ion (n)

20 push (f) ; // push con t inua t ion to deque

21 x = f i b (n−1) ; // c a l l f i b normal ly

22 i f (pop (x) == FAILURE) // check i f the con t inua t ion i s s t o l e n

23 return 0 ;

24

25 ;

26

27 return x+y ;

28 }

29 }

Figure 2.12 : Fib’s Cilk program and its compiler-generated fast clone (from [39] with
slight modification)

35

Chapter 3

Habanero-Java and Async-Finish Parallelism

This chapter describes the subset of the Habanero-Java programming language that

is supported by the work-stealing runtime and defines the async-finish parallelism

model.

3.1 Habanero-Java

Habanero-Java (HJ) [1] is a Java-based dynamic task-parallel language derived from

X10 v1.5 [20]. The full Habanero-Java language has a work-sharing runtime derived

from X10 v1.5 runtime. The parallel constructs described in this chapter is the subset

that are currently supported by a work-stealing runtime.

3.1.1 Asynchronous Task Creation: async

The async construct is used to create (fork/spawn) a statement as a new asynchronous

task.

stmt ::= async [schedule(wf | hf | dyn)] [(place expr)] 〈stmt〉;

This statement causes the parent task to create a new child task that executes

〈stmt〉. The parent task and the child task can run in parallel. An async statement

can optionally include a schedule clause and/or a place clause 1. The schedule clause

can take one of three possible values: wf, hf or dyn, which correspond to the work-first,

help-first and dynamic scheduling policies respectively. Task scheduling policies are

discussed in Chapter 5. By default, task scheduling policies are selected dynamically

1The full Habanero-Java language also supports phaser registration clauses [79] in async

statements

36

(dyn) on a per-task basis at the runtime. The place clause takes a place expression

p, and serves as an affinity hint for the task. Places are described in Section 3.1.4.

3.1.2 Task Synchronization: finish

stmt ::= finish 〈stmt〉;

This statement causes the parent task to execute 〈stmt〉 and then wait until all sub-

tasks created within 〈stmt〉 have terminated (including transitively spawned tasks).

Operationally, each instruction executed in a task has a unique immediately enclosing

finish instance/scope (IEF) [41]. Each dynamic instance of a finish statement

can be viewed as being bracketed between matching instances of startFinish and

endFinish instructions. An endFinish instruction for a dynamic finish F instance

serves as a join synchronization for all tasks with IEF = F . The main function is

enclosed by an implicit finish instance.

Figure 3.1 shows an example HJ code fragment and its computation dag. The first

instruction of the main task serves as the root node of the dag (with no predecessors).

Any instruction which spawns a new task will create a child node in the dag with a

spawn edge connecting the async instruction to the first instruction of that child task.

HJ tasks may wait on descendant tasks by executing a finish statement. We model

these dependencies by introducing startFinish (l2 in Figure 3.1) and endFinish

(l8 in Figure 3.1) nodes in the dag for each instance of a finish construct and then

create join edges from the last instruction of each spawned task within the scope of

finish to the corresponding endFinish instruction.

3.1.3 Atomicity: isolated

stmt ::= isolated 〈stmt〉;

The isolated construct is HJ’s renaming of X10’s atomic construct. As stated

in [20], an atomic block in X10 is intended to be “executed as if in a single step

during which all other concurrent tasks in the same place are suspended”. This

37

l1 S0;

l2 finish { //startFinish

l3 async {

l4 S1;

l5 async {

l6 S2;}

l7 S3;}

l8 } //endFinish

l9 S4;

l1 l3

l4 l5

l6

l7

l8l2 l9

!
0

!
1

!
2

Figure 3.1 : HJ computation dag

definition implies strong atomicity semantics for the atomic construct. However, all

X10 implementations that we are aware of are lock-based and do not enforce any

mutual exclusion guarantees between computations within and outside an atomic

block. As advocated in [56], we use the isolated keyword instead of atomic to

make explicit the fact that the construct supports weak isolation rather than strong

atomicity.

3.1.4 Places

Habanero-Java is based on the Partitioned-Global-Address-Space (PGAS) [93] ad-

dress model. The global address space is partitioned into multiple places. The

number of places is fixed when the program is launched; there is no construct to

38

create a new place. This is consistent with current programming models, such as

MPI [81], UPC [33], and OpenMP [69], that require the number of processes/threads

to be specified when an application is launched.

Unlike X10, current HJ only associates places with tasks not with data. Data

locality is instead achieved indirectly by say assigning two tasks with the same data

affinity to execute in the same place.

Each task initially has a place expression to represent its locality attribute. On

hardware-controlled shared-memory machines, the locality attribute serves as a lo-

cality hint as the runtime is free to schedule the task on any worker. At runtime, a

task can obtain a reference to the place of the executing worker by evaluating the

place expression here. Upon spawning a child task in an async statement, the child

task will derive its locality attribute from its parent’s dynamic place, unless an place

expression is specified.

3.1.5 Task scheduling points and restrictions

In Habanero-Java runtime, a worker can switch from one task to another task only at

task scheduling points (also called task switching points). There is a task scheduling

point (1) before and after each asynchronous task, and (2) after each endFinish.

Unlike OpenMP 3.0 which has task scheduling restrictions regarding tied tasks,

Habanero-Java currently does not have any task scheduling restrictions at task schedul-

ing points.

3.1.6 Runtime Deployment

A deployment configuration is required upon launching the runtime. The deployment

file specifies the number of workers, the number of places, and the mapping between

workers and places and the mapping between places and hardware processors.

Figure 3.2 shows a sample locality-aware runtime deployment file. The first line

specifies the number of workers and the number of places. For the 4 Quad-core Intel

39

16 8 // number_of_workers number_of_places

0 @ 0 -> 0 4 // worker_id @ place_id --> processor ids...

1 @ 0 -> 0 4

2 @ 1 -> 8 12

3 @ 1 -> 8 12

4 @ 2 -> 1 5

5 @ 2 -> 1 5

6 @ 3 -> 9 13

7 @ 3 -> 9 13

8 @ 4 -> 2 6

9 @ 4 -> 2 6

10 @ 5 -> 10 14

11 @ 5 -> 10 14

12 @ 6 -> 3 7

13 @ 6 -> 3 7

14 @ 7 -> 11 15

15 @ 7 -> 11 15

Figure 3.2 : Locality-aware runtime deployment for a 4 Quad-Core Xeon SMP
machine

Xeon SMP machine, the number of workers is set to 16 because there are 16 cores.

Because each core pair shares a L2 cache, there are 8 separate L2 caches in the system.

Thus, the number of places in the locality-aware deployment is chosen as 8. The rest

of the file specifies the place of each worker and the processors that each worker is

bound to.

3.2 Async-Finish Parallelism

Async-finish parallelism is defined as a class of computation that can be generated

by async and finish constructs. The multithreaded computation model described in

Section 2.2.1 is very general. In practice, we are interested in a particular class of

computation dags that can be generated by a task-parallel language, and that can be

40

scheduled efficiently.

For async and finish constructs, as shown in Figure 3.1, we assume that task is

started by a spawn instruction at an async, and instructions in the finish statement

are enclosed by startFinish and endFinish instruction. The sync edge goes from

the last instruction of a task to a endFinish instruction in one of its ancestors in the

task spawn tree.

In HJ, a finish statement can only force the completion of descendant tasks 2. As

a result, all computations generated by HJ are strict computations. In HJ, however,

tasks are synchronized at the endFinish instruction of its immediate enclosing finish

instance, not at the end of its parent task. Thus the computation produced by HJ is

not necessarily fully-strict. This is different from Cilk [15] and Cilk++ [9] in which

all computations are fully-strict due to the implicit sync statement at the end of each

cilk function.

In both Cilk and HJ, data dependencies are forced by task synchronization. While

Cilk uses the sync keyword to synchronize all sub-tasks, HJ uses finish to synchronize

all tasks spawned within the finish scope. Task synchronization forces the completion

of the entire task, not a particular instruction. Thus the sync edge must start from

the last instruction of a task. Therefore all computation dags generated by both Cilk

and HJ are terminally-strict.

Although all computations generated by async-finish constructs are terminally-

strict, the converse is not true. Figure 3.3 and 3.4 show computation dags that are

terminally-strict, but cannot be generated by the async and finish constructs.

In Figure 3.3, Γ3 spawns Γ4 and Γ2 synchronizes Γ3. Because Γ2 synchronizes

Γ3 through a join edge from v14 to v16, then v16 must be endFinish. Since a

finish instance synchronizes all sub-tasks that are created transitively, any sub-task

of Γ3 must be synchronized on or before v16. If either v5 or v6 is startFinish,

then Γ4 should be synchronized to Γ3. Otherwise, Γ4 should be synchronized to Γ2.

2The full Habanero-Java language also supports more general force operations for futures [42]

41

Γ1

Γ2

Γ3

Γ4

v2

v3 v4

v5 v6 v7

v11v8 v9 v10 v12

v13 v14

v15

v1

v16 v17

v18 v19 v20

Figure 3.3 : This computation dag is terminally-strict computation but not async-
finish computation

Γ1

Γ2

Γ3 Γ4

v2

v3 v4

v5 v6 v7 v11v8

v9

v10 v12 v13

v14 v15

v1

v16 v17

v18 v19 v20

Figure 3.4 : This computation dag is terminally-strict computation but not async-
finish computation

Therefore, it is impossible that Γ4 is synchronized at Γ1, and this computation cannot

be generated by async-finish constructs.

In Figure 3.4, Γ1 spawns Γ2 and Γ2 spawns Γ3. Because Γ3 is synchronized at Γ2,

v3 must be startFinish and v16 must be endFinish. As a result, Γ4 (spawned at v9)

must be synchronized to Γ2, not Γ1. Therefore this computation cannot be generated

by async-finish constructs either.

In the rest of this section, we first present the definitions and notations for the

spawn tree and sync tree for terminally-strict computation. We then summarize key

properties of async-finish computations. These properties are used in the proof of the

42

space-bound of the adaptive scheduling algorithm in Section 5.2.

3.2.1 Spawn and Sync Trees

Given a computation dag, the spawn tree of the computation is defined as follows:

the node set of its spawn tree contains all tasks, and task T1 is task T2’s parent if

there is a spawn edge from T1 to T2. Given a task γ, we use STspawn(γ) to denote the

set of tasks in γ’s subtree (including γ) in the spawn tree of the dag and PRspawn(γ)

to denote γ’s spawn tree parent.

For terminally-strict computations , the sync tree can be defined as follows: each

node in the sync tree corresponds to a dynamic instance of a task. There is an edge

from task γa to γb in the sync tree if there is a sync edge in the dag from γb to γa.

Given a task γ, we use STsync(γ) to denote the set of tasks in γ’s subtree (including

γ) in the sync tree and use PRsync(γ) to denote γ’s parent in the sync tree. The sync

tree is well defined for terminally-strict computations because for each task except

the root task, there is exactly one join edge goes from the last instruction to an

endFinish instruction.

In fully-strict computations, the spawn tree is same as the sync tree. This is not

the case for terminally-strict computations created by async-finish constructs. For

example, Figures 3.6 and 3.7 show the spawn tree and the sync tree respectively for

the HJ code listed in Figure 3.5. Notice that T2 spawns T3 at line 6, so T2 is T3’s

parent in the spawn tree. However, both T2 and T3 have the same sync tree parent

T1 because both T2 and T3 are spawned within the finish instance created at line 2 of

task T1, and they are synchronized at the end of finish instance at line 16 of T1.

3.2.2 Properties of Async-Finish Computation

We summarize properties of async-finish computations. These properties are used in

the proof of the space bound of the adaptive scheduling algorithm in Section 5.2.

Property 3.2.1. If γa spawns γb, then either PRsync(γb) = γa or PRsync(γb) =

43

1 //T1

2 f i n i s h {

3 //T1

4 async {

5 //T2

6 async T3 ;

7 f i n i s h {

8 //T2

9 async T4

10 }

11 }

12 f i n i s h {

13 //T1

14 async T5

15 }

16 }

Figure 3.5 : HJ Code

T1

T2

T3 T4

T5

Figure 3.6 : Spawn Tree for the HJ Code
Snippet in Figure 3.5

T1

T2 T3

T4

T5

Figure 3.7 : Sync Tree for the HJ Code
Snippet in Figure 3.5

PRsync(γa). In both cases, γa ∈ STsync(PRsync(γb)).

Intuitively, the two cases in Property 3.2.1 corresponds to whether the parent task

γa is in a finish scope or not.

Property 3.2.2. If γb ∈ STspawn(γa) and PRsync(γb) = γa, for all γ such that γb ∈

STspawn(γ) and γ ∈ STspawn(γa)− {γa}, we have PRsync(γ) = γa.

44

Property 3.2.2 follows directly from Property 3.2.1. It says if there is a spawn

chain from γa to γb and γb syncs to γa, all tasks on the chain except γa should sync

to γa.

The computation dag in Figure 3.3 is not an async-finish computation due to the

violation of Property 3.2.1 and 3.2.2.

Property 3.2.3. At any step in the schedule, when γa spawns γc, if there exists a

live task γb such that PRsync(γb) = γa, we have PRsync(γc) = γa.

The live task γb such that PRsync(γb) = γa implies that the dynamic IEF instance

of γb is instantiated in γa and this instance will also synchronize all the child task of

γb, e.g., γc.

The computation dag shown in Figure 3.4 is not an async-finish computation due

to the violation of Property 3.2.3.

45

Chapter 4

HJ Work-Stealing Implementation

This chapter presents the implementation of the HJ work-stealing runtime called

SLAW. The design is inspired by Cilk-style work-stealing [39], however, there are

important differences in both compiler and runtime work-stealing support. The dif-

ferences stem from the support for HJ language features, two task scheduling policies

and locality-awareness. This chapter presents the implementation to support async-

finish parallelism and two task scheduling policies. The locality-aware scheduling

framework is presented in Chapter 6.

4.1 Work-stealing Task Scheduling Policies

In Blumofe’s work stealing algorithm [15], when a task γa spawns task γb, the processor

that spawns γb will start to work on γb eagerly, and the continuation of γa after the

spawn might be stolen by other idle processors. This strategy is called the work-first

task scheduling policy. As the alternative, the processor can stay on γa and let another

processor help execute γb. the processor will work on γb later if γb is not picked up

by other processors. This alternative strategy is called the help-first task scheduling

policy.

The naming of the work-first and help-first can be understood from the perspective

of the worker of the parent task. Under the work-first policy, the worker of the parent

task will work on the child task first. Under the help-first policy, the worker of the

parent task will ask other workers to help execute the child task first. The work-first

policy is also called depth-first by some literatures because in 1-thread execution all

the tasks will be executed in the order of depth-first traversal of the task spawn tree.

46

Γ1

Γ3

Γ6

Γ4 Γ5

Depth-first traversal: Γ1, Γ2, Γ3, Γ4, Γ5, Γ6
Breath-first travesal: Γ1, Γ2, Γ6, Γ3, Γ4, Γ5

1-thread work-first schedule: Γ1, Γ2, Γ3, Γ4, Γ5, Γ6
1-thread help-first schedule: Γ1, Γ6, Γ2, Γ5, Γ4, Γ3

Figure 4.1 : Example of task scheduling under the work-first and the help-first policy
vs. depth-first and breath-first traversal

Tasks scheduled under the help-first policy, on the other hand, are not executed in

the breath-first order. Figure 4.1 shows a task spawn tree and the 1-thread execution

order of the tasks under the work-first policy and the help-first policy.

This chapter presents the implementation of both task scheduling policies in

a single work-stealing runtime. The study of task scheduling policies presented

Chapter 5 discuss why we need to support both policies in a single runtime.

4.2 Escaping Asyncs and Finish Node

An escaping async is defined to be a task that may outlive its parent task. An escaping

async can continue execution even after its parent task has terminated. Escaping

asyncs are allowed in languages that produce terminally-strict computations but not

fully-strict computations.

As an example, consider the Habanero-Java implementation of the parallel-DFS

algorithm [23] shown in Figure 4.2. A single finish scope at line 19 suffices for all

recursive descendant tasks spawned at line 14. It is possible for a call to compute()

in a child task to outlive a call to compute() in a parent task. The only constraint

is that all async calls to compute() must complete before the root task can continue

execution past line 19. In contrast, if the algorithm is implemented in Cilk which

generates fully-strict computations, the implicit sync operation inserted at the end

47

1 class V {

2 V [] ne ighbors ;

3 V parent ;

4 V (int i) {super (i) ; }

5 boolean t ryLabe l ing (V n) {

6 i s o l a t e d i f (parent == null)

7 parent = n ;

8 return parent == n ;

9 }

10 void compute () {

11 for (int i =0; i<ne ighbors . l ength ; i++) {

12 V e = ne ighbors [i] ;

13 i f (e . t ryLabe l ing (this))

14 async e . compute () ; // escap ing async

15 }

16 }

17 void DFS() {

18 parent = this ;

19 f i n i s h compute () ;

20 }}

Figure 4.2 : Code for parallel DFS spanning tree algorithm in HJ

of each task ensures that each parent task waits for all its child tasks to complete. In

HJ terms, this would be equivalent to adding an additional finish scope that encloses

the body of the compute function.

To support escaping asyncs in HJ, the finish node class is designed for task

synchronization. Every worker maintains a finish node class instance representing the

IEF of the next instruction to be executed. The compiler will transform each finish

statement to a region of code bracketed by a pair of startFinish and endFinish

statements. The startFinish statement is further transformed to a runtime API

call to create a finish node. The endFinish statement is transformed to a runtime

API call to perform the task synchronization of the finish node. Both startFinish

48

and endFinish change the finish node maintained by the worker.

Finish nodes are maintained in a tree-like structure with the parent pointer point-

ing to the node of its Immediately Enclosing Finish (IEF) scope. Apart from the

parent pointer, each finish node has additional bookkeeping fields to ensure proper

synchronization of tasks at the endFinish. When a worker is blocked at a endFinish,

the continuation after the finish scope is saved in the finish node. This continuation

is subsequently picked up for execution after tasks created within the finish scope are

completed.

The details of the task synchronization protocol are described in Section 4.5.2.

4.3 Asynchronous Calling Convention

Besides escaping asyncs, HJ and Cilk differ in the asynchronous calling convention

to parallel functions. From the language perspective, a function is a parallel if it

may spawn a child task within its body or it calls other parallel functions. In Cilk,

functions are classified as parallel cilk functions or sequential functions. Only a cilk

function can be spawned as a child task and only cilk function may spawn tasks.

Sequential calls to cilk functions are not permitted, though they can be simulated by

spawning the function and then performing a sync operation immediately thereafter.

This restriction has a significant software engineering impact because it increases

the effort involved in converting sequential code to parallel code, and prohibits the

insertion of sequential code wrappers for parallel code. In contrast, asynchronous

tasks in HJ are created in an async statement, and the task can be any statement.

HJ permits the same function to be invoked sequentially or via an async at different

program points 1.

The program shown in Figure 4.3 is valid in HJ but cannot be directly translated

to Cilk. In Cilk, C() and E() would be cilk functions because they (may) spawn tasks.

Thus C() and E() cannot be called sequentially in function B() and D() respectively.

1Cilk++ [9] supports this capability as well

49

The reason for the strict asynchronous calling convection in Cilk is that it simplifies

the implementation of saving and restoring the execution context of a task during in

work-stealing. Similar to the execution context of a thread, the execution context of a

task refers to all information need to be saved when a task’s execution is interrupted

and will resume later. With the calling convection restriction in Cilk, each invocation

of a cilk function corresponds to a spawning of a task. Therefore, besides those global

variables, only the PC and information in the activation record of the current function

need to be saved in the execution context of the current task.

In HJ, the execution context of the current task needs to contain information in

the activation record of the caller if the current function is called sequentially. This

is because if stealing occurs in the parallel function, the thief will return from the

callee and execute the statements after the call site. In other words, the continuation

contains all information in the activation records of the current function and that of

its serial callers in the call chain up to the function that is called asynchronously.

Consider the example in Figure 4.3. C1 and C2 label the points where continuations

are pushed. At C1, the continuation pushed should contain the stack of activation

records of function C, B, A. The thief that steals the continuation is responsible for

starting the continuation at C1 in function C. Upon returning from function C, the thief

will resume the execution at L2 of function B. The thief may again return to function A

at L1. Similarly, the continuation pushed at C2 should contain the activation records

of function E and D.

A naive way to support a sequential call to a parallel function in a work-stealing

runtime is to enclose the sequential call in finish-async. This approach reduces

parallelism by disallowing the code after the sequential call to run in parallel with

the task that escapes the callee of the sequential call. We are interested in solutions

that do not entail unnecessary serialization of tasks.

One possible solution is to reconstruct the execution context lazily upon stealing.

When the thief is stealing, it could first make a copy of the runtime stack of the

50

!"#$%$

$$&"#'$

()*$+++$

,$

&"#$%$

$$-"#'$

(.*$+++$

,$

-"#$%$

$$/0123$4"#'$

-)*$+++$

,$

!"#$%&'()*&'

+'

,'

('

("%%-./'!0"12'

3'

4'

3&56&' ().0-.6"0-).'

!0"12'

78'9','

7:'9'+'

(:'9'('

7;'9'3'

(8'9'4'

4"#$%$

$$5"#'$

(6*$+++$

,$

5"#$%$

$$78$"+++#$

$$$$/0123$5"#'$

-.*$+++$

,$

!"#$%$

$$&"#'$

()*$+++$

,$

&"#$%$

$$-"#'$

(.*$+++$

,$

-"#$%$

$$/0123$4"#'$

-)*$+++$

,$

!"#$%&'()*&'

+'

,'

('

("%%-./'!0"12'

3'

4'

3&56&' ().0-.6"0-).'

!0"12'

78'9','

7:'9'+'

(:'9'('

7;'9'3'

(8'9'4'

4"#$%$

$$5"#'$

(6*$+++$

,$

5"#$%$

$$78$"+++#$

$$$$/0123$5"#'$

-.*$+++$

,$

Figure 4.3 : Support for sequential call to a parallel function

victim before popping the frame out of the victim’s deque. Then, the thief is able

to reconstruct the continuation according to the copied stack before stealing and

the content in the stolen frame. Ideally, this approach minimizes the cost of context

saving, assuming the number of steals is few. However, this approach requires the thief

to access the runtime stack of the victim. This approach is feasible in C-based systems

but increases complexity in Java-based systems with managed runtimes. Further, this

stack-copy this approach is not portable.

In HJ, we use a portable approach that is feasible for use in managed runtimes.

The compiler will do whole program analysis to tag functions whose bodies, when

invoked by a worker, may cause the worker to perform context switch before re-

turning from the invocation. Context switches are defined formally in the context

of computation dags in Section 5.1.1. Informally, from the runtime’s persecutive,

context switches are used to represent situations when the execution context of a

worker is not handled automatically by the normal (sequential) calling convention

at a task scheduling point. In this work-stealing implementation, context switches

happen before the execution of every task spawned under the help-first policy or tasks

stolen from other workers. Therefore functions need to be tagged are those contain

non-trivial finish instances or spawn tasks under the work-first policy, as well as those

51

Ployglot Front-End

Habanero-Java
Program

Parallel
Intermediate

Representation

Work-sharing
Back-End

Work-stealing
Back-End

Figure 4.4 : HJ Compiler

that make sequential calls to tagged functions. Functions that only spawn tasks under

the help-first policy without any synchronization is not tagged because the execution

of those tasks is delayed after the return from the function invocation.

The compiler generates code to save the activation record of the current function

before calling a tagged function. As shown in Figure 4.3, the continuation of a task at

one point contains the stack of activation frames representing the activation records

of functions in the sequential call chain, with the activation frame representing the

activation record of the current function at the stack top. When the continuation is

stolen, the thief will resume execution by calling a series of slow clones depending

on the function represented by the activation frames in the continuation stack. The

work-stealing compilation strategy and the compiler-produced code are illustrated in

Section 4.4.

4.4 Work-stealing Compilation Strategy

Figure 4.4 shows the compilation process of the HJ program. HJ compiler is composed

of a front-end and a back-end. The front-end uses polyglot to parse a HJ source code

52

into an abstract syntax tree (AST). The abstract syntax tree is then transformed to

the parallel intermediate representation (PIR). The HJ compiler back-end produces

code that runs on a specific runtime, which can be either work-sharing or work-

stealing. This section describes the back-end work-stealing compilation strategy.

The HJ work-stealing compilation strategy is illustrated using the Fib example in

Figure 4.5. This fib computes Fibonacci number recursively. In fib(n) at line 13, it

spawns a child task fib(n-1) that can run in parallel with fib(n-2) in the parent task.

The child task is synchronized before the sum of the return values can be retrieved

at line 16. Because async statement does not return value, the return value is passed

through a box integer as one of the parameters.

53

1 int Do(int n) {

2 BoxInt r e s u l t = new BoxInt () ;

3 f i b (n , r e s u l t) ;

4 return r e s u l t . va lue () ;

5 }

6 f i b (int n , BoxInt r e s u l t) {

7 i f (n<2)

8 r e s u l t . setValue (n) ;

9 else {

10 BoxInt x = new BoxInt () ;

11 BoxInt y = new BoxInt () ;

12 f i n i s h {

13 async f i b (n−1, x) ;

14 f i b (n−2, y) ;

15 }

16 r e s u l t . s e t va l u e (x . va lue ()+y . va lue ()) ;

17 }

18 Main (int n) {

19 int r e s u l t = Do(n) ;

20 System . out . p r i n t l n (r e s u l t) ;

21 }

Figure 4.5 : Fib example in HJ using Integer Box to pass results

While the HJ compiler back-end produces bytecodes, we show their Java-equivalent

for illustrative purpose in this thesis. Figures 4.7 to 4.10 show the Java-equivalent

of the compiler generated code for the fib function with calls to the work-stealing

runtime. Figures 4.11 and 4.12 show the compiler generated Java-equivalent code for

the Do() and the main() function respectively.

For each function, the work-stealing compiler produces two classes: the function-

specific activation frame class derived from the abstract ActivationFrame class (Fig-

ure 4.7) and the function-specific task wrapper class derived from the TaskWrapper

class (Figure 4.8). For each function, the work-stealing compiler also produces two

54

1 public interface WorkerExecutable {

2 void execute (Worker worker) throws WorkerException ;

3 FinishTreeNode getF in i shScope () ;

4 }

5 public class ContinuationFrame implements WorkerExecutable {

6 public f ina l ActivationFrame head ;

7 private f ina l FinishTreeNode f i n i s hS c op e ;

8 public ContinuationFrame (Closure c) {

9 this . f i n i s hS c op e = c . getF in i shScope () ;

10 this . head = c . head ;

11 }

12 public FinishTreeNode getF in i shScope () {

13 return f i n i s hS c op e ;

14 }

15 @Override

16 public void execute (Worker worker) throws WorkerException {

17 ActivationFrame f = head ;

18 worker . ge tClosure () . head = f ;

19 while (f != null) {

20 f . execute (worker) ;

21 f = f . next ;

22 }

23 }

24 }

Figure 4.6 : Continuation Frame

static code versions: the fast clone (Figure 4.9) and the slow clone (Figure 4.10).

The function-specific activation frame class of function f contains the function pa-

rameters and local variables. The class represents the activation record of the function

f on the runtime call stack. The function-specific activation frame implements the

execute() function derived from the abstract super class. The execute() function takes

the current worker as a parameter and calls the slow clone of the function f (line 37),

55

25 class runFibActivationFrame extends ActivationFrame {

26 // parameters

27 int n ;

28 // Run func t i on has a re turn va lue

29 Object re tObjec t ;

30 // l o c a l v a r i a b l e s

31 BoxInt r e s u l t ;

32 public runFibActivationFrame (int n) {

33 this . n = n ;

34 }

35 @Override

36 public void execute (Worker worker) throws WorkerException {

37 runFibSlow (worker , this) ;

38 }

39 }

Figure 4.7 : Fib Activation Frame Class

40 class FibTaskWrapper extends TaskWrapper {

41 // parameters

42 public BoxInteger r e s ;

43 public int n ;

44 FibTaskWrapper (Worker worker , BoxInt res , int n) {

45 super (worker . getCurrentFin i shScope ()) ;

46 this . r e s = r e s ;

47 this . n = n ;

48 }

49 @Override

50 public void execute (Worker worker) throws WorkerException {

51 Fib Fast (worker , this . res , this . n) ;

52 }

53 }

Figure 4.8 : Fib Task Wrapper Class

56

54 private stat ic void Fib Fast (Worker worker , BoxInt res , int n)

55 throws WorkerException {

56 i f (n < 2) {

57 r e s . v = n ;

58 return ;

59 }

60 boolean f a s t = true ;

61 FibActivationFrame f ibAf = new FibActivationFrame (res , n) ;

62 worker . beginMethod (f i bAf) ;

63 worker . s t a r tF i n i s h () ;

64 BoxInt x = new BoxInt () ;

65 i f (use he lp f i r s t po l i c y) {

66 worker . pushTaskWrapper (new FibTaskWrapper (worker , x , n − 1)) ;

67 f a s t = fa l se ;

68 } else {

69 f ibAf . x = x ;

70 f i bAf . pc = 1 ;

71 worker . pushContinuation () ;

72 Fib Fast (worker , x , n − 1) ;

73 worker . popAndAbortOnSteal () ;

74 }

75

76 f i bAf . x = x ;

77 f i bAf . y = y ;

78 f i bAf . pc = 3 ;

79 i f (f a s t)

80 worker . endFinishFast () ;

81 else

82 worker . endFinishSlow () ;

83 r e s . v = x . v + y . v ;

84 worker . endMethodFast () ;

85 }

Figure 4.9 : HJ Fib Fast Clone

57

86 private stat ic void Fib Slow (Worker worker , FibActivationFrame f ibAf)

throws WorkerException {

87 // r e s t o r e l o c a l v a r i a b l e s

88 BoxInt r e s = f ibAf . r e s ;

89 int n = f ibAf . n ;

90 BoxInt x = f ibAf . x ;

91 BoxInt y = f ibAf . y ;

92 switch (f i bA f . pc) {

93 case 1 :

94 y = new BoxInt () ;

95 i f (use he lp f i r s t po l i c y) {

96 worker . pushTaskWrapper (new FibTaskWrapper (worker , y , n − 2)) ;

97 } else {

98 f ibAf . x = x ;

99 f i bAf . y = y ;

100 f ibAf . pc = 2 ;

101 worker . pushContinuation () ;

102 Fib Fast (worker , y , n − 2) ;

103 worker . popAndAbortOnSteal () ;

104 }

105 case 2 :

106 f i bAf . x = x ;

107 f ibAf . y = y ;

108 f ibAf . pc = 3 ;

109 worker . endFinishSlow () ;

110

111 case 3 :

112 r e s . v = x . v + y . v ;

113 worker . endMethodSlow () ;

114 }

115 }

Figure 4.10 : HJ Fib Slow Clone

58

and is invoked when a continuation containing f’s activation frame is stolen.

Figure 4.6 shows the code of the Continuation class in the runtime. As described in

Section 4.3, The continuation contains a list of ActivationFrames (line 6). The execute

method unwinds and invokes the execute() method of every activation frame (line

17-22) in the continuation.

Since HJ compiler extracts (outlines) the async body into a separate method, the

runtime assumes that the async body consists of a call to function f. The function-

specific task wrapper class of function f represents function f as an asynchronous task.

The execute function takes the current worker and original function parameters, and

invokes the fast clone of function f (line 51). The execute function of a task wrapper

is invoked when the task wrapper is stolen.

The fast clone of a function f runs when f is spawned under the work-first policy,

called sequentially or called by f ’s task wrapper. When entering the fast clone of

function f, an activation frame class function f is instantiated to represent the activa-

tion record of f on the runtime call stack (line 61). This activation frame instance is

then saved in the execution context of the worker through the beginMethod() API

call (line 62) and removed from the execution context through the endMethodFast()

API call (line 84) when leaving the fast clone of function f. Each worker maintains

a stack of activation frames to represent the current execution context, which is also

called the closure. Upon spawning a child task, the specific action taken depends

on the task scheduling policy: Under the help-first policy, a task wrapper of the

asynchronous task function is instantiated and submitted to the runtime (line 66);

Under the work-first policy, the current activation frame is saved (line 69,70), and

the current closure of the worker is saved in a continuation frame that is pushed

to the deque(line 71). After saving the current closure in the continuation frame,

the closure is reset in pushContinuation method (line 71) before making a normal

sequential function call to the asynchronous task function (line 72). When the call

returns normally (not through an exception), the continuation frame is popped and

59

the closure is restored (line 73).

The slow clone is invoked when the continuation frame is stolen. The execute

method of a continuation frame will pop the activation frames and invoke the execute

method of the activation frames (line 17-22). In the beginning of the slow clone,

local variables get their value from the activation frame (line 88-91). On exiting the

slow clone, the endMethodSlow method is called to update the current closure of the

worker. While return value is automatically handled through the calling convection

in fast clones, a subtle issue arise when a value is returned in slow clones. When a

function returns value in a slow clone, the return value is passed as a parameter to

the endMethodSlow function. For example, because function Do returns an integer

value, the endMethodSlow of the slow clone of Do function is invoked with the return

value as the parameter at line 130. The endMethodSlow function will invoke the

setReturnResult method of the caller’s activation frame class - in this example -

the setReturnResult of the MainActivationFrame. The setReturnResult method

will set the proper field in the activation frame depending on the entry point.

4.5 Work-stealing Runtime Implementation

This section presents the implementation details of the HJ work-stealing scheduler.

We will first discuss the implementation of the work-stealing deque, which is the core

data structure for task stealing. Then we present the support for both work-first and

help-first policies under a unified runtime.

4.5.1 HJ Work-stealing Deque

The HJ work-stealing deque implementation uses atomic compare-and-swap(cas) op-

erations and is non-blocking. Compared to the algorithm described in Chase-Lev’s

dynamic circular work-stealing deque [21], this Java implementation will not cause

memory leak.

While it is true that Java programmers do not need to deallocate objects, memory

60

leak is still a problem in Java. Java garbage collector collects unused objects auto-

matically; however, the Java runtime thinks an object is unused only when it is dead,

i.e., not reachable through reference from live objects.

The Java implementation of a simple non-concurrent queue shown in Figure 4.13

illustrates the Java memory leak problem. In this example, it is very important to

set the queue cell to null at line 14. Otherwise, there may be a memory leak because

the automatic garbage collector will not be able to collect the return object o, since

the deque contains a reference to it.

Chase-Lev’s dynamic circular work-stealing deque performs compare-and-swap

operation on the deque top index pointer only without setting the corresponding

deque entry to null (line 17, 32 in Figure 2.10 and 2.11). In work-stealing, the

deque entry contains references to the activation frames, which in turn may contain

references to large arrays. Failing to garbage collect this deque entries may cause a

large portion of memory to be consumed by unused objects or arrays.

The HJ work-stealing deque implementation avoids this kind of memory leak by

performing atomic compare-and-swap operations on the deque entry. The pseudo-

code is shown in Figure 4.14 to 4.17. The worker successfully retrieves or steals the

entry if the worker is able to atomically set the entry to null. The stealing conflicts

are resolved by the compare-and-swap operation on the deque entry.

Resolving steal conflicts by performing cas operations on the entry requires that

the same object is not pushed multiple times to the deque. This assumption holds for

HJ work-stealing runtime. The objects pushed In HJ work-stealing, objects pushed

to the deque are either continuations or task wrappers, each of which corresponds

to a dynamic task spawn point. Either one continuation or task wrapper will be

instantiated depending on the task scheduling policy used.

One subtle issue arises when supporting the dynamic growth of the circular array.

As discussed earlier in Section 2.3.4, when the steal conflicts are resolved through the

index pointer, the grow function can be simply implemented by copying the deque

61

entries from one deque to another, because the index of each entry remains the same

in both deques. By resolving the steal conflicts through a cas operation on content

of the deque entry, the grow function cannot simply copy the deque entry because

it will create two deque entries with the same content, and two cas operations can

both succeed. In the HJ deque implementation, the grow function will perform a

cas operation on the old deque entry first and only copy the entry to the new deque

if the cas returns true (line 13,14). This guarantees that the cas operation on the

same entry in the old and new deque cannot both succeed. This increases the cost of

the growth function. However, because the array size is doubled upon each growth,

growth is expected to be a rare event.

4.5.2 Task Synchronization

As shown in Section 4.4, when a task is spawned under the work-first policy, the

worker executes the child task and the continuation of the parent task after the spawn

point is stored in the deque. When a task is spawned under the help-first policy, the

worker stays on the parent task and a task wrapper of the spawned task is stored in

the deque. Both continuations and task wrappers are considered executable tasks, or

simply executables by HJ work-stealing runtime, and can be stolen by workers.

Each executable has a field of class type FinishTreeNode to represent its IEF.

FinishTreeNode class, shown in Figure 4.18 is designed for task synchronization. All

dynamic finish instances form a tree structure through the parent references. For

each dynamic finish instance F , there is one global active worker counter (gwc), and

one local counter (lc) per worker. The global active worker counter counts the total

number of workers that are currently executing executables whose IEF=F . The local

counter for a worker counts the number of executables that are stored but yet to be

executed. All counters are volatile and atomic. The global active worker counter has

a version number (gwcVersion) which advances when the gwc is incremented from

0 to 1. The version number is used to detect the ABA problem of the global active

62

worker counter as discussed later in this Section. When a task waiting for child tasks

is suspended at endFinish of a finish instance, the continuation after endFinish is

stored in the finish instance.

We use two-level (global and local) counters in the task synchronization proto-

col: the global counter counter only counts active workers, not tasks, and the local

counter for each worker counts tasks pending execution. Compared to having a single

global counter that counts all incomplete tasks, this design reduces synchronization

overhead on the counters. According to the task synchronization protocol described

later, both the global and local counters may be updated by multiple workers. The

synchronization overhead on the atomic counters depends on the level of conflicts,

which is directly related to the number of steals. In fact, the updates of the global

active worker counter is triggered by steals and the local counter of a worker is only

accessed by the worker itself and the thief upon stealing. As discussed before in

Section 2.3.3, for programs with abundant parallelism, the number of steals is small

compared to the number of tasks. As a result, the synchronization overhead is small

for programs with abundant parallelism.

Figure 4.19 and 4.20 lists the pseudo-code of the task synchronization protocol.

After initialization, one worker start executing the main function, which begins with a

startFinish operation. Other workers start stealing. The runtime terminates when

the continuation after the main finish scope is executed.

We define the term check-in and check-out for a worker and a finish instance. A

worker checks into a finish instance F if it enters F by calling startFinish or it

begins to execute a executable of F after stealing it from the other worker. A worker

checks out of a finish instance F when (1) it completes a executable under F or it

is blocked at endFinish, and (2) there is no local executable under F on the local

deque. If there is still a local executable under F , the worker will defer the check-out

until all local executables under F are completed. Note that when a worker checks

into a new finish instance F by calling startFinish of F , it will not check-out of F ’s

63

parent, but instead, will choose the worker that executes the continuation after F as

its delegate to check-out F ’s parent. The check-in and check-out operation increments

(or initialize) and decrements the global active worker counter respectively. For each

check-in operation of F , there is exactly one check-out operation of F , though they

may be performed by two different workers through delegation.

Now we argue that the runtime guarantees that for any finish scope F , the

continuation after F is safely executed by exactly one worker:

• First, we argue that when verifyComplete(F) returns true at line 33, it is safe

to execute the continuation after F , i.e., all tasks spawned within the finish

scope F have been completed. When verifyComplete returns true, it verifies

that all workers checked into the finish scope have been checked out and there

is no worker that is holding a stolen task but has not checked in yet. The

former case is detected by verifying that the global worker counter is 0 as there

is exactly one check-out for each check-in. The latter is detected by comparing

the version number of the global worker counter before and after verifying all

local task counters are 0. Note that in the steal function, the thief checks in

(line 4) before the local task counter of the victim is decremented (line 5). If

there is a worker that steals a task but has not yet checked in, the local task

counter of the worker must be greater than 0. Observe that when a worker

checks out of F , there is no task under the F on its local deque. So when the

global counter of F is 0 and no stealing is happening, it is safe to execute the

continuation after F .

• Second, we observe that verifyComplete will return true after the last worker

decrements the global worker counter to 0. The CAS operation ensures that at

most one worker will execute the continuation in case there are multiple workers

competing for the continuation.

64

4.5.3 Optimization

Optimizations are inspired by the work-first principle, i.e., to reduce the overhead of

singled-threaded execution assuming there is no stealing.

One optimization is to lazily create the array of atomic local counters. Each

FinishTreeNode has a local counter for the worker that calls startFinish. The whole

array of local counters are created only upon the first steal. In 1-thread execution,

since there is no stealing, the array is not allocated at all.

Another optimization is to split the atomic local counters per worker into a private

local counter and a public steal counter. The private local counter is only accessed

by the worker locally. The public steal counter of the worker is incremented when

each time the worker becomes a victim of a steal. The testing of local counter with

0 in the previous protocol (line 42) can be substituted with checking if public steal

counter equals private local counter. In 1-thread execution, since there is no stealing,

only the private local counter will be incremented and decremented. The private local

counter does not need to be atomic thus does not trigger a lock on the bus.

65

116 private stat ic int Do Fast (Worker worker , int n) throws

WorkerException {

117 DoActivationFrame doCf = new DoActivationFrame (n) ;

118 worker . beginMethod (doCf) ;

119 BoxInt r e t = new BoxInt () ;

120 doCf . r e t = r e t ;

121 doCf . pc = 1 ;

122 Fib Fast (worker , ret , n) ;

123 worker . endMethodFast () ;

124 return r e t . v ;

125 }

126 private stat ic void Do Slow (Worker worker , DoActivationFrame doCf)

throws WorkerException {

127 BoxInt r e t = doCf . r e t ;

128 switch (doCf . pc) {

129 case 1 :

130 worker . endMethodSlow (r e t . va lue ()) ;

131 }

132 }

133 public f ina l stat ic class DoActivationFrame extends ActivationFrame {

134 int n ;

135 BoxInt r e t ;

136 public DoActivationFrame (int n) {

137 this . n = n ;

138 }

139 public void execute (Worker worker) throws WorkerException {

140 Do Slow (worker , this) ;

141 }

142 }

Figure 4.11 : Compiler generated code for Do function

66

143 public f ina l stat ic class MainActivationFrame extends ActivationFrame

{

144 int ans ;

145 int n ;

146 public MainActivationFrame (int n) {

147 this . n = n ;

148 }

149 public void execute (Worker worker) throws WorkerException {

150 main Slow (worker , this) ;

151 }

152 public void setReturnResu l t (Object v) {

153 switch (this . pc) {

154 case 1 :

155 this . ans = (In t eg e r) v ;

156 return ;

157 } } }

158 private stat ic void mainSlow (Worker worker , MainActivationFrame mainAf

) throws WorkerException {

159 int n = mainAf . n ;

160 int ans = mainAf . ans ;

161 switch (mainAf . pc) {

162 case 0 :

163 mainAf . pc = 1 ;

164 ans = Do Fast (worker , n) ;

165 case 1 :

166 System . out . p r i n t l n (ans) ;

167 worker . endMethodSlow () ;

168 }

169 }

Figure 4.12 : Compiler generated code for main function

67

1 class Queue {

2 Object [] array ;

3 int s i z e ;

4 int head , t a i l ;

5 . . .

6 public void enqueue (Object o) {

7 array [t a i l] = o ;

8 t a i l = (t a i l +1) % s i z e ;

9 }

10 public Object dequeue () {

11 i f (isEmpty ())

12 return null ;

13 Object o = array [head] ;

14 array [head] = null ; // the r e may be memory l e a k wi thout t h i s

l i n e

15 head=(head+1) % s i z e ;

16 return o ;

17 }

18 }

Figure 4.13 : Java queue implementation

68

1 public class HJWstDeque {

2 class Circu larArray {

3 private int s i z e ;

4 private AtomicReferenceArray<Object> segment ;

5 boolean casEntry (int i , Object expect , Object update) {

6 int index = i % s i z e ;

7 return this . segment . compareAndSet (index , expect , update) ;

8 }

9 Circu larArray grow (int b , int t) {

10 Circu larArray a = new Circu larArray (this . l o g s i z e + 1) ;

11 for (int i = t ; i < b ; i++) {

12 f ina l Object o = this . get (i) ;

13 i f (this . compareAndSet (i , o , null)) {

14 a . put (i , o) ;

15 } else

16 a . put (i , null) ;

17 }

18 return a ;

19 }

20 }

21 }

22 private volat i le int bottom = 0 ;

23 private volat i le int top = 0 ;

24

25 }

Figure 4.14 : HJ Work-stealing Deque class, Circular Array class and the grow
function

69

26 public void pushBottom (Object o) {

27 long b = this . bottom ;

28 long t = this . top ;

29 Circu larArray a = this . ac t iveArray ;

30 long s i z e = b − t ;

31 i f (s i z e >= a . s i z e ()−1) {

32 a = a . grow (b , t) ;

33 this . ac t iveArray = a ;

34 }

35 a . put (b , o) ;

36 bottom = b+1;

37 }

Figure 4.15 : HJ work-stealing deque pushBottom

70

38 public Object popBottom () {

39 int b = this . bottom ;

40 Circu larArray a = this . ac t iveArray ;

41 b = b − 1 ;

42 this . bottom = b ;

43 int t = this . top ;

44 int s i z e = b − t ;

45 i f (s i z e < 0) {

46 bottom = t ;

47 return Empty ;

48 }

49 Object o = a . get (b) ;

50 i f (s i z e > 0) {

51 a . put (b , null) ;

52 return o ;

53 }

54 i f (o == null | | ! a . casEntry (t , o , null)) {

55 this . bottom = t + 1 ;

56 return Empty ;

57 }

58 return o ;

59 }

Figure 4.16 : HJ work-stealing deque popBottom

71

60 public Object s t e a l () {

61 int t = this . top ;

62 int b = this . bottom ;

63 Circu larArray a = this . ac t iveArray ;

64 int s i z e = b − t ;

65 i f (s i z e <= 0)

66 return Empty ;

67 Object o = a . get (t) ;

68 i f (o == null)

69 return Abort ;

70 i f (! a . casEntry (t , o , null)) // here we assume frame i s not re−used .

71 return Abort ;

72 top = t+1;

73 return o ;

74 }

Figure 4.17 : HJ work-stealing deque steal

1 class FinishTreeNode {

2 FinishTreeNode parent ; // r e f e r ence to dynamic parent f i n i s h in s tance

3 AtomicInteger gwc ; // g l o b a l a c t i v e worker counter

4 int gwcVersion ; // ver s i on number o f gwc

5 ContinuationFrame suspendedContinuation ; // suspended con t inua t ion

6 AtomicInteger [] l c ; // l o c a l e x e cu t a b l e counters

7 . . .

8 }

Figure 4.18 : FinishTreeNode class

72

1 func t i on Object s t e a l () {

2 task = s t e a l task from vict im ’ s deque ;

3 f i n i s h = task ’ s f i n i s h scope ;

4 cur rent worker checks in under f i n i s h ;

5 f i n i s h . l c [v i c t im]−−;

6 return task ;

7 }

8 func t i on push task to deque (task) {

9 f i n i s h = current f i n i s h scope ;

10 f i n i s h . l c [th i s worke r]++;

11 this . deque . pushBottom (task) ;

12 }

13 func t i on check in (f i n i s h) {

14 i f (f i n i s h . gwc . getAndIncrement () == 0) ;

15 f i n i s h . gwc . v e r s i on++;

16 }

17 func t i on check out (f i n i s h) {

18 decrement f i n i s h . gwc ;

19 }

20 func t i on s t a r tF i n i s h () {

21 checks in new f i n i s h scope ;

22 }

23 func t i on endFinish () {

24 f i n i s h = current f i n i s h scope ;

25 save cont inuat i on a f t e r f i n i s h ;

26 return to runtime ;

27 }

Figure 4.19 : Task Synchronization Protocol

73

28 func t i on task OnTaskComplete () {

29 f i n i s h = current f i n i s h scope ;

30 task = g e t l o c a l t a s k under f i n i s h ;

31 i f (task != null) return task ;

32 check out f i n i s h ;

33 i f (ver i fyComplete (f i n i s h)) {

34 i f (CAS(f i n i s h . gwc , 0 , −1)) {

35 return f i n i s h . cont inuat i on ;

36 }

37 return g e t l o c a l t a s k ;

38 }

39 func t i on boolean ver i fyComplete (f i n i s h) {

40 vers ionOld = f i n i s h . gwc . v e r s i on () ;

41 i f (f i n i s h . gwc != 0) return fa l se ;

42 i f (not a l l l c o f f i n i s h 0)

43 return fa l se ;

44 versionNew = f i n i s h . gwc . v e r s i on () ;

45 return vers ionOld == versionNew ;

46 }

Figure 4.20 : Task Synchronization Protocol (cont)

74

Chapter 5

Adaptive Work-stealing

This chapter studies the pros and cons of both work-first and help-first task scheduling

policies. The conclusion is that both policies have pros and cons that are complimen-

tary to each other in different scenarios. This study motivates the design of the

adaptive scheduling algorithm used in HJ work-stealing runtime. This chapter is

concluded by experimental results of HJ work-stealing runtime.

5.1 Study of Task Scheduling Policies

This section presents the study of the work-first and help-first policies under different

scenarios: recursive parallelism and flat parallelism. Two aspects considered are

the performance and the memory usage. For performance, we consider the context

switch as the major source of overhead and analyze the cost of context switches in

both policies. For memory usage, we focus on the stack usage and heap usage.

5.1.1 Context Switch

We define context switch under the task scheduling model described in Section 2.2.1.

Given a schedule for a multithreaded computation dag, a context switch is said to

occur between two consecutive instructions a and b, if

1. a and b is not connected by a continue edge, AND

2. b is the instruction that will be executed after a in the serial depth-first schedule,

when spawn edge is considered a sequential call the child task.

75

For example, for the computation dag shown in Figure 2.1, the instructions are

numbered in the order of serial depth-first execution. The schedule ...v12− > v13− >

v14− > v18... has a context switch between v14 and v18 because v14 and v18 is not

connected by a continue edge and, under serial depth-first execution, v15 not v18

should be executed after v14. In another schedule v1− > v2− > v3− > v6− > v9− >

v4− > v5, there is a context switch between v9 and v4.

Context switches are a major source of overhead in a work-stealing scheduler [82]

for the following reasons. First, when there is a context switch, the execution context

of a worker is not handled automatically by the normal (sequential) calling convention

at a task scheduling point. In HJ, the call stack is cleared during the context switch

by throwing an exception that is to be caught by the scheduler. Second, it is believed

that there is inherent data locality in serial depth-first execution and deviations may

incur cold cache misses [3].

5.1.2 Recursive and Flat Parallelism

Recursive parallelism and flat parallelism are two common parallel patterns in task

parallelism. In recursive parallelism, problems are recursively decomposed and solved

using the divide-and-conquer approach. From the computation dag’s perspective, the

number of total number of tasks grows exponentially to the depth of the spawn tree.

Therefore, parallelism (T1/T∞) is typically abundant in recursive parallelism. For

example, in the two-way recursive fib(n) example in Figure 2.12, the total number

of tasks created is O(2n), of which only n tasks are on the critical path. the parallelism

is O(2n/n).

In flat parallelism, on the other hand, tasks are created iteratively. From the

computation dag’s perspective, the depth of the spawn tree is small as most tasks

spawned are leaf tasks. For a program that iteratively spawn N tasks (as shown in

Figure 5.1), the total number of task is N and the length of critical path is one task

(ignoring the scheduling overhead). Assuming each task contains equal amount of

76

work, the parallelism of this program is O(N). Compared to recursive parallelism

in which parallelism is typically abundant, flat parallelism may not have abundant

parallelism.

Recursion is a powerful and elegant way to decompose problems and express par-

allelism. Many HJ programs are written in the recursive style. Iterative parallelism,

on the other hand, is common in pointer-chasing programs and loop parallelism. In

practice, many graph or tree algorithms are a combination of both. For example, in

the parallel depth-first search algorithm shown in Figure 4.2, the depth-first search

algorithm is recursive, but for each node, the child tasks are spawned iteratively.

Depending on the shape of the input graph and the order of visit, the task spawn

tree is irregular. In order to perform well in those kind of algorithms, it is desirable

to tune the runtime performance on both recursive and flat parallelism.

5.1.3 Performance

Under the work-first policy, if there is only 1 worker thread, the worker will execute

all tasks in the same order as the equivalent sequential program. This results in no

context switch and reduced 1-thread execution time. Since the work-first principle

focuses on optimizing the 1-thread execution, the Cilk runtime whose design is pre-

vailed by the work-first principle, uses the work-first policy for all spawned tasks. If

there are multiple workers, because every stolen tasks are executed after a context

switch, the number of context switches equals the number of steals.

Under the help-first policy, because the worker executes the tasks lazily only at

the task synchronization point, every tasks are executed after a context switch.

We now consider the performance of both policies with respect to the number of

steals and total number of tasks. When the number of steals is relatively small com-

pared to the total number tasks, the work-first policy performs well in performance

due to few context switches.

We consider the situation when the number of steal is relatively high. Consider a

77

1 // T1

2 async S2 ;

3 async S3 ;

4 . . .

5 async SN;

6 S1 ;

Figure 5.1 : Task T1 spawns N-1 tasks consecutively.

scenario in which one busy worker creates N − 1 tasks consecutively (code shown in

Figure 5.1) and the other N − 1 workers are idle and polling for tasks. This scenario

leads to high stealing rate because any frame pushed to the deque is expected to

be stolen immediately. Let the total amount of work in each task is T , the cost of

push operation in tpush and the amount of time to migrate a task from one worker to

another be tmigrate. tmigrate consists of two parts: the time spent in the steal function

of the the deque tsteal and the time to do context switch before executing the new

task tcs. Under the work-first policy, all N − 1 task migrations are serialized. The

total amount of work under the work-first policy:

Twf
1 = (tpush + tsteal + tcs) ∗ (N − 1) +NT

and the length of the critical path:

Twf
∞ = (tpush + tsteal + tcs) ∗ (N − 1) + T .

Under the help-first policy, although the tasks have to be popped from the top-end

of the victim’s queue in order, the context switches can be done in parallel. In the

scenario described above, assuming tpush < tsteal (which is usually true since steal is

more expensive due to steal conflicts), the critical path of a help-first execution:

T hf
∞ = tpush + tsteal ∗ (N − 1) + tcs + T .

The total amount of work under the help-first policy as the same as the work-first

policy:

T hf
1 = Twf

1 = (tpush + tsteal + tcs) ∗ (N − 1) +NT .

This analysis suggests that the work-first policy tends to prolong the critical path

78

by serializing context switches (tcs). The prolonged critical path may not affect

the performance for recursive parallelism where parallelism is abundant and the low

stealing rate is low. But for flat parallelism where parallelism may already be low,

the prolonged critical path could significantly degrade the performance. This analysis

is confirmed by the experimental result shown in Section 5.3.

5.1.4 Memory Issue

Performance is not the only concern when building a task scheduler. Another impor-

tant consideration is the resource bound. The implementation of the work-first and

the help-first policy can result in different stack and heap bound.

It is well known that work-stealing schedulers that use the work-first policy, such

as the Cilk work-stealing scheduler, are provably space-efficient [15]. If the serial

depth-first execution of parallel application uses S1 memory, the memory usage of

the P-processor execution is bounded by S1P . However, the implementation of

the work-first policy results in using more stack space than necessary. According

to the work-first principle, in order to minimize the 1-thread execution time, the

work-first policy is almost always implemented as a sequential call to the child task.

This implementation executes the child task without releasing the existing execution

context although the child and parent task can run in parallel. Therefore, the stack

usage is the same as the depth-first serial execution.

The stack problem becomes a significant disadvantage of the work-first policy for

many recursive algorithms. For example, in the Parallel Depth First Search (PDFS)

benchmark shown in Figure 4.2, the depth of the task spawn tree is proportional to

the program’s data size. Work-stealing schedulers using the work-first policy will

terminate prematurely due to stack overflow for large graphs because of the stack

limit in current environment. Although it is possible to instead allocate stack frames

in the heap, these solutions are mostly OS and architecture dependent, and cannot

be used in a managed runtime such as our portable Java-based implementation.

79

On the other hand, the help-first policy can be used to reduce the maximum stack

size constraint for workers. Tasks spawned under the help-first policy are executed

after context switches. In HJ work-stealing runtime, an exception is throw and caught

by the runtime scheduler during the context switch. Such a context switch has the

effect of releasing the stack pressure. In fact, if all activation frames are assumed to

be constant in size, executing computation dag under the help-first policy in HJ only

requires constant stack size per worker.

Despite their stack bound, work-scheduling schedulers that use the help-first policy

are not provably space-efficient. In the worst case, if the parent task spawns an

unbounded number of child tasks, all these child tasks will be saved to a deque on

the heap, which may lead to heap overflow. However, the serial depth-first execution

of the same program runs with bounded memory.

Stack pressure is a concern for recursive programs even in serial depth-first ex-

ecution. One of the assumption of Cilk is that the sequential execution completes

successfully. Under this assumption, some graph algorithms, e.g. the parallel depth-

first execution, cannot be written in the recursive style because the sequential version

will also overflow the stack. This limits the expressiveness of the language because

divide-and-conquer is a powerful and elegant approach to decompose the problem and

divide-and-conquer is usually written in recursive style.

5.2 Adaptive Scheduling Policies

The study of both performance and memory issue suggest that the work-first and the

help-first policy have pros and cons that are complimentary to each other in different

scenarios. This study motivates the design of the adaptive scheduling algorithms used

in SLAW, the work-stealing runtime for HJ. There are two major scalability concerns

when designing the adaptive scheduler: (1) establishing space bounds which include

stack space for worker threads as well as the total memory space; and (2) selection

of help-first and work-first policy for better performance in different scenarios.

80

As described in Section 5.1.4, the work-first policy increases the stack pressure

and tasks spawned under the help-first policy are executed after releasing the stack

pressure via context switching. Let us assume that S is the space limit (or threshold)

for a worker’s stack. If the input program has a spawn tree depth greater than S,

then it is necessary at some point to use the help-first policy to ensure that a worker’s

stack space does not exceed threshold S. This decision is presented as stack condition

in the spawn rule for Algorithm 1 discussed later.

Besides the stack bound, we also consider the total memory bound. The total

memory bound is determined by the memory usage of both started and fresh tasks.

Started tasks are those that have been executed by some processor; fresh tasks have

been spawned but never executed. When only spawning under work-first policy,

there will be no fresh tasks and the total memory bound of started tasks has been

established by past research on work-stealing schedulers [15, 5]. However, under

the help-first policy, all child tasks will be created as fresh tasks and saved on the

heap. In order to provide a total memory guarantee for the adaptive work-stealing

scheduler: the scheduler must switch to the work-first policy when the number of

fresh tasks exceeds a threshold; this ensures that the total memory used by fresh

tasks are bounded. The threshold is called the fresh task threshold denoted as F .

This decision is presented as fresh task condition in the spawn rule for Algorithm 1.

These two conditions are enough to establish the stack and total memory bounds

for the adaptive scheduling algorithm. One thing that is important to notice is

that the adaptive scheduler treats stack bound as a hard bound and gives the stack

condition higher priority than the fresh task condition. When the stack threshold is

reached, help-first policy will always be used to avoid stack overflow regardless of the

number of fresh tasks created.

SLAW employs a runtime heuristic to select the policy if neither of these two

conditions is met. This heuristic is not required to establish the worst-case stack and

memory space bound, but is designed to achieve better scalability and performance

81

in practice. For this reason, the heuristic is described below but is not presented in

the algorithm.

Before describing the heuristic, we first discuss two techniques used to reduce the

overhead of adaptation and evaluation of the task spawning policy. First, each worker

maintains its own spawning policy and the heuristic used to evaluate the spawning

policy consists only of thread-local operations. We show in the Section 5.3.2 that

the overhead is lower than 5%. Second, SLAW does not re-evaluate the spawning

policy at every spawning point. Instead, it starts with the help-first policy at the

beginning and re-evaluate the spawning policy periodically at an interval for every

INT spawned tasks. The reason that it starts with the help-first policy is because

steals are usually frequent at the beginning of the application, and the help-first policy

performs better than the work-first policy when stealing is frequent. Evaluating the

policy periodically further amortized the overhead.

The heuristic used by SLAW is based on a simple estimation on the likelihood of

the new spawned task being stolen. It computes the number of tasks that were stolen

from the worker during the last interval. If the number of steals is greater than INT,

this implies the steal rate is higher than the task creation rate. The scheduler will

use the help-first policy for the new task in the next interval to increase the rate of

distributing tasks to other workers. Otherwise, the scheduler assumes the new task

will not be stolen and thus uses work-first policy for the next interval to reduce the

overhead of context switches.

In summary, the thresholds S and F for the stack condition and the fresh task

condition are used to bound the algorithm’s stack and total space requirements

respectively. The third parameter INT is used to control the policy re-evaluation

interval in SLAW to reduce overhead. Later in Section 5.3.2, we present experimental

results on the sensitivity of performance to these parameters and also discuss selection

of their default values.

82

5.2.1 Taxonomy

We use the notation G(V,E, S1) to represent a computation dag with set of tasks V

tasks, set of edges E, and stack depth S1 which is defined as the total memory space

required for serial depth-first execution.

A P -processor schedule X of a dag is defined as a sequence of steps, where each

step consists of at most P instruction, one for each processor. For a given dag, X(t, p)

denotes the task of the instruction executed by processor p at step t.

Task terminates: a task γ terminates after step t, if its last instruction is executed

at step t by processor p. We also say processor p finishes/terminates γ at step

t.

Suspended task: A task γ is suspended before step t if γ cannot be run at step t

due to dependency. We say processor p suspends a task γ at step t if γ = X(t, p)

and γ is suspended before step t+1.

Task ready: A task is ready if it is not suspended. A task becomes ready before

step t if it is suspended before step t-1 is ready before step t.

Fresh task: A task γ is said to be fresh before step t if it has been spawned by

processor p before step t, but is never executed by any processor. Processor p

is called γ’s owner. Fresh tasks are saved on the heap. We assume the size of

all fresh tasks is O(1).

Preempted task: Task γ is preempted by processor p at step t if γ = X(t − 1, p)

and γ is not suspended before step t and γ 6= X(t, p). No task is preempted at

step 0.

Task γ is preempted and owned by processor p before step t if:

1. γ 6= X(t− 1, q) for any processor q

83

2. γ is either preempted and owned by p before step t-1 or preempted by

processor p at step t-1 .

In the adaptive algorithm, a task is preempted only when it performs a work-

first spawn (Action 1 in Algorithm 1).

Making progress: A task γ is making progress due to processor p at step t if

X(t, p) ∈ STspawn(γ). A task is said to be making progress at step t if it is

making progress due to any processor at step t.

Progressive schedule: We say a schedule is progressive if all non-fresh tasks are

making progress for every step.

Theorem 5.2.1. For any P -processor progressive schedule X for a dag G(V,E, S1),

for any step, the memory usage of all non-fresh tasks is bounded by S1P .

Proof. There are at most P leaf tasks in the spawn sub tree composed by all non-fresh

tasks at any step. Otherwise, at least one task does not make progress. The space

used by the activation frames of a leaf task and all its ancestors are bounded by S1.

So the total memory usage of all non-fresh tasks is bounded by S1P .

Theorem 5.2.1 provides the bound for non-fresh tasks in a progressive schedule.

If the memory usage of fresh tasks is also bounded, the total memory space will be

bounded. In the following subsection, we present our adaptive scheduling algorithm

which is progressive and has a bound for non-fresh tasks if the stack threshold is not

exceeded.

5.2.2 Scheduling Algorithm

We use P -ADP(S, F) to denote a P -processor adaptive schedule that can be gener-

ated by the adaptive work-stealing algorithm shown in Algorithm 1. As mentioned

earlier, S and F denote the stack threshold and fresh-task threshold respectively.

84

To abstract the runtime call stack, some tasks are flagged on-stack-p where p is a

processor id. The activation records of those tasks flagged on-stack-p are considered

to be on processor p’s runtime call stack. The algorithm always flags a task γ as on-

stack-p if processor p starts executing γ. This flag will not be cleared when γ spawns a

new task under the work-first policy, since work-first task spawn is implemented as a

sequential call in SLAW. However, when a processor p does a context switch to start

executing a fresh-task or a suspended task, all on-stack-p flags for that particular

processor p are cleared.

Actions 1-5 in the algorithm and the idle routine, guarantee that all adaptive

schedule executes tasks in a depth-first order when a task is suspended or terminates.

However, when many tasks have the same depth, tie breakers in the idle routine are

important to ensure progressive-ness of the schedule. This leads the space bound of

the algorithm. The stealing restriction is also important to establish the space bound.

We present the following lemmas for the adaptive algorithm. These two lemmas

are used to prove the progressive-ness of the adaptive schedule.

Lemma 5.2.2. Given any adaptive schedule X, for any processor p and step t, if a

task γ is preempted and owned by p before step t, then either X(t, p) ∈ STspawn(γ) or

γ = X(t, q) for some processor q.

Lemma 5.2.3. Given any adaptive schedule X, for any processor p and step t,

if fresh task γ is created and owned by processor p before t, then either X(t, p) ∈

STsync(PRsync(γ)) or γ = X(t, q) for some processor q.

Proof. The proof uses the properties of async-finish computation described in Sec-

tion 3.2.2.

We prove Lemma 5.2.2 and 5.2.3 together by induction on the time step by

enumerating situations when Actions 1-5 or the idle routine are taken by the algorithm

for each step. Both lemma arguments can be verified true for step 0 and 1. Assume

both arguments are true for all tasks and processors at all steps at or before t, we

85

show both arguments are true for any preempted task γpt owned by processor p and

any fresh task γf created by processor p at step t+1.

Here are some denotations used throughout the proof: γt = X(t, p), γt+1 = X(t+

1, p), γz = PRspawn(γf), γy = PRsync(γf), γq = PRspawn(γt+1) and γs = PRsync(γt+1).

Note according to Property 3.2.1, for γq and γs, either γq = γs or PRsync(γq) = γs.

Similarly for γz and γy, either γz = γy or PRsync(γz) = γy.

To show the argument for Lemma 5.2.2 is true for step t+1, we need to show

γt+1 ∈ STspawn(γpt) or γpt = X(t+1, q) for some processor q. To show the argument for

Lemma 5.2.3 is true for step t+1, we need to show γt+1 ∈ STsync(γy) or γf = X(t+1, q)

for some processor q. In following proof, we assume both γf and γpt are not stolen.

If they are stolen, they will be executed at step t+1 by some processor q. We show

both arguments are true separately.

We first show the argument for Lemma 5.2.2 is true. Because γpt is preempted

and owned by p before step t+1, by the definition of preempted and owned, γpt must

be either preempted and owned by p before step t or preempted by p at step t.

If γpt is preempted by p at step t, p must perform a work-first spawn (Action 1)

at step t. Thus γpt = PRspawn(γt). If γpt is preempted by p before step t, by the

assumption, γpt must be making progress due to p at step t (γpt is not suspended

before step t and no processor can execute γpt at step t because γpt is suspended and

owned by p before step t+1). In both cases, we have γt ∈ STspawn(γpt).

Now we enumerate the situation when Actions 1-5 are taken by the Algorithm 1

at step t+1 and the situation when the idle routine is called before step t+1 to remove

tasks:

Action 1: Work-first spawn is performed. γt+1 ∈ STspawn(γt) ⊂ STspawn(γpt).

Action 2: Help-first spawn is performed. γt+1 = γt ∈ STspawn(γpt).

Action 3: γt+1 ∈ STsync(γt) ⊂ STspawn(γt) ⊂ STspawn(γpt).

86

Action 4: In this case, γt+1 = PRspawn(γt). Since γt ∈ STspawn(γpt) and γt 6= γpt, we

have γt+1 ∈ STspawn(γpt).

Action 5: In this case, γt+1 becomes ready before step t+1. This implies γt+1

does not have any live sync tree descendant. Assume γt+1 /∈ STspawn(γpt).

Because γt ∈ STsync(γt+1) ⊂ STspawn(γt+1) and γt ∈ STspawn(γpt), we have γpt ∈

STspawn(γt+1)-{γt+1}. As we have γt ∈ STspawn(γpt) and PRsync(γt) = γt+1, by

Property 3.2.2, we have PRsync(γpt) = γt+1. This is contradictory to γt+1 has

no live sync tree descendant. Thus we have γt+1 ∈ STspawn(γpt).

Idle: If γt+1 = γpt, γt+1 ∈ STspawn(γpt). If γt+1 6= γpt, let γc be the common spawn

tree ancestor of γpt and γt+1. If γc = γpt, then γt+1 ∈ STspawn(γpt). γc = γt+1 is

not possible due to tie breaker (c) in the idle routine. The only situation left is

γc, γpt and γt+1 are three different tasks.

According to the idle routine, γt+1 is either removed as a preempted task or a

fresh task.

If γt+1 is preempted and owned by p before step t+1: because Action 1 is not

taken at step t+1, γt+1 must be preempted before step t. Because γpt and

γt+1 are in two disjoint spawn subtree, it is impossible for both of them to make

progress due to p at step t. As both γpt and γt+1 are preempted before step t+1,

neither of them is executed at step t. This is contradictory to the assumption

argument of Lemma 5.2.2 for step t.

If γt+1 is removed as a fresh task: γpt cannot be preempted at the same step

at which γt+1 is spawned, because fresh task can only be spawned using help-

first policy and a task can only be preempted when performing a work-first

policy. If γpt is preempted before γt+1 is spawned, then when γt+1 is spawned,

according to the assumption argument of Lemma 5.2.2, γq ∈ STspawn(γpt). Thus

γt+1 ∈ STspawn(γpt). If γpt is preempted after γt+1 is spawned using the help-

first policy, then when γpt is preempted, according the assumption argument of

87

Lemma 5.2.3, we have γpt ∈ STsync(PRsync(γt+1)). This is not possible due to

tie breaker (b) in the idle routine.

All situations are either ruled out or lead to γt+1 ∈ STspawn(γpt) or γpt be executed

at step t+1.

We now show the argument for Lemma 5.2.3 is true by enumerating the situation

when Actions 1-5 are taken by the algorithm at step t and the situation when the

idle routine is called before step t+1 to remove tasks to execute at step t+1. By

assumption, we have γt ∈ STsync(γy) except for the case for Action 2 when γf is

spawned at step t.

Action 1: In this case, γt = γq and no new fresh task is created. By assumption

γt ∈ STsync(γy). As γt+1 is spawned by γt using work-first policy (γq = γt), by

Property 3.2.1, we have either γs = γq = γt or γs = PRsync(γq). If γs = γq = γt,

we have γt+1 ∈ STsync(γs) = STsync(γt) ⊂ STsync(γy). Otherwise, if γs 6= γq, we

have γs = PRsync(γq). Because γq = γt ∈ STsync(γy), we have γs ∈ STsync(γy)

unless γq = γy. If γq = γy, by Property 3.2.3, because γf was already spawned

and PRsync(γf) = γy, we have PRsync(γt+1) = γy = γs, which is contradictory

to γs 6= γq. So we have γs ∈ STsync(γy), which implies γt+1 ∈ STsync(γs) ⊂

STsync(γy).

Action 2: In this case, we have γt = γt+1. Assume γn is the fresh task spawned

at this step, we only need to show γt+1 ∈ STsync(PRsync(γn)) because other

fresh tasks are covered by the assumption. Property 3.2.1 leads directly to

γt+1 ∈ STsync(PRsync(γn)).

Action 3: In this case, γt+1 ∈ STsync(γt) ⊂ STsync(γy).

Action 4,5: In both cases, γt terminates and γt+1 ∈ STsync(PRsync(γt)) (Prop-

erty 3.2.1). Because by assumption γt ∈ STsync(γy), we have γt+1 ∈ STsync(γy)

unless γt = γy. It is impossible to have γt = γy because γf is γy’s sync tree

descendant, which implies γy = γt cannot terminates.

88

Idle: If γt+1 is preempted and owned by p before step t+1. Consider the step when

γt+1 is preempted and γf is spawned. This cannot happen in one step because

a task is preempted only at work-first spawn and a fresh task is created only at

help-first spawn.

If γt+1 was preempted after γf is created, then according to the assumption

argument for Lemma 5.2.3 , we have γt+1 ∈ STsync(γy).

If γt+1 was preempted before γf is created, then according to the assumption

for Lemma 5.2.2, we have γz ∈ STspawn(γt+1), which implies γf ∈ STspawn(γt+1).

Since both γt+1 and γy are γf ’s spawn tree ancestors, we consider which one is

closer to γf . If γt+1 = γy, then γt+1 ∈ STsync(γy). If γt+1 is closer to γf than

γy, by Property 3.2.2, we have γy = PRsync(γt+1) which also implies γt+1 ∈

STsyncγy. If γy is closer to γf than γt+1, by Property 3.2.1, we have PRsync(γy) ∈

STsync(PRsync(γt+1)). This is not possible because γy = PRsync(γf) and the idle

routine would return γf instead of γt+1 due to tie breaker (a).

If γt+1 is removed as a fresh task, consider the step γt+1 and γf are spawned. If

γt+1 = γf , γt+1 ∈ STsync(γy).

If γt+1 was spawned before γf , then when γf was spawned by γz, by assumption

for Lemma 5.2.3, we have γz ∈ STsync(γs). If γs = γz, by Property 3.2.3, as γt+1

was spawned before γf and PRsync(γt+1) = γs, we have γy = γs. Assume γs 6=

γz. According to Property 3.2.1, we have either γz = γy or PRsync(γz) = γy.

γz = γy is impossible because, otherwise, γf is one level deeper than γt+1 in the

sync tree, and should have been removed by the idle routine due to tie breaker

(a). If PRsync(γz) = γy, since we also have γz ∈ STsync(γs), then we have

γy ∈ STsync(γs) unless γz = γs. As we assume γs 6= γz, we have γy ∈ STsync(γs).

This implies γy = γs, because otherwise, γf is one level deeper than γt+1 in the

sync tree, and should have been removed by the idle routine due to tie breaker

(a). All cases lead to γy = γs, which leads to γt+1 ∈ STsync(γs) = STsync(γy).

89

If γt+1 was spawned after γf , then when γt+1 was spawned by γq, by assumption

for Lemma 5.2.3, we have γq ∈ STsync(γy). By Property 3.2.1, either γq =

γs or PRsync(γq) = γs. If γq = γs, we have γs = γq ∈ STsync(γy). Thus,

γt+1 ∈ STsync(γs) ⊂ STsync(γy). If PRsync(γq) = γs, because we already have

γq ∈ STsync(γy), we have γs ∈ STsync(γy) unless γq = γy. If γs ∈ STsync(γy), we

have γt+1 ∈ STsync(γs) ⊂ STsync(γy). If γq = γy, according to Property 3.2.3, as

γf was spawned before γt+1 and PRsync(γf) = γy, we have γs = γy. This will

also lead to γt+1 ∈ STsync(γs) = STsync(γy).

All situations are either ruled out or lead to γt+1 ∈ STsync(γy).

Theorem 5.2.4. All adaptive schedules are progressive.

Proof. For any non-fresh task γ: if γ is executed by some processor, it is making

progress; if γ is preempted, it is making progress by Lemma 5.2.2; if γ is suspended,

γ must have live descendants in the sync sub tree STsync(γ). Assume γa is one of

leaves in STsync(γ). γa is not suspended because it is a leaf. If γa is preempted

or being executed by some processor, γa is making progress due to Lemma 5.2.2,

which implies γ is also making progress. If γa is fresh, γ is making progress due to

Lemma 5.2.3.

5.2.3 Theoretical Space Bound

Given a dag G(V,E, S1), the following theorem presents the space bound for any

P -processor adaptive schedule.

Theorem 5.2.5. If S1 <= S, the memory space of any P − ADP (S, F) schedule

is bounded by S1P + O(FP). If S1 > S, the memory space of any P − ADP (S, F)

schedule is bounded by S1P +O(V).

Proof. According the Theorem 5.2.4, adaptive scheduler is progressive. Thus, the

memory bound for non-fresh tasks is S1P according to Theorem 5.2.1. We calculate

90

Algorithm 1 Adaptive Work-Stealing Algorithm - ADP(S,F)

Environment: There are P processors and a shared task pool where every processor

can remove and put tasks. All operations are assumed to be atomic.

The algorithm proceeds step by step. Note that both the spawn tree and the

sync tree are unfolded online as the algorithm progresses.

When a processor p is idle before step t, it will call the idle routine in routine 1

to attempt to remove and execute task for the step t.

Step 0: At step 0, one processor will start executing the root task. All other

processors are idle.

Step t+1: For step t, the task will decide the task to execute for step t+1. If

processor p executes task γa at step t, it will execute the next instruction in

task γa unless γa spawns, suspended or terminates. In these cases, the following

rules are followed:

Spawn: Let γa spawns γb. Processor p will use the following rule to decide the

spawn policy:

1. If the space of the activation frames of all tasks marked on-stack-p ≥

S, use help-first (stack condition);

2. Otherwise if the number of fresh tasks currently owned by p before t

is ≥ F , use work-first (fresh-task condition);

3. Otherwise free to use any heuristic. See Section 5.2 for SLAW’s

heuristic.

Action 1: If the spawn is under work-first policy, return γa to the pool

and execute γb for step t+1.

Action 2: If the spawn is under help-first policy, put γb to the pool and

continue to execute next instruction of γa for step t+1.

91

Suspended: If the task γa is suspended, processor p will return γa to the pool,

do a context switch and clears all on-stack-p flags on tasks. Then

Action 3: processor p will remove any fresh task it created in STsync(γa).

If not success, p becomes idle.

Terminates: If the task γa terminates and if γa is the root task, then the

schedule ends. Otherwise, let T1 be PRspawn(γa) and Tn be PRsync(γa).

Processor p will:

Action 4: If T1 is preempted and owned by p, remove T1 and execute it

for step t.

If Action 4 is not taken, the processor p will do a context switch and

clears all on-stack-p flags on tasks. Then it will

Action 5: Check if Tn becomes ready before step t+1 If yes, processor p

will attempt to remove Tn from the pool and execute Tn for step t+ 1.

If the Action 5 is not taken, processor p will becomes idle.

the heap space used by fresh tasks in each cases. If S1 <= S, the stack condition in

Algorithm 1 will never be met. Thus, the number of fresh task is bounded by F per

processor according to the fresh task condition. The total heap space for fresh task is

bounded by O(FP). If S1 > S, the bound V for the number of fresh tasks is trivial

before it is the total number tasks in the dag. This completes the proof.

Theorem 5.2.5 establishes the memory space bound for the adaptive schedule. If

S1 <= S, this is the case that work-first can run successfully without exceeding the

stack bound. The work-first work-stealing scheduler’s memory bound in this case is

S1P . The memory space of the adaptive scheduler is bounded by S1P + O(FP). If

S1 > S, this is the case that work-first will overflow the stack. The adaptive schedule

will never overflow the stack and the memory space is bounded by S1P +O(V).

92

Routine 1 Idle Routine for Processor p Before Step t

1. If p owns any fresh task or preempted task, remove one. If multiple such tasks

exist, the following tie breaker is used:

(a) Return one that is the deepest in sync tree.

(b) Return preempted tasks before fresh task

(c) Return one that is the deepest in spawn tree

If success, goto 4.

2. In this case, processor p does not own any task. It will go stealing. It will

attempt to remove task γ in the pool that meets one of the following stealing

restrictions.

(a) if γ is fresh and created by processor some q, γ is the one that was created

earliest among all fresh tasks created by q.

(b) if γ is preempted and owned by processor some q, γ is the one that was

preempted earliest among all tasks preempted and owned by q.

If success, goto 4.

3. Processor p remains idle. Goto 1.

4. Processor p returns the task for execution at step t.

It is importance to notice that the S1 is related to the input data size [14] because

it is the space requirement of serial depth-first execution. However, F is a preset

parameter and is not related to the input data size. The constant of the O(FP) is

the size of the holder of the fresh task on the heap, which is usually small. In SLAW,

the task holder contains only the value of input parameters to the task function and

a few bookkeeping fields.

93

5.2.4 Runtime Implementation

SLAW implements the adaptive scheduling algorithm using two deques per worker:

one for preempted tasks owned by the worker and the other for fresh tasks created

by the worker. When a task is preempted at a work-first spawn, it is pushed to the

bottom-end of the preempted task deque. When a fresh task is created using the

help-first policy, it is pushed to the bottom-end of the fresh task deque. When a thief

is stealing, it steals from the top-end of either one of the other workers’ deques. When

looking for the preempted task that is the deepest in the task spawn tree, one need

only to check the bottommost frame from the preempted task deque. When looking

for the fresh task that is the deepest in the task sync tree, one need only to check

the bottommost frame from the fresh task deque. This simplifies the implementation

of Action 4 and the tie breakers in the idle routine. When task Γa terminates, if

T1 = PRspawn(Γa) is preempted and owned by the current worker, Γa must have been

spawned under the work-first policy by Γa. To take Action 4 and execute T1, the

worker needs to simply return from the function and pop the bottommost frame of

the preempted and owned task deque. If Action 4 is not taken, then the worker will

check if the Tn = PRsync)(Γa) is ready (line 30-34 in Figure 4.20). If not ready, then

either a task in STsync(Tn) is returned at line 31, or another task is returned at line

37. The task returned is selected according to the tie breaker of the idle routine and

the process only involves peeking at the bottommost frames from both deques.

5.3 Experimental Results

5.3.1 Setup

performance results are obtained on the following two machines:

1. Niagara 2: This system includes a 8-core 64-thread 1.2GHz UltraSPARC T2

processor with 32GB main memory. All cores share a single 4MB L2 cache,

thus it is not interesting to locality-aware scheduling. Only locality-oblivious

94

deployment is used (1 place for all workers) on Niagara 2.

2. Xeon SMP: This system includes four Quad-Core Intel E7330 processors

running at 2.40GHz with 32GB main memory. Each Quad-core processor has

two core-pairs and each core-pair share a 3MB L2 cache. The locality-aware

deployment provided for the SLAW scheduler has 8 places, with 1 or 2 workers

per place.

The implementation used to evaluate SLAW in this paper is based on Java to facil-

itate portability across the above systems. Each worker is implemented as a separate

Java thread. The JVM used on both machines is Sun Hotspot JDK 1.6. In both cases,

the JVM was invoked with the following parameters: “-Xmx2g -Xms2g -Xmn1g -

server -Xss8M -XX:+UseParallelGC -XX:+UseParallelOldGC -XX:+UseBiasedLocking

-XX:+AggressiveOpts”. The experiment also includes some Cilk++ results. The

Cilk++ release used is based on gcc v4.2.4. Both Cilk++ code and the serial C code

were compiled using the -O2 option.

We evaluate the SLAW work-stealing scheduler on a variety of benchmarks listed

in Table 5.1. To reduce the impact of JVM overheads in the evaluation, including

JIT compilation and garbage collection, the execution time reported is the average of

the three best benchmark iterations from three separate VM invocations. Each VM

invocation performs 10 benchmark iterations.

5.3.2 Sensitivity Analysis of Parameters in SLAW Scheduler

Figures 5.2(a) - 5.2(f) contain performance results obtained on the Niagara 2 machine

to analyze the sensitivity of the INT, F, and S parameters on the performance of the

SLAW scheduler, as discussed in the following subsections. Based on this sensitivity

analysis, the default parameter value of SLAW is presented in Table 5.2.

95

Impact of INT Parameter

Figures 5.2(a) - 5.2(d) study the impact of the policy evaluation interval, INT, on the

performance of the SLAW scheduler.

Figure 5.2(a) shows the impact of INT on the execution time of the Fib(35)

microbenchmark on 1 worker, with S and F set to their default values of 256 and 128

respectively. Since no stealing occurs in the 1-worker case, the adaptive heuristic will

switch very quickly from help-first to work-first, and each subsequent re-evaluation

will keep the policy as work-first for this case. The largest overhead is incurred

when INT=1, since the spawning policy is re-evaluated for every spawned task. This

suggests that INT should not be made too small. However, even in the INT=1 worst

case, the overhead of the adaptive policy is only about 5% compared to the work-first

policy. The overhead rapidly approaches zero with increasing values of INT. The

execution time for the help-first policy is too big to fit in Figure 5.2(a) (about 9×

slower than the work-first policy due to the context switching incurred at every task

synchronization point).

Figure 5.2(b) repeats the evaluation in Figure 5.2(a), but with 32 workers instead

of 1 worker. In this case, we see a negative performance impact of selecting an INT

value that’s too large. If the interval is too large, the performance degrades as shown

in Figure 5.2(b) and 5.2(d). This is because, for a recursive benchmark like Fib,

work-first is the best spawning policy. The SLAW scheduler will start with the help-

first policy at the beginning and then switch to work-first. However, if INT is too

large, then some noticeable context switch overhead will be observed before the policy

switch occurs. The same situation occurs for the PDFS benchmark in Figure 5.2(d).

When we increase the INT value past 64, the throughput of the parallel depth first

search benchmark declines.

Figure 5.2(c) shows the impact of INT on the execution time of SOR on 64 workers.

In this fork-join version of SOR, 64 tasks are distributed among 64 workers in each

outer (time-step) iteration, and these tasks are joined with a finish construct at the

96

end of each iteration. Note that stealing is very frequent in this example, since 63

out of 64 tasks will be stolen in each iteration, thereby implying that the stealing

rate is high and help-first policy is the best choice. . Because the adaptive schedule

starts with help-first policy and re-evaluates the policy after every INT spawns, this

experiment suggests that the INT should be set to be greater or equal the number

of workers. Doing so will ensure that at least one task is spawned for each worker

using the help-first policy before the worker switches to work-first policy. If a worker

switches to the work-first policy too early, it will delay task creation and negatively

affect the performance of the entire application. For the same reason, the fresh deque

threshold should also be to be equal or greater than the number of workers to hold

at least one task for each worker.

For the reasons described above, since the maximum number of workers is 64 (on

Niagara 2), the default value of INT is set to 64 for the experiments presented in this

paper.

Impact of Parameter F

Figure 5.2(e) shows how the throughput of the PDFS benchmark varies for different

values of the fresh task threshold, F . The other two parameters INT and S are fixed at

50 and 256 respectively. INT is fixed at 50 for this example because (INT=50,S=256)

was the best combination we found for PDFS after enumerating the parameter space.

All other experimental results reported in this paper use the default parameter value

unless otherwise specified.

We do not find any correlation between the throughput and F . This is in part

because F is a soft bound that has lower priority in the SLAW algorithm than the

stack bound. The worker will always use the help-first policy to create fresh tasks

regardless of the number of existing fresh tasks, if the stack bound prevents the use

of the work-first policy.

In the previous discussion on the parameter INT, we also mentioned the reason

97

why F should be equal or greater than the number of workers. The default value of

F in SLAW is set to 128.

Impact of Parameter S

Figure 5.2(f) shows the throughput of the PDFS benchmark as a function of the

stack threshold S. When S is set to 1, the adaptive schedule becomes equivalent

to the work-first schedule. Interestingly, if the stack threshold is set too large, the

performance also degrades. This is because if the stack becomes too deep, the number

of memory pages spanned by the runtime call stack increases, which in turn leads to an

increase in TLB misses. The default stack threshold in SLAW is set to 256 activation

frames. Among the benchmarks used in this paper, only the PDFS benchmark

requires a stack that grows proportionally with the input problem size. The stack

requirement for other benchmarks is bounded by a small number; consequently they

do not hit the stack bound.

5.3.3 Benchmark Results

One optimization that has been studied in previous research is to transform some

flat loops to recursive style [48, 9]. This optimization requires compiler support, and

only applies to do-all loops on a divisible region and does not apply to do-cross loops

or pointer-chasing programs. As the main contribution of this paper is to show the

robustness of the runtime, we do not apply such optimizations. However, for the

FJ microbenchmark, we do show the performance results of with and without the

recursive loop optimization.

We use two microbenchmarks, Fib and FJ, to show the extreme cases where work-

first policy is better than help-first policy and the help-first policy is better than the

work-first policy respectively. Fib is used as the extreme case for recursive parallelism

and FJ without the recursive loop optimization is used as the extreme case for flat

parallelism. Table 5.3 shows the execution time of Fib on Niagara 2. Figure 5.3

98

shows the number of fork-joins performed per second. For Fib, the work-first policy

is 10.2× faster than the help-first policy due to fewer context switches. In FJ, steals

are frequent and the help-first policy is 4.6× faster than the work-first policy. In both

micro-benchmarks, the performance of the adaptive scheduler is close to that of the

better policy.

Figure 5.4 shows the number of fork-joins performed per second in a recursive-

style fork-join (fj-rec), and compares the number to the iterative fork-join (fj). In

fj-rec, the tasks are recursively spawned. In order to spawn 1024 parallel tasks, the

depth of the task spawn tree is 11. When the number of threads is small (<= 8),

the work-first policy performs than better than the help-first policy. This is because

the number of steals is infrequent compared to the task spawned. As the number of

threads increases, the parallelism in the program becomes insufficient and the steal

becomes more frequent (considering the depth of the task spawn is 10 for 1024 tasks).

This explains why the help-first policy performs better than the work-first policy as

the number of threads increases. This example is interesting because it shows that

the best choice of scheduling policy is more a dynamic choice than a static choice,

although the shape of a program can probably give some clue. The experiment also

confirms that fj-rec is more scalable than fj, as the task spawns are now performed

in parallel as well. However, the sequential overhead of the fj-rec is higher than

the iterative fj, which explains the lower performance when the number of threads

is small.

Figure 5.5 shows the speedup of the SLAW scheduler on Niagara 2 over the Java-

serial version with one exception for PDFS, whose speedup is based on 1-thread

help-first execution. Both the serial version and the work-first schedule of PDFS will

overflow the stack as described in Section 5.1.4. This is why there is no bar for the

wf in the figure. This exception also applies to Figure 5.6.

Three scheduling policies are compared: help-first only, work-first only and the

adaptive scheduling algorithm described in Section 5.2. As all cores on Niagara 2

99

share the same L2 cache, this experiment uses the locality-oblivious deployment,

which specifies only 1 place with all 64 workers. No processor binding is used.

CG.A, MG.A and SOR are flat, loop-based parallel benchmarks. In these bench-

marks, the help-first policy performs better than the work-first policy. The results

in Figure 5.5 show that the adaptive scheduling algorithm matches or exceeds the

performance of the help-first policy for these benchmarks.

Sort, Matmul, LU and GC are task recursive parallel benchmarks. In these

benchmarks, the work-first policy is better than or almost the same as the help-

first policy. The result shows the adaptive scheduling algorithm matches or exceeds

the performance of work-first policy in those benchmarks.

PDFS is an irregular graph computation. Irregular graph computations are in-

teresting because the structure of the spawn tree depends on the order in which

nodes are visited (labeled) in parallel. We used the Parallel Depth First Search

benchmark (PDFS) studied in [23] (kernel code shown in Figure 4.2), and applied

it to a two-dimensional 2000 × 2000 torus graph consisting of 4 million nodes. Our

results show that the adaptive approach outperformed the help-first policy for this

benchmark because of its ability to combine help-first and work-first policies. At

the beginning, all workers are idle and stealing is frequent thereby making help-first

the more desirable policy. After each worker gets some work, they begin traversing

the graph and stealing becomes less frequent, thus causing the adaptive runtime

to switch to the work-first policy. The work-first policy incurs no synchronization

overhead and executes the tasks as if they are sequential calls. Finally, according

to the stack condition in the adaptive scheduling algorithm, the runtime will switch

back to the help-first policy when it becomes necessary to avoid overflowing the stack

size limit.

Figure 5.6 shows the speedup of the SLAW scheduler on Xeon SMP using the

three scheduling policies. For reference, we report also Cilk++’s speedup for those

benchmarks for which Cilk version is available(SORT, MATMUL, LU). We also

100

translate the JGF SOR to Cilk++ and use the cilk for to parallelize the loop. To

factor out uniprocessor performance differences between Java and C, the speedup

for SLAW in this figure is based on the Java-serial version and Cilk++’s speedup is

based on the C-serial version. This experiment uses the locality-oblivious deployment.

The experimental results of the locality-aware scheduling are presented later in the

Section 6.2.

For Sort, Matmul and LU, SLAW achieves over 10× speedup on Xeon SMP.

SLAW scales almost linearly on Matmul. Cilk++ also scales almost linearly from 1

worker to 16 workers, but its speedup looks smaller because Cilk++’s 1-worker case

is 2.4× slower than the C-serial version due to some optimizations that are disabled

by the Cilk++ compiler. CG, MG and SOR do not scale beyond 4× hit a memory-

bandwidth wall. The scalability of CG and SOR can be significantly improved by

locality-aware scheduling as shown next in Section 6.2.

5.3.4 Modeling and Measurement of Overhead

In this section, we model and measure the overhead of context switches, asynchronous

function calls and task synchronizations using the iterative fork-join and the recursive

fib micro-benchmarks.

According to the work-first principle, the scheduler can achieve almost linear

speedup. We shall optimize the single thread execution time even at the cost of

increasing the critical path.

We breakdown the single thread execution (t1) of a HJ program into the following

components: the serial Java execution (ts), the asynchronous task spawns, context

switches (tcs) before starting a new task, startFinish (tsf) and task synchronization

at endFinish. Depending on the scheduling policy, the overhead of asynchronous

task spawns is denoted as taw for work-first task spawns or tah for help-first task

spawns. The task synchronization at endFinish is either trivial or non-trivial. In the

trivial case, all tasks created in the finish scope are completed and the worker will

101

just continue execution. In the non-trivial case, the current serial execution flow will

be interrupted (an exception is thrown and caught by the runtime), and a context

switch is performed before executing new tasks. We use tef to denote the overhead

of non-trivial task synchronization. The overhead of the trivial case is considered to

be included in tsf .

Consider the HJ program shown in Figure 5.7. The program performs k tasks;

task 1 to k− 1 are performed asynchronously and task 0 is performed serially. Under

the work-first policy, the single thread execution incurs no context switch. Thus, the

single thread execution time of the whole program as a function of k for the work-first

policy is

twf
1 (k) = ts(k) + tsf + (k − 1)taw (5.1)

where ts(k) is the serial execution time of the whole program as a function of k. There

is no extra synchronization cost (tef) at the end of the finish scope for single-thread

work-first execution.

Under the help-first policy, task 1 to k− 1 will be executed after a context switch

and there is one non-trivial task synchronization at end-finish for k > 1. Thus

thf1 (k) =

ts(k) + tsf , k = 1

ts(k) + tsf + (k − 1)(tah + tcs) + tef , k > 1

(5.2)

We assume every task in the program shown in Figure 5.7 contains the same

amount of work which is also called task granularity (t0). The task granularity t0 can

be calculated as the slope of the serial execution ts(k).

Based Equation 5.1 and 5.2, we have

tsf = twf
1 (1)− ts = thf1 (1)− ts(1)

taw = SLOPE(k, twf
1 (k))− t0 (k >= 1)

tah + tcs = SLOPE(k, thf1 (k))− t0 (k > 1)

102

tef = thf1 (2)− thf1 (1)− taw + tcs − t0

.

Table 5.4 shows the execution time of the serial Java execution time and the single

thread HJ execution time of the program in Figure 5.7 with k = 1, 2, 4, 8, ..., 1024 on

a Xeon SMP machine.

We calculate t0, tsf , taw, tah + tcs and tef and get the following result: t0 ≈ 0.1µs,

or 417 cycles, tsf ≈ 0.1µs or 417 cycles, taw ≈ 0.15µs or 625 cycles, tah + tcs ≈ 0.22µs

or 917 cycles, tef ≈ 2.11µs or 8800 cycles.

Consider the HJ program shown in Figure 5.8 and Figure 5.9. The code shown

in Figure 5.8 uses a global finish to synchronize all task where as each task in the

code shown in Figure 5.9 synchronizes all child tasks. For fib(35), both code spawns

29, 860, 703 tasks and the code shown in Figure 5.9 will create 14, 930, 351 finish

instances. Using the definitions and notations used in the previous example, the

1-thread execution time of the code shown in Figure 5.8 under the work-first and

help-first policy are:

t1wf = ts + tsf + taw ∗ 29, 860, 703

t1hf = ts + tsf + tef + (tah + tcs) ∗ 29, 860, 703

The 1-thread execution time of the code shown in Figure 5.9 under the work-first

and help-first policy are:

t2wf = ts + tsf ∗ 14, 930, 351 + taw ∗ 29, 860, 703

t2hf = ts + (tsf + tef) ∗ 14, 930, 351 + (tah + tcs) ∗ 29, 860, 703

Table 5.5 shows the serial and 1-thread execution time of the code shown in

Figure 5.8 and 5.9 under both policies.

We compute taw, tah + tcs, tsf and tef , and get the following result: taw = 0.11µs

(460 cycles), tah + tcs = 0.23µs (960 cycles),tsf = 0.17µs (709 cycles), tef = 2.26µs

(9400 cycles).

The results from both examples confirm that spawning and executing a task under

the help-first policy (about 0.22-0.23 microseconds) is slower than the work-first policy

103

(about 0.11-0.15 microseconds) , and the context switch at the endFinish instruction

is the most expensive operation (about 2.11-2.26 microseconds). The construction and

destruction of a finish instance costs about 0.10-0.17 microseconds.

104

Benchmark Type Description Source

Fib(35) Micro Recursive Recursive Fibonacci (n=35)

no sequential threshold/cutoff Cilk++

FJ(1024) Micro Flat Spawn and join 1024 dummy

tasks JGF

SOR Loop 2D Successive Over-Relaxation

algorithm on a 2000× 2000

float array JGF

CG.A Loop Conjugate Gradient, size A NPB 3.0

MG.A Loop Multi-Grid, size A NPB 3.0

Sort Recursive Parallel Merge Sort on 50331648

random integers BOTS [40]

Matmul Recursive Recursive Matrix Multiplication.

(two 1500*1500 double matrix ,

Threshold=64) Cilk++

LU Recursive Recursive LU Decomposition

(2048*2048 double matrix,

BlockSize=64) JCilk

GC Recursive Graph Coloring using Parallel

Constraint Satisfaction Search

(CLIQUE 10,10 colors) [43]

PDFS Irregular Recursive Parallel-DFS(Figure 4.2) on

a Torus graph with 4M nodes XWS [23]

Table 5.1 : List of benchmarks implemented in HJ and their sources

Parameter INT F S

Default Value 64 128 256 activation frames

Table 5.2 : Default Adaptive Schedule Parameters Value

105

!!"

!#"

!$"

!%"

!&"

'" '(")(" !(" #(" $(" %("

!
"#
$%
&
'
(
)*
+,

#
)-
.#
$.
/)

0'1+$2)!341%4&'()5(6#7341)8)59*)

:+;-<=/)->)?'7@#7/)

*+,"

-."

(a) Fib(35),S=256,F=128,W=1

!"!#

!"$#

!"%#

!"&#

!
#

!
'
#

$
'
#

%
'
#

&
'
#

(
'
#

)
'
#

*
'
#

+
'
#

,
'
#

!
'
'
#

!
(
'
#

$
'
'
#

(
'
'
#

!
"#
$%
&
'
(
)*
+,

#
)-
.#
$.
/)

0'1+$2)!341%4&'()5(6#7341)8)59*))

:+;-<=/)-<>)?'7@#7./)

-./#

01#

(b) Fib(35),S=256,F=128,W=32

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(" (!" $!")!" %!" *!" &!" +!" '!" ,!"(!!"

!
"#
$%
&
'
(
)*
+,

#
)-
.#
$.
/)

0'1+$2)!341%4&'()5(6#7341)8)59*)

:;<=>)-?@)A'7B#7./)

-./"

01"

21"

(c) SOR,S=256,F=128,W=64

!"#

!!#

$"#

$!#

%"#

%!#

&"#

&!#

'# !# '"# ("#)"# *"# !"# $"# %"# &"# +"# '""#
!
"
#$
%
&
"
'
%
()
*+

,
&-
.
/
&
,
01
0,
2*

3$4526*.7-4%-8$9*:9(,#7-;*:<!*

'=>?*@AB*C$#D,#0E*

,-.#

/0#

(d) PDFS,S=256,F=128,W=64

!"#

!!#

$"#

$!#

%"#

%!#

&"#

&!#

'# $(# ')&#)!$# !')# '")(#)"(&#("*$#&'*)#

!
"
#$
%
&
"
'
%
()
*+

,
&-
.
/
&
,
01
0,
2*

3#,0"*!"#,-/*4565(*7*3*

'839*:;<*=$#>,#0?*

+,-#

./#

(e) PDFS,S=256,INT=50,W=64

!"#

!!#

$"#

$!#

%"#

%!#

&"#

&!#

'# $(# ')&#)!$# !')# '")(#)"(&#("*$#&'*)#

!
"
#$
%
&
"
'
%
()
*+

,
&-
.
/
&
,
01
0,
2*

3(-24*5,'("*6787(*9*3*

'5:3*;<=*>$#4,#0?*

+,-#

./#

(f) PDFS,F=128,INT=50,W=64

Figure 5.2 : Analysis of Adaptive Schedule Parameter Sensitivity on the Niagara
2 system. The benchmark name, SLAW parameter values (S, F, INT), and the
number of workers (W) are specified in the sub-figure captions. Better performance
is indicated by smaller values in (a),(b),(c) and larger values in (d),(e),(f).

Wrks 1 2 4 8 16 32 64

hf 334.14 173.64 79.43 39.71 21.43 11.04 8.04

wf 34.45 17.13 8.65 4.31 2.24 1.23 0.87

adp 34.25 16.99 8.54 4.36 2.25 1.25 0.90

Table 5.3 : Performance results for Fib(35) microbenchmark on Niagara 2 using 1 to
64 workers. Execution time (in seconds) is reported. (Smaller is better.)

106

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

$" %" &" '" $(")%" (&"

!
"
#
$
%
&'
(
)'
*(
&+
,-
(
./
0'

1
%
&'
0%
2(
/
3
'

!"#$%&'()'4(&+%&0'

*+"

,-"

./0"

Figure 5.3 : Performance results for FJ(1024) microbenchmark (tasks are spawned
iteratively) on Niagara 2 using 1 to 64 workers. Number of fork-joins performed per
second is reported. (Bigger is better.)

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16 32 64

N
um

be
r o

f F
or
k‐
Jo
in
s
pe

r S
ec
on

d

Number of Workers

FJ‐adp

FJ‐rec‐hf

FJ‐rec‐wf

FJ‐ref‐adp

Figure 5.4 : Performance results for FJ(1024) microbenchmark (in FJ-rec, tasks are
spawned recursively.) on Niagara 2 using 1 to 64 workers. Number of fork-joins
performed per second is reported. (Bigger is better.)

107

0!

5!

10!

15!

20!

25!

30!

35!

40!

45!

CG.A! MG.A! SOR! SORT! MATMUL! LU! GC! PDFS! AVG!

S
p

e
e
d

u
p

 O
v
e
r
 S

e
r
ia

l
V

e
r
s
io

n
!

hf! wf! adp!

Figure 5.5 : Performance results on Niagara 2. Deployment is locality-oblivious(1-
place, 64 workers) with no processor binding.

0!

2!

4!

6!

8!

10!

12!

14!

16!

18!

CG.A! MG.A! SOR! SORT! MATMUL! LU! GC! PDFS! AVG!

S
p

e
e
d

u
p

 O
v
e
r
 S

e
r
ia

l
V

e
r
s
io

n
!

hf! wf! adp! cilk++!

Figure 5.6 : Performance results on Xeon SMP. Deployment is locality-oblivious.(1-
place, 16 workers) with no processor binding.

108

finish { //startFinish

for (int i=1; i<k; i++)

async Ti; // task i

T0; //task 0

}

Figure 5.7 : Iterative Fork-Join Example

k ts(k) twf
1 (k) thf1 (k)

1 0.11206055 0.207397452 0.218383764

2 0.219238292 0.437988302 2.801269535

4 0.444824225 0.883300931 2.946532226

8 0.899048537 1.95532474 3.916515554

16 1.801026225 3.794922394 6.280302459

32 3.595712472 7.152359563 10.36623923

64 7.174836414 14.58597704 19.61168857

128 14.47073294 28.33663927 36.30554749

256 28.92932566 56.75046819 73.1635938

512 57.53077897 114.1161703 148.6104919

1024 114.8501206 270.4164413 347.826087

Table 5.4 : Execution time (in microseconds) of the serial execution time and
the single thread HJ execution time of the program in Figure 5.7 with k =
1, 2, 4, 8, ..., 1024 on the Xeon SMP machine

serial 1-thread work-first 1-thread help-first

Code in Figure 5.8 0.103 3.405 6.974

Code in Figure 5.9 0.103 5.872 43.18

Table 5.5 : Execution time (in secs) of the serial and 1-thread execution time of the
code shown in Figure 5.8 and 5.9 under both policies. Both code has the same serial
version.

109

finish fib(n);

fib (int n) {

if (n<2) {

sum.send(n);

} else {

async fib(n-1);

async fib(n-2);

}

}

Figure 5.8 : Recursive Fib benchmark with one global finish scope.

void fib (int n) {

if (n<2) {

sum.send(n)

} else {

finish {

async fib(n-1);

async fib(n-2);

}

}

}

Figure 5.9 : Recursive Fib benchmark in which every task synchronizes its child tasks

110

Chapter 6

Locality-aware Work-stealing

6.1 Locality-aware Framework

This section assumes a flat partitioned-global-address space (PGAS) model for locality-

aware task scheduling. This model has been adopted by multiple parallel program-

ming languages including Unified Parallel C [33], Co-Array Fortran [68], X10 [20] and

the recent release of HJ. We defer the discussion of recent work on the Hierarchical

Place Tree to Section 6.3.

The PGAS model in Habanero-Java is derived from the concept of places in X10

1.5. The number of places is a runtime constant specified by the runtime deployment.

In X10 1.5, objects and tasks once created in a particular place will be confined to

that place, and accessing data in other places will result in BadPlaceException.

This design is natural for clusters with distributed memory systems. Since most

current multi-core architectures are hardware-controlled shared memory systems,

places in recent release of HJ only serve as a locality hint for tasks not for data. HJ

runtime is free to schedule tasks with no restrictions. The locality-aware framework

is an approach to improve performance by utilizing the locality hints provided by

programmers.

Figure 6.1 shows the framework of locality-aware scheduling. Each place can

contain multiple workers, and has a mailbox to store incoming tasks sent from remote

places. When a task is spawned using an async statement in HJ, the programmer can

specify a locality hint for the task. If the locality hint is not specified, it is understood

to be here by default, which is the place of the current worker of the parent task. A

task is considered local if the locality hint matches the current place, otherwise, it is

111

mailbox

Place 0 Place 1 Place 2 Place 3

wkr 0 wkr 1 wkr 2 wkr 3 wkr 4 wkr 5 wkr 6 wkr 7

steal

receive

send

Figure 6.1 : Locality-aware Scheduling Framework

called remote task.

The compiler generates code to test if a task is local or remote when an async

statement is encountered. If the task is remote, it will be sent to the mailbox of the

place that matches the locality hint, unless the mailbox is full. If the mailbox is full

or the task is local, the task will be scheduled according to the policy chosen by the

programmer or the runtime as discussed earlier in the dissertation.

When a worker is out of work on local deques, it will try to steal work elsewhere.

Under the locality-aware framework, the idle worker will look for work in the following

order:

1. the mailbox of the current place.

2. the deques of the peer workers in the same place.

3. the mailboxes of remote places.

112

4. the deques of workers in remote places.

SLAW has an option to disable cross-place stealing by not allowing the worker to

get tasks from remote places (option 3, 4). Whether cross-place stealing is allowed is

a tradeoff between cross-place load imbalance and the penalty of counter-productive

steals.

6.2 Case Study

In this section, we show how to use locality hints (place clause) to improve the

performance of a Habanero-Java application. Especially, we show how to increase

temporal cache data reuse for iterative data-parallel applications.

SOR is an iterative data-parallel application from Java Grande Forum Benchmark

suite. The original data set is a 2000×2000 double-precision matrix, the size of which

is about 32M. The whole data set is too large to fit into the caches of the experimental

machine which has only 24M total cache. So for demonstration purpose, we change

it real number to single-precision, making the total size of the data set about 16M.

The locality-aware experiments are performed on the Xeon SMP described in

Section 5.3.1. With 4 quad-core processors, there are in total of eight(8) L2 shared

caches on the machine with a total size of 24M. Thus, the locality-aware deployment

provided for the SLAW scheduler specifies 8-places, with 1 or 2 workers per place.

The SLAW scheduler will bind workers to virtual processors when the worker threads

are created.

Figure 6.2 shows the task spawn tree in two consecutive iterations for 8 places

with 2 workers per place. Between two iterations, the task in the rectangular will

access the same range of data. Two adjacent tasks will be executed by workers in the

same place. Divided by 8 places, the data for each place (approximately 2MB) fits

into the 3M L2 cache.

Under randomized work-stealing, cache misses can occur when a task migrates

from one worker to another, when the two workers execute on cores that access

113

0 1 2
iteration i

13 14 15......

0 1 2 13 14 15......

3

3
iteration i+1

Figure 6.2 : Task spawn trees for two consecutive iterations in SOR

different caches. For this particular problem size, since the data for each place fits

into the L2 cache, the cache misses between iterations can be completed removed in

SLAW by assigning locality hint to tasks.

Figure 6.3 illustrate the sample code that illustrates the usage of locality hint. At

line 1, the programmer gets the runtime constant of the number of places. For each

iteration, one top level task is created for each place at line 5. For place p, top level

task at place p will then create tasks at line 8. The locality hints of those tasks are

inherited from the place that spawns the task, which is place p.

Figure 6.4 shows the performance results of the SLAW locality-aware scheduler

using two locality-aware deployments: one with 8-places and 1 worker per place with

a total of 8 workers; the other has 8-places and 2 workers per place with a total of

16 workers. The scheduling policy used for task scheduling with each place is the

adaptive schedule. The speedup reported for Cilk++ is also based on the Java-serial

version in order to compare the execution time.

The 8-place-8-worker locality-aware scheduling is 2.1× faster than the locality-

oblivious scheduling using the adaptive scheduling and the speedup for 8-place-16-

worker locality-aware scheduling is 2.6×.

114

1 numPlaces = Runtime . getNumPlaces () ;

2 for (int i t e r =0; i<NUM ITERATIONS; i t e r++) {

3 f i n i s h for (int p = 0 ; p<numPlaces ; p++) {

4 p lace p=Runtime . getPlace (p) ;

5 async p lace (p) {

6 // Task at p l ace p

7 for (int i=numTasks ∗ p / numPlaces ; i<numTasks ∗ (p+1) /

numPlaces ; i++) {

8 async {

9 // Task

10

11 }

12 } } }}

Figure 6.3 : HJ code snippet with places as locality hint

6.3 Hierarchical Place Trees

Modern computer systems feature multiple homogeneous or heterogeneous comput-

ing units with deep memory hierarchies. Exploitation of data locality at multiple

levels of memory hierarchy is critical to achieving scalable parallelism. This section

briefly describes the recent work-in-progress on the Hierarchical Place Trees (HPT)

model [36] which is the hierarchical extension to the previously discussed flat places

model.

In the Hierarchical Place Trees (HPT) model, a memory module, such as a

DRAM, cache, or device memory, is abstracted as a place, and a memory hierarchy

is abstracted as a place tree. Places are annotated with attributes to indicate their

memory type and size, e.g., memory, cache, scratchpad, register file. A processor core

is abstracted as a worker thread. In our current HPT model, worker threads can only

be attached to leaf nodes in the place tree1. Figure 6.5 illustrates the locality-based

1In the future, we may relax this restriction and allow worker threads to be attached to internal

nodes, so as to model “processor-in-memory” hardware architecture.

115

!"

#"

$"

%"

&"

'"

("

#" $" &")" #("

*
+
,
,
-
.
+
"/
0
,
1"
23
03
45
,
16
3
7"

0
,
15
6/
8
"

9.:;,1"/<"=/1>,1"?@1,3-5"

!"#$%&$'&()*$+,-./0%1)$2$3$!45$

@<"

=<"

3-+"

3-+A7/B"

B67>AA"

Figure 6.4 : Comparing Locality-aware scheduler with locality-oblivious scheduler on
SOR on Intel Xeon SMP. The locality-aware deployment for adp+locality has 8 places
with 1 or 2 workers per place. The workers are binded to virtual processors.

scheduling constraints in the HPT model. As in X10, we assume that a task can

be directed to place PLi by using a statement like “async (PLi)”. However, unlike

X10, the destination place may be an internal node or a leaf node in the hierarchy, as

illustrated by the task queues associated with each place in Figure 6.5. If a non-leaf

place PLi is the target for an async statement in the HPT model, then the created

task can be executed on any worker that belongs to the subtree rooted at PLi. Thus,

an internal node in the HPT serves as a subtree wildcard for the set of workers that can

execute a task in its queue. For example, an “async (PL2)” task can be executed by

worker w2 or w3. A consequence of this constraint is that a worker can only execute

tasks from its ancestor places in the HPT. For example, worker w0 in Figure 6.5 can

only execute tasks from the queues in places PL3, PL1, and PL0. If a task executing

at worker w0 is suspended, we assume that it can be resumed at any worker (including

w0) in the subtree of the task’s original target place.

Figure 6.6 illustrates the steps involved in programming and executing an appli-

cation using the HPT Model. The parallelism and locality in a program is written in

116

���

�PL1 � PL2

�PL0

���

��� ���

���
PL3

���
PL4

���
���

PL5

���
���

PL6

���

���
��� ��	
�	�

��� ������

���
�������

�
�������

Figure 6.5 : Scheduling constraints in the HPT model

Parallelism and

Locality Expression

Compilation

Execution

Configuration

Parallel Execution

Configuration

Specification

Programming with HPT

Machine independent

compilation

Mapping HPT to physical

memory hierarchy

Runtime scheduling

Figure 6.6 : Steps to program and execute an application using the HPT model

a way so as to work with any configuration specification. (A configuration consists of

an HPT model, and a mapping of the places and workers in the HPT to memories

and processor cores in the target machine. This configuration is also called runtime

deployment.) Thus, the same program can be executed with different configurations,

much as the same OpenMP or MPI program can be executed with different numbers

of processors. While it is common to use different configurations as abstractions

of different hardware systems, it is also possible to use different configurations as

alternate abstractions of the same physical machine. The best configuration choice

will depend on both the application and target hardware. Auto-tuning techniques

can also be used to help select the best configuration for a specific application and

target system.

To illustrate how the HPT model can be used to obtain different abstractions for

117

(A)

P1

P3 P4

P2

P5 P6

W0 W1 W2 W3

Place 0

(C)

(B)

P1 P2

W0 W1 W2 W3

Place 0

W0 W1 W2 W3

Place 0

Main Memory

L2 Cache

L1 L1

PE0 PE1

L2 Cache

L1 L1

PE2 PE3

Figure 6.7 : A quad-core CPU machine with a three-level memory hierarchy. Figures
a, b, and c represent three different HPT configurations for this machine.

the same physical hardware, consider a quad-core processor machine shown in the left

side of Figure 6.7. The hardware consists of four cores (PE0 to PE3) and three levels

of memory hierarchy. An HPT model that mirrors this structure can be found on the

right in Figure 6.7a. However, if a programmer prefers to view the shared memory

as being flat with uniform access, they can instead work with the HPT model shown

in Figure 6.7b. Or they can take an intermediate approach by using the HPT model

shown in Figure 6.7c.

All data structures that are to be accessed implicitly using global addresses must

have a well-defined distribution across places. Each scalar object is assumed to have

a single home place. Any access to any part of the object results in a data transfer

from the home place to the worker performing the access. The cost of the access

will depend on the distance between the home place and the worker. Note that the

programmer, compiler, runtime or hardware may choose to create a cached clone of

the object closer to the worker, when legal to do so.

An array can be distributed across multiple places. Unlike a lot of past work on

array distributions, the HPT approach to array distribution builds on the idea of array

views [49]. In this approach, a base one-dimensional array can be allocated across a

set of places, and then viewed through a multidimensional index space. Multiple views

can be created for the same base array, and may range across only a subset of the base

array. A key component of an array view is the view’s distribution, which includes

118

Name Description

dist

getCartesianView(int rank)

Return a rank-dimensional Cartesian view of this place’s child

places (per-dimension factoring of children is selected by the

runtime)

dist

getCartesianView(int[] dims)

Return a Cartesian view of this place’s child places using the

per-dimension factors given in the dims array

boolean isLeafPlace () Return true if this place is a leaf place

Set<place> getChildren() Return all the child places of this place

placeType getType() Return the place’s storage type (memory, cache, etc)

int getSize () Return the memory size available at this place

Table 6.1 : Subset of place-based API’s in the HPT model

the domain and range of the mapping from the view’s index space to the base array.

We use the [.] type notation to denote views and the [] type notation to denote

arrays. Given an array view A, the restriction operation, A|p, defines a new array view

restricted to elements of A contained within place p’s subtree. Note that applying a

restriction operator does not result in any data copying or data redistribution. Data

transfer only occurs when an array view is dereferenced to access an element of the

underlying array.

Table 6.1 lists some of the place-based APIs available to programmers for the HPT

model. In Figure 6.8, we show a recursive matrix multiplication program (C=A×B)

written in HJ using the HPT interface. There are two portions of code in the example:

the code for leaf places executed when the isLeafPlace() predicate evaluates to true,

and the code executed for non-leaf places otherwise.

For simplicity, this example only uses implicit data accesses through array views.

The views, A d, B d and C d, are used to establish the subregions for recursive calls

to MatrixMult() via restriction operators of the form A d|p. As mentioned earlier,

creating views does not result in a redistribution of the arrays. Instead, the use of

the ateach construct in line 17 has the effect of establishing an affinity (akin to tiling)

among iterations through the recursive structure of MatrixMult().

119

1 void MatrixMult (double [.] A, double [.] B, double [.] C) {

2 i f (here . i sL ea fP l a c e ()) {

3 /∗ compute the sub−b l o c k s e q u e n t i a l l y ∗/

4 for (po int [i , j , k] : [A. r eg i on . rank (0) , B. r eg i on . rank (1) , A.

r eg i on . rank (1)])

5 C[i , j] += A[i , k] ∗ B[k , j] ;

6 } else {

7 /∗ r e t r i e v e c h i l d r en p l a c e s and s t r u c t u r e them in to a 2−D

Cartes ian topo logy , pTop ∗/

8 d i s t pTop = here . getCartes ianView (2) ;

9

10 /∗ genera te array view tha t b lock−d i s t r i b u t e s C over the 2−D

topo logy , pTop∗/

11 f ina l double [.] C\ d = d i s t . b lock (C, pTop) ;

12 /∗ genera te array view tha t b lock−d i s t r i b u t e s A over pTop ’ s 1

s t dimension (rows) ∗/

13 f ina l double [.] A\ d = d i s t . b lock (A, pTop , 0) ;

14 /∗ genera te array view tha t b lock−d i s t r i b u t e s B over pTop ’ s 2

nd dimension (columns) ∗/

15 f ina l double [.] B\ d = d i s t . b lock (B, pTop , 1) ;

16

17 /∗ r e cu r s i v e c a l l wi th sub−matr ices o f A, B, C pro j e c t e d on to

p l ace p ∗/

18 f i n i s h ateach (po int p : pTop) MatrixMult (A\ d | p , B\ d | p , C\

d | p) ;

19 }

20 }

Figure 6.8 : Matrix multiplication example

The configuration specification is supplied as an XML file, and describes the target

machine architecture as a physical place tree (PPT) as well as a mapping of the HPT

to the PPT. Figure 6.9 shows the PPT specification for the quad-core workstation

shown in Figure 6.7. In our approach, the mapping is performed when launching

120

1 <ppt:Place id="0" type="memory" xmlns:ppt="http://habanero.rice.edu/pptl" ... >

2 <ppt:Place id="1" type="cache" size="6291456" unitSize="128"> <!-- L2 cache -->

3 <ppt:Place id="3" type="cache" cpuid="0">

4 <ppt:Worker id="0" cpuid="0"/> </ppt:Place>

5 <ppt:Place id="4" type="cache" cpuid="1">

6 <ppt:Worker id="1" cpuid="1"/> </ppt:Place> </ppt:Place>

7 <ppt:Place id="2" type="cache" size="6291456" unitSize="128"> <!-- L2 cache -->

8 <ppt:Place id="5" type="cache" cpuid="2">

9 <ppt:Worker id="2" cpuid="2"/> </ppt:Place>

10 <ppt:Place id="6" type="cache" cpuid="3">

11 <ppt:Worker id="3" cpuid="3"/> </ppt:Place> </ppt:Place>

12 </ppt:Place>

Figure 6.9 : Physical place tree specification for a quad-core workstation

the program. This is different from the Sequoia approach in where the mapping is

performed by the compiler, thereby requiring a recompilation to generate code for

each new hardware configuration.

In Figure 6.9, the type attribute is used to specify the type (memory, cache, or

accelerator) of the memory module the place represents. The size attribute specifies

the place’s storage size (cache or memory). The cpuid attribute is only valid for a

worker and is used as a target for mapping HPT worker threads.

121

Chapter 7

Related Work

The first section of this chapter compare the features of SLAW with those of popular

task scheduling systems. In the second section, we discuss recent research efforts in

the area of multi-core task scheduling.

7.1 Review of some task scheduling systems

Table 7.1 summarizes the comparison of some popular task scheduling systems.

Cilk/Cilk++

Cilk is a C-based dynamic task parallel language. The Cilk runtime [39] is based on

the work-stealing algorithm introduced by Blumofe and Leiserson [15] and is time,

space and communication efficient.

Cilk uses the work-first policy for all spawned tasks.The Cilk compiler produces

code to support continuation in the function. The stack bound for Cilk is the same

as the serial depth-first execution S1. For a P processor execution, the memory

requirement is at most P × S1.

Cilk does not have support for affinity.

Cilk++ is a recent extension to Cilk and is based on C++ programming lan-

guage [9]. Cilk++ relaxes the strict parallel calling convection and no longer distin-

guishes cilk and serial functions. The differences between Cilk++ and Cilk mostly lie

in language features while the task scheduling strategy remains unchanged.

122

System Type Cont. Greedy Heap Stack Scheduling Affinity

Support Bound Bound Policy

Cilk/Cik++ Lang Yes Yes Yes S1 Work-first No

StackThreads Lib Yes Yes Yes No Work-first No

TBB Lib No No Yes S1 Help-first Yes

Fork-Join Lib No Yes - No Help-first No

X10 Lang No Yes No O(1) Work-sharing Yes

HJ Lang Yes Yes Yes Yes Adaptive Yes

Table 7.1 : Comparison of Task Parallel Systems

StackThread/MP

StackThreads/MP is a library that supports fine-grain multi-threading in GCC/G++.

StackThreads/MP uses a scheduling scheme that is a combination of work-sharing

and work-stealing. In StackThreads/MP, the idle workers send steal requests to busy

workers. A steal request can be picked up by the busy worker through the polling

routine inserted in the program. Once a steal request is picked up, the victim serves

the request by preparing the execution context for the thief. After the context is

ready, the thief is notified and begins execution.

As a library, StackThreads/MP has a very unique stack management model

to allow programs to compile with standard GCC, which has a standard calling

convention, and at the same time, allow task suspension, resume and migration.

In StackThreads/MP’s stack model, each worker thread has a logical stack as well

as a physical stack. One worker’s logical stack frames may be spread in the physical

stacks of all workers. The model is carefully implemented so that the logical stack can

grow and shrink when a function is called and returned using the standard gcc calling

convention. StackThreads/MP executes the new task eagerly through a sequential

call, which will grow the logical stack and stack of the worker. Task suspension,

task resume and task migration and are all implemented by linking the frames of

123

the worker’s local stack. For example, when a task is suspended, the logical stack

frames are unwind and saved as continuation. The continuation is essentially a chain

of stack frames, is used to resume execution. When logical frames are unwind, they

still remain on the physical stack. It is known that StackThreads/MP can have

fragmentation in the physical stack and can overflow the stack for large applications.

Intel Thread Building Block

Intel Thread Building Blocks (also known as TBB) is a C++ template library de-

veloped by Intel Corporation for writing software programs that take advantage of

multicore processors. Unlike StackThread/MP in which continuation is constructed

upon task suspension, both TBB and the C compiler do not have continuation

support. When a task is suspended and the worker goes stealing, the old stack frames

remain on the runtime stack. As a result, the suspended task can only be resumed by

the same worker that suspends the task; TBB also restricts the stolen task to those

deeper in the spawn tree than the suspended task in order to avoid stack over now in

the worst case. These two restrictions will reduce the efficiency the work-stealing load

balancing. It has been shown that the depth-restriction can asymptotically serializes

execution while unrestricted work-stealing achieves linear speedup [83].

TBB allows the programmer to manually create continuation tasks. However, this

approach is essentially trading productivity for performance. In contrast to the Cilk’s

work-first execution of all spawned tasks, TBB uses the help-first policy upon task

creation.

Intel TBB has the affinity partitioner structure to utilize temporal cache-

reuse by binding the same iteration to the same worker thread that previously exe-

cuted the iteration. TBB allows stealing regardless of the affinity and has a mechanism

to reduce counter-productive stealing.

124

Java Fork-Join Framework

Doug Lea’s fork join framework is a Java library for fork-join style recursive paral-

lelism. Similar to TBB, Fork Join framework does not have continuation support.

When a task is suspended and the worker goes stealing, its stack frames are not

cleared. The stolen task’s activation frame is pushed on top of the old stack frames.

There is no stack bound.

There is no affinity control for tasks in the Fork-Join Framework.

X10

X10 version 1.5 is a Java-based dynamic task parallel language based on PGAS

model. In X10, the whole address space is partitioned to places. All data and

tasks have affinity to one place. In pure-X10, strict data access rule is enforced:

a task can only access local data within its place, otherwise, a BadPlaceException

would be thrown. Its task scheduling scheme is based on work-sharing. In current X10

implementation, tasks are submitted to a centralized task pool, which is implemented

as a ThreadPoolExecutor [10]. There is no continuation support in X10 compiler.

When a task is suspended, a new worker thread is created to retrieve tasks from the

task pool. This implementation is not scalable.

7.2 Research in Task Parallelism

Some researches in task parallelism focuses on reducing the task scheduling over-

head. Hiraishi et al. proposed a backtracking-based work-stealing scheduler called

Tascell [45]. In Tascell, program runs normally in sequential mode and backtracks

upon a steal request. Tascell trades productivity for performance in programs that

have ample parallelism and very few steals. In order to be able to back track, the

programmers are given the burden to write roll-back code for each parallel function at

the language level. Recent development on Tascell includes an adaptive compilation

125

strategy that can adaptively switching between high overhead and low overhead

version of code [89].

There is similar works in the OpenMP community. Duran et al. compared depth-

first and breadth-first task spawning policy in OpenMP task scheduling and found

that depth-first performed slightly better than the breadth-first policy [31]. Their

breadth-first policy is different from the help-first policy in work-stealing because it

uses a global task pool to store all untied tasks, while work-stealing uses local pool per

worker. Second, the benchmarks they used to evaluate the performance are mostly

task recursive parallel programs where steals are rare.

Another way to reduce the task scheduling overhead is to avoid creating tasks that

are too fine-grain. Dural et al. proposed an adaptive cut-off strategy in OpenMP to

avoid creating sub tasks that are deep in the task spawn tree [30]. In loop parallelism,

chunking techniques are used to reduce the overhead [80]. This kinds of approach has

the potential risk of come up with tasks that are too coarse-grain such that the

load balancing problem arises again. Some techniques are proposed to find the best

granularity [90, 88]. SLAW currently does not change the granularity of the task at

runtime. Instead, it tries to schedule the given tasks in an efficient way by policy

adaptation. The technique to improve performance by changing the granularity of

the tasks are complimentary to SLAW.

Michael et al. proposed a deque implementation for idempotent work-stealing [64],

which allows one task to be executed more than once, as long as no task is lost. In

idempotent work-stealing, the deque can be implemented more efficiently than the

traditional ABP deque [8] because the store-load barrier in the pop and steal opera-

tions are removed. This technique is for programmers that are aware of the possible

duplicate task executions or for applications whose correctness holds regardless of

duplicate task executions.

The locality issue in multithreaded computation has also received a lot of attention

in past work [3, 19, 51, 61, 91, 72, 13, 12].

126

When the number of steals is small, Blumofe’s work-stealing algorithm will execute

most tasks in the same order as if it were in the sequential execution. It is believed

that there is inherent data locality in the sequential execution of a program [14, 67, 3].

Acar et. al presents the theoretical lower and upper bounds on the number of

cache misses of Blumofe’s work-stealing algorithm on the hardware-controlled shared

memory machines [3]. They also presents a locality-guided work-stealing algorithm

that improves the data locality using task affinity. Their algorithm assumes each

processor has an exclusive cache and does not consider the situation that multiple

cores share a L2 cache. The same restriction applies to TBB’s affinity partitioner

construct. Chen et al.[22] studied and compared the cache behavior between work-

stealing and parallel depth-first scheduler on simulators for cores that share the

L2 cache. They proposed approaches to control the task granularity and promote

constructive cache sharing.

In SLAW, there can be multiple workers under one place, which can be mapped to

multiple SMPs. A place can be used to represent a processor or core-pairs that share

caches. The workers within a place represents the computing nodes, i.e., the cores.

This model can be used to enable constructive cache sharing on a single multicore

processor.

With the memory hierarchy increases in depth [34], hierarchical place tree has

been proposed to represents the memory hierarchy [36].

In task parallelism, it is both possible for multiple threads working on a large scale

of data, or have them working on a small set of data and do lots of computation. The

locality-aware framework of SLAW provides a runtime foundation and a tool for

programmers or compilers to exploit locality if they wish. However, the approach to

exploit the locality depends on the data access pattern of the particular application

and is not the focus of this thesis.

A cache-oblivious algorithm is an algorithm designed to exploit the CPU cache

without having the size of the cache as an explicit parameter [38]. A cache-oblivious

127

algorithm typically works in a recursive divide and conquer style. The problem is

recursively divided into subproblems, until the subproblems fits into cache. Programs

written in cache-oblivious algorithm are insensitive to the underlying cache structure.

There is also some theoretical work regarding the time and space bound of a task

scheduling system. Two approaches in past work have been shown to be provably

space-efficient. One category consists of work-stealing schedulers with the work-first

policy, which were first proven to be space-efficient for fully-strict computations [15].

The same result was later extended for terminally-strict computations [5] in languages

like X10 and HJ. Another category of techniques is based on depth-first schedulers [14]

such as DFDeques [67], which can use less memory than work-stealing schedulers.

Although the parallel depth-first scheduler has a smaller theoretical bound than the

work-stealing scheduler, it does not enjoy the practical advantages that the work-

stealing algorithm have. Especially, the parallel depth-first scheduler has the problem

of high contention among threads due to the global shared structure used to share

tasks (similar to work-sharing) and poor locality if the task are too fine grain. All

these scheduling techniques focus on the memory space usage without bounding the

stack pressure of individual processors, because all models assume that a serial depth-

first schedule can run successfully. SLAW’s adaptive scheduling algorithm addresses

this problem by tracking the stack pressure and generating schedules with bounded

stack usage, even in cases when a sequential execution cannot run successfully.

Some research increases the productivity and the expressiveness of the task par-

allelism by adding new features. Phaser is a new coordination construct that unifies

collective and point-to-point synchronizations [79, 78]. Some researches study the

work-stealing on a more general task graph that cannot be expressed by the Cilk

and HJ’s fork-join style parallelism [6, 50]. Hyperobjects, reducers [37] or accumula-

tors [78] are constructs used to collect results from multiple tasks. Supporting new

constructs in work-stealing in considered future work.

There are researches that are not based on task parallelism but is related to task

128

parallelism.

Google’s MapReduce [27] is a data parallel programming model design for simple

but large scale data processing. The model has also been implemented on both

distributed [27, 2] and multicore environment [76]. From the task parallelism per-

spective, the execution of a MapReduce application consists of two phases. The map

phase creates map tasks and the reduce phase creates reduce tasks. There is a strict

synchronization barrier between the map and reduce phase.

Galois [53] is a parallel model designed for irregular data parallelism [52]. Its

runtime executes task speculatively with conflict controls [62].

Concurrent Collection(CnC) [17] is a high-level data-driven programming model

to allow programmers to write code that will run in parallelism while ignoring the

low-level threading constructs or scheduling issues. The high-level CnC model is

currently converted by the compiler to task parallel model and runs on task parallel

runtimes.

129

Chapter 8

Conclusion

The task parallel programming model and the work-stealing scheduler are increasingly

popular, and are considered a promising approach to address the software challenge

in the ongoing trend for massive parallelism.

In this dissertation, we describe the implementation of the work-stealing scheduler,

SLAW, for Habanero-Java programming language. SLAW supports both work-first

and help-first task scheduling policies simultaneously and it comes with compiler

support. SLAW features policy adaptation and locality-aware scheduling frame. We

theoretically and experimentally show that policy adaptation can deliver performance

and resource bound that cannot be achieved by a fixed scheduling policy. We also

show the design of SLAW’s locality-aware scheduling framework and show an example

to use the locality-aware framework to deliver better performance than randomized

work-stealing.

The experimental results for the benchmarks studied in this paper show that

SLAW’s adaptive scheduler achieves 0.98× - 8.9× speedup over the help-first scheduler

and 0.97× - 1.56× speedup over the work-first scheduler for 64-thread executions,

thereby establishing the robustness of using an adaptive approach instead of a fixed

policy. Further, for large irregular recursive parallel computations, the adaptive

scheduler runs with bounded stack usage and achieves scalability that cannot be

achieved by the use of any single policy. Our experimental results show that locality-

aware scheduling can achieve up to 2.59× speedup over locality-oblivious scheduling,

for the benchmarks studied in this paper.

The robustness of SLAW on different kinds of parallel applications makes it a good

130

fit for irregular parallelism as well as a robust foundation to provide general support

for higher level programming model such as Futures, Phasers [79] and Reducers [37].

131

Bibliography

[1] Habanero-Java Web Page. http://habanero.rice.edu/hj.

[2] Hadoop: Open source implementation of mapreduce.

http://lucene.apache.org/hadoop/.

[3] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of

work stealing. In SPAA ’00: Proceedings of the twelfth annual ACM symposium

on Parallel algorithms and architectures, pages 1–12, New York, NY, USA, 2000.

ACM.

[4] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12):66–76, 1996.

[5] Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, Rudrapatna K.

Shyamasundar, and Katherine Yelick. Deadlock-free scheduling of x10 computa-

tions with bounded resources. In SPAA ’07: Proceedings of the nineteenth annual

ACM symposium on Parallel algorithms and architectures, pages 229–240, New

York, NY, USA, 2007. ACM.

[6] Kunal Agrawal, Charles Leiserson, and Jim Sukha. Executing task graphs

using work-stealing. In IPDPS ’10: Proceedings of the 2010 IEEE International

Symposium on Parallel&Distributed Processing, Washington, DC, USA, 2010.

IEEE Computer Society.

[7] John R. Allen and Ken Kennedy. Automatic loop interchange. In SIGPLAN

’84: Proceedings of the 1984 SIGPLAN symposium on Compiler construction,

pages 233–246, New York, NY, USA, 1984. ACM.

132

[8] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for

multiprogrammed multiprocessors. In SPAA ’98: Proceedings of the tenth annual

ACM symposium on Parallel algorithms and architectures, pages 119–129, New

York, NY, USA, 1998. ACM.

[9] Cilk Arts. http://www.cilk.com.

[10] Rajkishore Barik, Vincent Cave, Christopher Donawa, Allan Kielstra, Igor

Peshansky, and Vivek Sarkar. Experiences with an smp implementation for x10

based on the java concurrency utilities (extended abstract). In Proceedings of the

2006 Workshop on Programming Models for Ubiqui- tous Parallelism, co-located

with PACT 2006, September 2006, Seattle, Washington, 2006.

[11] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.

Hoard: a scalable memory allocator for multithreaded applications. SIGPLAN

Not., 35(11):117–128, 2000.

[12] Guy E. Blelloch, Rezaul A. Chowdhury, Phillip B. Gibbons, Vijaya Ramachan-

dran, Shimin Chen, and Michael Kozuch. Provably good multicore cache

performance for divide-and-conquer algorithms. In SODA ’08: Proceedings of

the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages

501–510, Philadelphia, PA, USA, 2008. Society for Industrial and Applied

Mathematics.

[13] Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among

threads. In SPAA ’04: Proceedings of the sixteenth annual ACM symposium on

Parallelism in algorithms and architectures, pages 235–244, New York, NY, USA,

2004. ACM.

[14] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient

scheduling for languages with fine-grained parallelism. pages 1–12, 1995.

133

[15] R. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.

[16] Carlos Boneti, Roberto Gioiosa, Francisco J. Cazorla, and Mateo Valero. A

dynamic scheduler for balancing hpc applications. In SC ’08: Proceedings of the

2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ,

USA, 2008. IEEE Press.

[17] Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney,

Vivek Sarkar, and Leo Treggiari. Multi-core implementations of the concurrent

collections programming model. In CPC’09.

[18] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a

virtual tree of processors. In FPCA ’81: Proceedings of the 1981 conference on

Functional programming languages and computer architecture, pages 187–194,

New York, NY, USA, 1981. ACM.

[19] Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load

balancing in cool. SIGPLAN Not., 28(7):249–259, 1993.

[20] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,

Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10:

an object-oriented approach to non-uniform cluster computing. In OOPSLA ’05:

Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, pages 519–538, New York,

NY, USA, 2005. ACM.

[21] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In SPAA

’05: Proceedings of the seventeenth annual ACM symposium on Parallelism in

algorithms and architectures, pages 21–28, New York, NY, USA, 2005. ACM.

[22] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anas-

tassia Ailamaki, Guy E. Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas,

134

Todd C. Mowry, and Chris Wilkerson. Scheduling threads for constructive cache

sharing on cmps. In SPAA ’07: Proceedings of the nineteenth annual ACM

symposium on Parallel algorithms and architectures, pages 105–115, New York,

NY, USA, 2007. ACM.

[23] Guojing Cong, Sreedhar Kodali, Sriram Krishnamoorthy, Doug Lea, Vijay

Saraswat, and Tong Wen. Solving large, irregular graph problems using

adaptive work-stealing. In ICPP ’08: Proceedings of the 2008 37th International

Conference on Parallel Processing, pages 536–545, Washington, DC, USA, 2008.

IEEE Computer Society.

[24] Cray. http://chapel.cray.com/.

[25] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel computer

architecture: a hardware/software approach. Elsevier Science, 1998.

[26] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister. A single-program-

multiple-data computational model for epex/fortran. Parallel Computing, 7:11–

24, April 1988.

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on

large clusters. Commun. ACM, 51(1):107–113, 2008.

[28] Edsger W. Dijkstra. Cooperating sequential processes. pages 65–138, 2002.

[29] James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and

Jarek Nieplocha. Scalable work stealing. In SC ’09: Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis,

pages 1–11, New York, NY, USA, 2009. ACM.

[30] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. An adaptive cut-off

for task parallelism. In SC ’08: Proceedings of the 2008 ACM/IEEE conference

on Supercomputing, pages 1–11, Piscataway, NJ, USA, 2008. IEEE Press.

135

[31] Alejandro Duran, Julita Corbaln, and Eduard Ayguad. Evaluation of openmp

task scheduling strategies. In International Workshop on OpenMP ’08.

[32] Kemal Ebcioglu, Vivek Sarkar, Tarek El-Ghazawi, and John Urbanic. An exper-

iment in measuring the productivity of three parallel programming languages. In

Workshop on Productivity and Performance in High-End Computing (P-PHEC),

2006.

[33] Tarek El-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC Language

Specification v1.1.1, October 2003.

[34] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem,

Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,

William J. Dally, and Pat Hanrahan. Sequoia: programming the memory

hierarchy. In SC ’06: Proceedings of the 2006 ACM/IEEE conference on

Supercomputing, page 83, New York, NY, USA, 2006. ACM.

[35] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits

for fine-grain synchronization. Journal of Parallel and Distributed Computing,

16:306–318, 1992.

[36] Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Data

Movement. Yonghong yan and jisheng zhao and yi guo and vivek sarkar. In

Proceedings of the 22nd International Workshop on Languages and Compilers

for Parallel Computing, LCPC’09, 1998.

[37] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin.

Reducers and other cilk++ hyperobjects. In SPAA ’09: Proceedings of the

twenty-first annual symposium on Parallelism in algorithms and architectures,

pages 79–90, New York, NY, USA, 2009. ACM.

[38] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

Cache-oblivious algorithms. In FOCS ’99: Proceedings of the 40th Annual

136

Symposium on Foundations of Computer Science, page 285, Washington, DC,

USA, 1999. IEEE Computer Society.

[39] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation

of the cilk-5 multithreaded language. SIGPLAN Not., 33(5):212–223, 1998.

[40] NANOS group. The Barcelona OpenMP Task Suite (BOTS) Project.

http://nanos.ac.upc.edu/projects/bots/wiki.

[41] Yi Guo, Rajkishore Barik, Raghavan Raman, and Vivek Sarkar. Work-first and

help-first scheduling policies for async-finish task parallelism. In IPDPS ’09:

Proceedings of the 2009 IEEE International Symposium on Parallel&Distributed

Processing, pages 1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[42] Robert H. Halstead. MULTILISP: A language for concurrent symbolic computa-

tion. ACM Transactions on Programming Languages and Systems, 7(4):501–538,

1985.

[43] R. Haralick and G. Elliott. Improving tree search efficiency for constraint-

satisfaction problems. Artificial Intelligence, 1980.

[44] Danny Hendler and Nir Shavit. Non-blocking steal-half work queues. In PODC

’02: Proceedings of the twenty-first annual symposium on Principles of distributed

computing, pages 280–289, New York, NY, USA, 2002. ACM.

[45] Tasuku Hiraishi, Masahiro Yasugi, Seiji Umatani, and Taiichi Yuasa.

Backtracking-based load balancing. In PPoPP ’09: Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel programming, pages

55–64, New York, NY, USA, 2009. ACM.

[46] Steven Hofmeyr, Costin Iancu, and Filip Blagojević. Load balancing on speed. In

PPoPP ’10: Proceedings of the 15th ACM SIGPLAN symposium on Principles

137

and practice of parallel programming, pages 147–158, New York, NY, USA, 2010.

ACM.

[47] Costin Iancu, Steven Hofmeyr, Filip Blagojevic, and Yili Zheng. Oversubscrip-

tion on multicore processors. In Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS), April 2010.

[48] Intel Corporation. Intel(R) Threading Building Blocks.

[49] Mackale Joyner. Array Optimizations for High Productivity Programming

Languages. PhD thesis, Houston, TX, USA, 2008.

[50] Prabhanjan Kambadur, Anshul Gupta, Amol Ghoting, Haim Avron, and Andrew

Lumsdaine. Pfunc: modern task parallelism for modern high performance

computing. In SC ’09: Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, pages 1–11, New York, NY, USA,

2009. ACM.

[51] Vijay Karamcheti and Andrew A. Chien. A hierarchical load-balancing

framework for dynamic multithreaded computations. In Supercomputing ’98:

Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM),

pages 1–17, Washington, DC, USA, 1998. IEEE Computer Society.

[52] Milind Kulkarni, Martin Burtscher, Calin Cascaval, and Keshav Pingali. Lon-

estar: A suite of parallel irregular programs. In International Symposium on

Performance Analysis of Software and Systems (ISPASS), 2009.

[53] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. Optimistic parallelism requires abstractions. In

PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation, pages 211–222, New York, NY, USA, 2007.

ACM.

138

[54] L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess progranm. IEEE Trans. Comput., 28(9):690–691, 1979.

[55] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem.

Commun. ACM, 17(8):453–455, 1974.

[56] James R. Larus and Ravi Rajwar. Transactional Memory. Morgan and Claypool,

2006.

[57] D. Lea. A java fork/join framework. In JAVA ’00: Proceedings of the ACM 2000

conference on Java Grande, pages 36–43, 2000.

[58] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a

task parallel library. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN

conference on Object oriented programming systems languages and applications,

pages 227–242, New York, NY, USA, 2009. ACM.

[59] Tong Li, Dan Baumberger, and Scott Hahn. Efficient and scalable multipro-

cessor fair scheduling using distributed weighted round-robin. SIGPLAN Not.,

44(4):65–74, 2009.

[60] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model.

In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 378–391, New York, NY, USA, 2005.

ACM.

[61] Evangelos P. Markatos and Thomas J. Leblanc. Locality-based scheduling

in shared-memory multiprocessors. Technical report, Parallel Computing:

Paradigms and Applications, 1993.

[62] Mario Méndez-Lojo, Donald Nguyen, Dimitrios Prountzos, Xin Sui, M. Amber

Hassaan, Milind Kulkarni, Martin Burtscher, and Keshav Pingali. Structure-

driven optimizations for amorphous data-parallel programs. In PPoPP ’10:

139

Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 3–14, New York, NY, USA, 2010. ACM.

[63] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms. In PODC ’96: Proceedings of the

fifteenth annual ACM symposium on Principles of distributed computing, pages

267–275, New York, NY, USA, 1996. ACM.

[64] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work

stealing. In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 45–54, New York, NY,

USA, 2009. ACM.

[65] Sun Microsystems. http://projectfortress.sun.com/Projects/Community.

[66] Gordon E. Moore. Cramming more components onto integrated circuits. 1965.

[67] G. J. Narlikar. Scheduling threads for low space requirement and good locality.

In Proceedings of SPAA’99.

[68] Robert W. Numrich and John Reid. Co-Array Fortran for parallel programming.

ACM SIGPLAN Fortran Forum Archive, 17:1–31, August 1998.

[69] OpenMP: A Proposed Industry Standard API for Shared Memory Program-

ming, October 1997. White paper on OpenMP initiative, available at

http://www.openmp.org/openmp/mp-documents/paper/paper.ps.

[70] OpenMP Architecture Review Board. OpenMP Application Program Interface

Version 3.0, May 2008.

[71] Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process.

Lett., 12(3):115–116, 1981.

140

[72] James Philbin, Jan Edler, Otto J. Anshus, Craig C. Douglas, and Kai Li.

Thread scheduling for cache locality. In ASPLOS-VII: Proceedings of the seventh

international conference on Architectural support for programming languages and

operating systems, pages 60–71, New York, NY, USA, 1996. ACM.

[73] W. Pugh. Java Memory Model and Thread Specification Revision, 2004. JSR

133, http://www.jcp.org/en/jsr/detail?id=133.

[74] William Pugh. The Java memory model is fatally flawed. Concurrency:Practice

and Experience, 12(1):1–11, 2000.

[75] Raghavan Raman. Compiler support for work-stealing parallel runtime systems,

May 2009.

[76] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and

Christos Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor

systems. In HPCA ’07: Proceedings of the 2007 IEEE 13th International Sym-

posium on High Performance Computer Architecture, pages 13–24, Washington,

DC, USA, 2007. IEEE Computer Society.

[77] William N. Scherer, III. Synchronization and concurrency in user-level software

systems. PhD thesis, Rochester, NY, USA, 2006. Adviser-Scott, Michael L.

[78] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phaser accumulators:

A new reduction construct for dynamic parallelism. In IPDPS ’09: Proceedings

of the 2009 IEEE International Symposium on Parallel&Distributed Processing,

pages 1–12, Washington, DC, USA, 2009. IEEE Computer Society.

[79] Jun Shirako, David M. Peixotto, Vivek Sarkar, and William N. Scherer.

Phasers: a unified deadlock-free construct for collective and point-to-point

synchronization. In ICS ’08: Proceedings of the 22nd annual international

conference on Supercomputing, pages 277–288, New York, NY, USA, 2008. ACM.

141

[80] Jun Shirako, Jisheng M. Zhao, V. Krishna Nandivada, and Vivek N. Sarkar.

Chunking parallel loops in the presence of synchronization. In ICS ’09:

Proceedings of the 23rd international conference on Supercomputing, pages 181–

192, New York, NY, USA, 2009. ACM.

[81] Anthony Skjellum, Ewing Lusk, and William Gropp. Using MPI: Portable

Parallel Programming with the Message Passing Iinterface. MIT Press, 1999.

[82] Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper.

Beyond nested parallelism: tight bounds on work-stealing overheads for parallel

futures. In SPAA ’09: Proceedings of the twenty-first annual symposium on

Parallelism in algorithms and architectures, pages 91–100, New York, NY, USA,

2009. ACM.

[83] Jim Sukha. Brief announcement: a lower bound for depth-restricted work

stealing. In SPAA ’09: Proceedings of the twenty-first annual symposium on

Parallelism in algorithms and architectures, pages 124–126, New York, NY, USA,

2009. ACM.

[84] H̊akan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority

queues for multi-thread systems. J. Parallel Distrib. Comput., 65(5):609–627,

2005.

[85] Xavier Teruel, Priya Unnikrishnan, Xavier Martorell, Eduard Ayguadé, Raul

Silvera, Guansong Zhang, and Ettore Tiotto. Openmp tasks in ibm xl compilers.

In CASCON ’08: Proceedings of the 2008 conference of the center for advanced

studies on collaborative research, pages 207–221, New York, NY, USA, 2008.

ACM.

[86] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units.

IBM J. Res. Dev., 11(1):25–33, 1967.

142

[87] Philippas Tsigas and Yi Zhang. Evaluating the performance of non-blocking

synchronization on shared-memory multiprocessors. SIGMETRICS Perform.

Eval. Rev., 29(1):320–321, 2001.

[88] Alexandros Tzannes, George C. Caragea, Rajeev Barua, and Uzi Vishkin. Lazy

binary-splitting: a run-time adaptive work-stealing scheduler. In PPoPP ’10:

Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 179–190, New York, NY, USA, 2010. ACM.

[89] Lei Wang, Huimin Cui, Yuelu Duan, Fang Lu, Xiaobing Feng, and Pen-Chung

Yew. An adaptive task creation strategy for work-stealing scheduling. In CGO

’10: Proceedings of the 8th annual IEEE/ACM International Symposium on Code

Generation and Optimization, Washington, DC, USA, 2010. IEEE Computer

Society.

[90] Zheng Wang and Michael F.P. O’Boyle. Mapping parallelism to multi-cores: a

machine learning based approach. In PPoPP ’09: Proceedings of the 14th ACM

SIGPLAN symposium on Principles and practice of parallel programming, pages

75–84, New York, NY, USA, 2009. ACM.

[91] Boris Weissman. Performance counters and state sharing annotations: a

unified approach to thread locality. In ASPLOS-VIII: Proceedings of the eighth

international conference on Architectural support for programming languages and

operating systems, pages 127–138, New York, NY, USA, 1998. ACM.

[92] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive training branch prediction.

In MICRO 24: Proceedings of the 24th annual international symposium on

Microarchitecture, pages 51–61, New York, NY, USA, 1991. ACM.

[93] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta,

Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands,

Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su, Michael Welcome, and

143

Tong Wen. Productivity and performance using partitioned global address space

languages. In PASCO ’07: Proceedings of the 2007 international workshop on

Parallel symbolic computation, pages 24–32, New York, NY, USA, 2007. ACM.

