
RICE UNIVERSITY

Compiler Support for Work-Stealing Parallel Runtime Systems

by

Raghavan Raman

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

Approved, Thesis Committee:

Vivek Sarkar, Chair
E.D. Butcher Professor of
Computer Science

Keith D. Cooper
L. John and Ann H. Doerr Professor of
Computational Engineering

William N. Scherer III
Faculty Fellow

Houston, Texas

May 2009

Abstract

Multiple programming models are emerging to address an increased need for dynamic

task parallelism in applications for multicore processors and shared-address-space

parallel computing. Examples include OpenMP 3.0, Java Concurrency Utilities, Mi-

crosoft Task Parallel Library, Intel Threading Building Blocks, Cilk, X10, Chapel,

and Fortress. Scheduling algorithms based on work-stealing, as embodied in Cilk’s

implementation of dynamic spawn-sync parallelism, are gaining in popularity but also

have inherent limitations. In this thesis, we focus on the compiler support needed

to extend work-stealing for dynamic async-finish task parallelism as in X10 and Ha-

baneroJava (HJ). We also discuss the compiler support needed for work-stealing with

both the work-first and help-first policies. Performance results obtained using our

compiler and the HJ work-stealing runtime show significant improvement compared

to the earlier work-sharing runtime.

We then propose and implement two optimizations that can be performed in the

compiler to improve the code generated for work-stealing schedulers. Performance

results show that the Frame-Store optimizations provide a significant reduction in the

code size and the number of frame-store statements executed dynamically, but these

reductions do not result in execution time improvements on current multicore systems.

We also show that the Objects-As-Frames optimization yields an improvement in

performance for small number of threads. Finally, we propose topics for future work

which include extending work-stealing for additional language constructs as well as

new optimizations.

Acknowledgments

I would like to thank my thesis advisor, Prof. Vivek Sarkar, for his support and

guidance throughout this work. It is due to his inspiration and continuous encourage-

ment that I was able to successfully complete this work. His enthusiasm in pursuing

problems is infectious and that made me work harder to meet the goals. I would also

like to thank my thesis committee members, Prof. Keith Cooper and Bill Scherer, for

their insights and comments.

I would like to thank my fellow graduate students Raj Barik and Yi Guo who

were with me throughout this work. The discussions we had over all the technical

details related to this work have been very useful. Many thanks to my lab mates,

Dave Peixotto and Jeff Sandavol, who have been of great help to me from my first

year at Rice in both technical and non-technical stuff. I thank Jisheng Zhao for his

help and suggestions. Thanks to other members of the Habanero group for all the

interesting discussions and insights.

My sincere thanks to Vijay Saraswat and Igor Peshansky of IBM Research for the

intellectual discussions related to this work.

Finally, I thank all my family and friends. It is because of the constant support

of my loved ones that I was able to complete the work successfully.

Contents

1 Introduction 1

2 Background 4
2.1 Work-Sharing . 5
2.2 Lazy Task Creation and Work-Stealing 7

2.2.1 Cilk . 8
2.2.2 Threading Building Blocks . 8
2.2.3 OpenMP 3.0 . 9

3 Work-Stealing Runtime and Extensions 10
3.1 Basic Work-Stealing and Work-First Policy 12
3.2 Work-Stealing Extensions . 15

3.2.1 Terminally Strict Computations 17
3.2.2 Escaping Asyncs . 19
3.2.3 Sequential Calls to Parallel Functions 22
3.2.4 Arbitrarily Nested Asyncs . 24
3.2.5 Delayed Asyncs . 25
3.2.6 Distributed Parallelism . 25

3.3 Help-First Policy . 26
3.3.1 Comparing Help-First and Work-First Policies 27
3.3.2 Limitation of Help-First Policy 30

4 Compiler Support for Work-Stealing 31
4.1 Support for Basic Work-Stealing with Work-First Policy 33

4.1.1 The Two-Clone strategy . 34
4.1.2 Activation Records as Frames in the Heap 36
4.1.3 Continuations as Jumps in the Bytecode 39

4.2 Support for Extended Work-Stealing 41
4.2.1 Potentially Parallel Functions 41
4.2.2 Sequential Calls to Potentially Parallel Functions 44
4.2.3 Arbitrarily Nested Asyncs . 48

4.3 Compilation Support for the Help-First Policy 50
4.3.1 Task Frames for Asyncs . 51

iv

4.3.2 Fewer Continuation points . 53
4.3.3 Need to maintain the activation frame 54

4.4 Summary of Performance Results . 54

5 Optimizations in Work-Stealing Compilation 57
5.1 Frame-Store Optimizations . 58

5.1.1 Live Variables Analysis . 59
5.1.2 Available Expressions Analysis 63
5.1.3 Performance Analysis . 65
5.1.4 Extending Frame-Store Optimizations 70

5.2 Using Application Objects as Frames 71
5.2.1 Objects-As-Frames Optimization 72
5.2.2 Performance Analysis . 76
5.2.3 Extending Objects-As-Frames Optimization 77

6 Related Work 78

7 Conclusions and Future Work 80

v

List of Figures

3.1 Cilk computation dag . 14
3.2 HJ computation dag . 17
3.3 Classes of multithreaded computations 18
3.4 HJ code for parallel DFS spanning tree 20
3.5 Spawn tree for DFS spanning tree algorithm 21
3.6 Example HJ code: Sequential call to Parallel functions 23
3.7 Compilation under Work-First and Help-First policies 27
3.8 SOR code structure depicting iterative loop parallelism 27
3.9 Speedup of SOR . 28

4.1 Compilation structure for work-sharing and work-stealing runtimes . 32
4.2 Example fib code in HJ . 36
4.3 Fast clone for fib (work-first) . 37
4.4 Slow clone for fib (work-first) . 38
4.5 An example call-graph . 43
4.6 Wrapping sequential call in Finish-Async 45
4.7 Maintaining call stack on heap frame 46
4.8 Arbitrarily nested asyncs . 49
4.9 Fast clone for fib (help-first) . 51
4.10 Slow clone for fib (help-first) . 52
4.11 Task Frame for fib . 52
4.12 Comparison of work-sharing with work-stealing runtime 56

5.1 Example HJ code snippet . 59
5.2 Code transformed for work-first work-stealing 60
5.3 Redundant stores marked by Liveness analysis 62
5.4 Redundant stores marked by Available Expressions analysis 64
5.5 Code Size with Frame-Store Optimizations 66
5.6 Dynamic counts of Frame-Store instructions 67
5.7 Dynamic counts of instructions . 68
5.8 Execution times for MG . 70
5.9 Execution times for Fib . 71
5.10 Fast clone for fib (optimized using Objects-As-Frames) 74
5.11 BoxInteger used as a Task Frame . 75

vi

5.12 Objects-As-Frames Optimization on Graph Spanning Tree 76

vii

Chapter 1

Introduction

The computer industry is entering a new era of mainstream parallel processing

due to current hardware trends and power efficiency limits. Now that all computers

- embedded, mainstream, and high-end - are being built using multicore chips, the

need for improved productivity in parallel programming has taken on a new urgency.

The three programming languages developed as part of the DARPA HPCS program

(Chapel [13], Fortress [2], X10 [14]) all identified dynamic lightweight task paral-

lelism as one of the prerequisites for success. Dynamic task parallelism is also being

included for mainstream use in many new programming models for multicore proces-

sors and shared-memory parallelism, such as Cilk, OpenMP 3.0, Java Concurrency

Utilities, Intel Threading Building Blocks, and Microsoft Task Parallel Library. In

addition, dynamic data driven execution has been identified as an important trend for

future multicore software, in contrast to past programming models based on the Bulk

Synchronous Parallel (BSP) and Single Program Multiple Data (SPMD) paradigms.

Scheduling algorithms based on Cilk’s work-stealing scheduler are gaining in popu-

larity for dynamic lightweight task parallelism but also have inherent limitations.

Scheduling techniques based on work-stealing build on the idea of decoupling

1

tasks from threads. This decoupling is achieved by creating a fixed set of threads

which in turn pick up tasks to work on. Normally, work-stealing schedulers include

a runtime library that is responsible for mapping tasks to threads, migrating tasks

from one thread to another, and managing the threads themselves. One approach

to scheduling applications using work-stealing is to include the calls to the runtime

library explicitly in the application. While this technique often achieves very good

performance, it places a lot of onus on the programmer. This requires that the

programmer is fully aware of the runtime library and the details of scheduler, which

in turn affects the productivity. Hence, work-stealing schedulers generally resort

to an alternate approach where the parallelism is expressed as tasks at a higher-

level of abstraction using some parallel constructs in a language. This code is then

transformed into an equivalent version with appropriate calls to the work-stealing

runtime library using a compiler. The compiler needs to do a good job of mapping the

tasks in the application to threads appropriately in order to match the performance

of a good hand-written application with direct calls to runtime. This thesis addresses

the challenges involved in the compiler part of work-stealing schedulers.

This thesis focuses on a core subset of the concurrency constructs of the Habanero-

Java (HJ) language, which is an extension of X10 v1.5, consisting of the async, atomic,

and finish constructs. We describe the compiler support needed to extend work-

stealing to HJ’s dynamic async-finish task parallelism, which is more general than Cilk’s

spawn-sync parallelism. We also discuss the compiler support needed for work-stealing

with both the work-first and help-first policies. We also study the effects of some

optimizations performed in the compiler. Though the code generated by the compiler

targets the Habanero Work-Stealing Runtime System [23], the techniques described in

this thesis can be used to target any work-stealing runtime system in general. This

thesis also includes a brief description of our target work-stealing runtime system for

2

the sake of completeness. The main contributions of this thesis include:

• We implement the compiler support needed to schedule fully strict computations

by work-stealing.

• We extend the compilation techniques to support the scheduling of terminally

strict computations using work-stealing.

• We describe the changes needed in the compiler to support work-stealing schedul-

ing under the help-first policy.

• We propose and implement data-flow analyses to remove redundant frame-store

statements that are inserted by the compiler transformations.

• We introduce an optimization that replaces the use of TaskFrames with appli-

cation objects, under work-stealing with the help-first policy.

The rest of the thesis is organized as follows. Chapter 2 gives a brief introduc-

tion to task scheduling and how it has evolved over the recent past. Chapter 3

briefly describes the work-stealing techniques for fully-strict computations and the

extensions needed to support terminally-strict computations. This chapter also in-

troduces work-stealing with the help-first policy, which is an alternate strategy to

work-stealing. Chapter 4 describes in detail the compiler support needed to support

fully-strict computations and the extensions needed in the compiler for terminally-

strict computations. It also discusses the changes needed to target work-stealing with

the help-first policy. Chapter 5 introduces a couple of optimizations that can be per-

formed in the work-stealing compiler. It also includes a study of the performance of

these optimizations. Chapter 6 discusses related work, and Chapter 7 contains our

conclusions and suggestions on topics for future work.

3

Chapter 2

Background

The advent of multicore processors has led to the emergence of different kinds of

programming models to use the parallel processing power available. These program-

ming models can be broadly classified into three categories based on their approach to

exploit parallelism, namely, the programming language approach, the directives based

approach, and the library approach. Irrespective of their approach, an important as-

pect of these programming models is their support for executing tasks asynchronously.

Tasks are defined as independent units of work. Since they are independent, the tasks

give us the flexibility of executing them in parallel. Though tasks are independent,

they could involve some explicit synchronizations to coordinate with other tasks. The

challenge is to schedule these tasks efficiently when multiple processors are available.

Earliest attempts at solving this problem [31] proposed that each task be scheduled

in an individual thread with the threads synchronizing among them when the tasks

need them to. But this approach had serious issues with respect to resource utilization

since an increase in the number of tasks might lead to creation of more threads

than the operating system can handle. When there are more threads than available

processors, some threads sit idle. Idle threads use up a lot of resources like memory

4

and may also lead to deadlocks and resource overflows. Also, having many threads

competing for processors would increase the overhead associated with executing tasks.

Since every task is associated with a thread, execution of a task involves creating a

new thread, executing the task on the thread and destroying the thread after the task

completes. The overhead of creating and destroying threads becomes significant and

sometimes even outweigh the gains of executing tasks in parallel, especially in the

case of light-weight tasks.

2.1 Work-Sharing

The JUC Executor framework proposed in [31] provides a means of decoupling

tasks from threads. A JUC ThreadPoolExecutor creates a pool of threads that are

meant to work on the tasks in a program. It also maintains a work queue where the

tasks to be executed reside. The tasks that the program creates go to this work queue

and the threads pick up these tasks for execution. The executor framework abstracts

out the details of how the threads are managed from the program. The thread pool

implementations based on the executor framework are flexible to support different

policies of managing threads. For example, a fixed-size thread pool implementation

creates threads as tasks are submitted, up to the maximum pool size. It maintains

the thread pool size constant by adding new threads when a thread dies.

This approach where the newly created tasks are added to a central queue and

threads pick up these tasks for execution, is broadly referred to as work-sharing. This

term essentially comes from the fact that the threads share their work, in the form

of tasks, with other threads executing the program.

5

X10 and Work-Sharing

X10 is a parallel programming language [14] that extends a sequential subset of

Java. It provides parallel programming constructs with the aim of increasing the

productivity and performance of parallel programming on a wide range of parallel

processors. These include, among others, constructs that create tasks to be executed

asynchronously, and those that help tasks synchronize among each other.

An implementation of the X10 runtime system based on work-sharing for symmet-

ric shared-memory multiprocessors (SMPs) is described in [3]. It uses an X10Thread-

PoolExecutor which is an extension of JUC ThreadPoolExecutor. The main func-

tionality in this extension is the ability of the thread pool executor to add and

delete threads depending on the requirement of the X10 runtime system. Hence, the

X10ThreadPoolExecutor also has a central work queue which holds the tasks ready

for execution. (Actually, the X10ThreadPoolExecutor consists of one work queue per

place. Since this thesis focuses on a single place, we only consider the work queue

in a place.) It also starts with a fixed number of threads with each thread executing

a task. When a task performs a blocking operation, the thread executing the tasks

suspends. At this point, the X10ThreadPoolExecutor adds a new thread to the thread

pool to compensate for the idle thread. Thus, the number of threads in the runtime

system could increase depending on the application being executed.

The work-sharing approach to schedule tasks, as used in the X10 runtime sys-

tem [3], suffers from the following limitations.

• The main disadvantage of a work-sharing approach is the central work queue

data structure. Since all the threads get their work from this work queue, it

becomes a scalability bottleneck when the number of threads increase. Also,

since the tasks are typically light-weight, the request for task by threads could

6

be very frequent thereby increasing the contention on the central work queue.

• The strategy used to handle suspended tasks has an inherent limitation. Since

threads executing the tasks suspend when the task suspends, new threads are

created to compensate for the idle threads. This could increase the number

of threads to a point where it is significantly more than the number of avail-

able processors. Now, when the idle threads wake up, there would be more

threads running than processors available. This would result in contention

among threads for processor cycles.

• There is a significant overhead involved with creating and destroying threads.

With every new thread that is created, this overhead increases and could even-

tually become a significant component of the execution time.

2.2 Lazy Task Creation and Work-Stealing

The inherent limitation of work-sharing due to a single central work queue was

addressed by this technique called Lazy Task Creation [29]. As the name suggests,

this technique creates tasks lazily, i.e., it creates tasks only when there are resources

available for the task to be executed. If there are not enough resources available

for a new task to execute, the current task continues execution but saves enough

information so that the task could be created in the future if a need arises. Thus,

when a processor becomes idle, it gets a new tasks from this saved information. This

process of an idle processor getting work from a busy processor is known as work-

stealing.

Under the work-stealing approach, typically one thread is created for every proces-

sor available. Since the threads “steal” work from other threads, there is no need for

7

a central work queue as well. Also since threads are completely decoupled from tasks

in this case, a thread need not suspend when a task suspends. It can just proceed

with the execution of other tasks. The suspended tasks will be picked up by other

threads when they become ready.

2.2.1 Cilk

The Cilk programming language [21] is an extension of C that provides constructs

for parallel programming. Cilk uses work-stealing to schedule the tasks in parallel.

Though the idea of work-stealing was understood well before, Cilk was the first parallel

programming language that featured a provably efficient work-stealing scheduler [4,

7]. The original Cilk-1 language [6] had a restriction that the parallelism must be

expressed by the programmer by writing explicit continuations. The Cilk-5 version

removed this restriction by introducing succinct, high-level parallel constructs in the

programming language which were then translated to continuations by the compiler.

2.2.2 Threading Building Blocks

Intel Threading Building Blocks (TBBs) is a library that enables support for

scalable parallel programming using standard C++ [33]. It provides higher-level ab-

stractions to exploit task-based parallelism without considering the underlying plat-

form details and threading mechanisms. The tasks generated by the higher-level

abstractions are then scheduled using work-stealing. Threading Building Blocks is

also compatible with other threading packages.

Threading Building Blocks provides support for high-level abstractions using generic

programming in C++. It supports two different patterns of split/join tasks. The first

is where the programmer constructs an explicit “continuation” task that should be

8

executed as the next task. The second pattern is through implicit continuations. The

programmer creates the tasks normally, and the scheduler creates continuation tasks

as and when needed. The former is more difficult to program while the latter may

sometimes be less efficient in performance because the parent task blocks until its

children complete.

2.2.3 OpenMP 3.0

OpenMP 1.0 [9] that emerged as a parallel programming model for shared-memory

parallel processors, was focused on extracting parallelism in loops. It uses a directives

based approach, where the programmers annotate their programs in C with pragma

directives that instruct the compilers about the parallelism to be exploited in the

program. OpenMP 3.0 specification [10] includes support to handle unstructured

parallelism by introducing a tasking model. It introduces a task directive to specify

independent units of work. The task model specified by OpenMP 3.0 has been imple-

mented in the IBM XL parallelizing compilers [37]. This implementation includes a

runtime library that supports thread management, synchronization, and scheduling.

It also includes a compiler that transforms the input code into a multithreaded code

with calls to the runtime library. Though this implementation does not schedule tasks

by work-stealing, it is extremely likely that a future implementation would include

support for work-stealing which will also require a similar compiler support.

In this thesis, we discuss in detail the compilation techniques needed to support

the extended version of work-stealing for terminally strict computations.

9

Chapter 3

Work-Stealing Runtime and

Extensions

The problem of scheduling multithreaded computations on multicore parallel sys-

tems has become a prime research topic since it has a direct effect not only on the

utilization of the parallelism available in the machine, but also on the efficiency of par-

allelization and the corresponding overhead. The work-stealing scheduling paradigm

is an important approach to addressing this problem. In work-stealing, the workers

that are idle attempt to ’steal’ work (tasks) from other workers that have work. These

workers are actually threads, typically one per CPU. This idea dates back to at least

1981, when Burton and Sleep [12] introduced the notion of stealing nodes of a process

tree for parallel execution of functional programs. Since then, there has been a lot of

work in areas related to work-stealing e.g., [25, 19, 20].

The first provably efficient work-stealing algorithm was introduced by Blumofe

et.al. [7]. They describe a randomized work-stealing scheduling algorithm for fully

strict spawn-sync multithreaded computations which is provably efficient in terms of

time, space, and communication. In [23], we extended this work-stealing technique

10

to a broader class of async-finish multithreaded computations, and also explain the

support needed during compilation to enable work-stealing for this extended set of

terminally strict computations.

Our work targets the X10 programming model, with parallel constructs that can

be used to extend any sequential language. The X10 v1.5 language [14] is based on

a sequential subset of Java, and the open source X10 v1.5 release includes a work-

sharing runtime [3]. The Thread Pool Executor library in the work-sharing scheduler

is based on Java 5 Concurrency Utilities [31]. More recently, v1.7 of X10 has moved to

a Scala-like syntax for source code and richer type system [24]. The HabaneroJava (HJ)

programming language that is being developed in the Habanero Multicore Software

Research project at Rice University [34] focuses on addressing the implementation

challenges for the Java based X10 v1.5 language on multicore processors, with pro-

gramming model extensions as needed. The focus of this Master’s thesis will be on

supporting HJ’s core async-finish constructs with work-stealing schedulers.

This chapter describes the work-stealing technique in detail and is organized as

follows. Section 3.1 summarizes past work on basic work-stealing scheduling and

the work-first policy used to support Cilk-style spawn-sync computations. Section 3.2

explains the language features in HJ that need extensions to the past work. This in-

cludes extending the technique to support async-finish computations, which is broader

than spawn-sync computations. Section 3.3 introduces the help-first policy, an alter-

nate approach to work-stealing which yields better performance than the work-first

policy in many cases.

11

3.1 Basic Work-Stealing and Work-First Policy

Blumofe et al. [7] defined the notion of fully strict computations as follows. Each

multithreaded computation comprises of a set of tasks and can be viewed as a dag

of instructions connected by dependency edges. Each of these tasks represent differ-

ent execution instances of sequential code. The instructions in a task are connected

by continue edges which represent the sequential ordering constraints for these in-

structions. The tasks form a spawn tree with spawn edges which go from a specific

instruction in the parent task to the first instruction in the child task. There are also

join edges that connect a task to its parent task to enforce dependences due to the

sync operation. Any correct schedule of the multithreaded computation should obey

the constraints imposed by all three types of dependency edges - continue, spawn and

join. A strict computation is one in which all join edges from a task go to one of its

ancestor tasks in the spawn tree. A fully strict computation is one in which all join

edges from a task go to its parent task in the spawn tree. A terminally strict compu-

tation is one in which join edges from a task emanate only from the last instruction

of that task.

The Cilk multithreaded programming language [21] is a parallel extension of C that

uses work-stealing to schedule its computations on parallel machines. All computa-

tions generated by Cilk-style constructs fall in a restricted set of fully strict computa-

tions where a join edge must originate from the last instruction of a task. Further, if

child task C2 was spawned after child task C1 by parent P, the destination of C2 ’s

join edge cannot precede the destination of C1 ’s join edge in P. JCilk [27], which is a

Java based multithreaded language, inherits most of its features and strategies from

Cilk and hence generates only fully strict computations. Blumofe et al. [7] describe a

randomized scheduling algorithm for fully strict multithreaded computations.

12

The Cilk language includes the spawn construct which is used to generate a child

task that can be executed asynchronously in parallel with the code that follows the

spawn in the parent task. In Cilk, the spawn keyword must be followed by a procedure

call which can be executed in parallel. The sync construct allows tasks to wait and

synchronize before they proceed. A sync at any point in a function1 waits for all the

tasks that were spawned by this function to complete. The semantics of spawn and

sync are close to that of fork and join respectively. There is an implicit sync at the end

of every Cilk procedure, which ensures that all computations generated by Cilk are

fully strict. The Cilk language also includes inlets, which are essentially C functions

nested within a Cilk function. These inlets can be designated to execute at the end of a

spawned function call. The mechanism of returning values from spawned procedures to

the parent function is handled using implicit inlets which are automatically generated

by the Cilk compiler. There is also an abort construct which, when executed inside

an inlet, causes all of the already spawned child tasks of the procedure to terminate.

Figure 3.1 shows an example Cilk code with spawn and sync operations and its

corresponding computation dag. The task Γ0 that executes function A() executes S0

and then spawns function B() as a separate task Γ1. Now Γ0 and Γ1 can be executed

in parallel. The function B() then executes S1 and spawns function C() as a new

task Γ2. After this spawn, there are three tasks that can be executed in parallel.

Γ0 has a sync in 4 and will wait at that point till Γ1 completes. Also, there is an

implicit sync at the end of every Cilk function and hence Γ1 will wait for its child

Γ2 to complete before it returns. Only after Γ1 completes will Γ0 proceed to execute

S5. The computation dag corresponding to the Cilk code shows how the execution of

the tasks proceed by maintaining the dependences through spawn, continue and join

edges.

1The words, function and method, will be used interchangeably in this thesis

13

A() {
1 S0;
2 spawn B();
3 S4;
4 sync;
5 S5;
6 }

B() {
7 S1;
8 spawn C();
9 S3;
10 }

C() {
11 S2;
12 }

1 3

8 9 10

42 5 6

7

Γ0

Γ1

8 9

12

107

11

Γ2

Continue Edge

Spawn Edge

Sync Edge

Figure 3.1: Cilk computation dag

The Cilk work-stealing runtime comprises of a set of workers, typically one per

CPU or core. Each worker maintains a local deque of frames each of which represent

work. The runtime starts with one worker executing the main function and the rest

being idle with empty deques. Whenever a worker is idle, it becomes a thief and

attempts to steal work from another workers’ deque. The thieves always steal work

from the top of other workers’ deques. On the other hand, the workers push and pop

their work from the bottom of their own deque.

On a spawn, the worker executes the spawned task. The continuation of the

function after the spawn is saved in a frame which is pushed on to the worker’s deque

so that other workers can steal it. A continuation of a function is simply the same

function with a different starting point of execution (and local variables appropriately

initialized). Thus, a continuation after a spawn will start from the statement just after

the spawned procedure call. Whenever the worker returns from a spawned task, it

will first check if the frame that it pushed before the spawn is stolen. If so, the

14

fully-strict model guarantees that there is no other useful work on the deque for the

worker and hence it becomes a thief. Otherwise, it just executes the continuation of

the function after the spawn.

The Cilk model of work-stealing states that on any spawn the current worker starts

executing the spawned child after storing the continuation following the spawn in a

frame and pushing the frame onto the deque. Blumofe et al. provided an upper bound

on the space needed by the multithreaded computations that are scheduled according

to this technique [8]. Scheduling according to this model maintains the busy-leaves

property : “at every time step, every living thread that has no living descendants has

a processor working on it.” The busy-leaves property implies that at all time steps,

the portion of the spawn tree that contains only live threads has at most P leaves,

where P is the number of threads working on the computation. The space used by

each such leaf and all of its ancestors is at most S1, where S1 is the stack space needed

by the serial execution of the computation. Hence, an upper bound on the space used

by any schedule of a multithreaded computation that maintain busy-leaves property

is S1 ∗ P .

We call this method of executing the spawned child before the continuation fol-

lowing the spawn as the work-first policy since the worker goes on to do its work (on

a spawn) as in the case of serial execution. We introduce a dual concept, the help-first

policy later in Section 3.3.

3.2 Work-Stealing Extensions

The work-stealing technique described above was designed and implemented for

the Cilk language which generates fully strict computations. We extend this technique

to a broader class of computations that are generated by HJ’s finish-async constructs.

15

This involves handling a variety of issues that arise due to the generality of finish-

async constructs. This chapter details these issues and also explains the need for new

extensions to enable work-stealing for these constructs.

We start with an overview of the finish and async constructs in HJ, which are

derived from X10 [14]. The async statement in HJ creates a new task that can be

executed in parallel with its parent. The finish statement is used to enable join

points for the descendants. It ensures that all the tasks that were created in the

scope of the finish complete before proceeding to execute the next statement following

the finish. This is analogous to Cilk’s sync construct but there are some interesting

differences between the two which are described below. As in the case of Cilk, an HJ

computation can also be represented as a dag in which each node corresponds to a

dynamic execution instance of an HJ statement, and each edge defines a precedence

constraint between the nodes. The first instruction of the main task serves as the root

node of the dag. Any instruction which spawns a new task will create a child node in

the dag with a spawn edge connecting the async instruction to the first instruction of

that child activity. As explained earlier, HJ tasks wait on their descendant tasks by

executing a finish statement. We model these dependences by introducing startFinish

and stopFinish nodes in the dag for each dynamic instance of a finish construct and

creating join edges from the last instruction of the spawned tasks within the scope

of finish to the corresponding stopFinish instruction in the dag.

Figure 3.2 shows an example HJ code and its corresponding computation dag.

The task Γ0 that executes the function A() enters a new finish scope which is modeled

by introducing startFinish (node 2 in Figure 3.2) in the dag. It then creates a new

task Γ1 for the async in statement 3 which can then go on to execute in parallel with

Γ0. Γ1 then goes on to create another task Γ2 for the async in statement 5. Now all

the three tasks can execute in parallel. Though the task Γ1 can run to completion

16

A() {
1 S0;
2 finish {//startFinish
3 async {
4 S1;
5 async {
6 S2;}
7 S3;}
8 S4;
9 }//stopFinish
10 S5;

}

1 3

4 5 7

92 108

Γ0

Γ1

6

Γ2

Continue Edge

Spawn Edge

Sync Edge

Figure 3.2: HJ computation dag

without waiting for its child task Γ2 to complete, the task Γ0 has to wait at the

stopFinish point (node 9 in Figure 3.2) for all its descendants, in this case Γ1 and Γ2,

to complete before it can proceed to execute the next statement. This dependency is

represented in the computation dag by the join edges that go from the last statement

in the tasks Γ1 and Γ2 to the stopFinish node.

3.2.1 Terminally Strict Computations

In HJ, it is possible for a descendant task to outlive its parent. For instance, in the

HJ example in Figure 3.2 the descendant task Γ2 can continue executing even after

its parent Γ1 completes because Γ1 does not have an enclosing finish and hence it does

not need to wait for its descendants to complete. In fact this holds true for all its

ancestors, i.e., Γ2 can outlive all its ancestors as long as they do not have an enclosing

finish around the function call that leads to this task. However, the main function in

every HJ program contains an implicit finish which ensures that all the descendant

tasks complete before the program terminates. This degree of asynchrony can be

useful in parallel divide-and-conquer algorithms so as to permit sub-computations at

17

A B

Depth-first computations

Strict computations

Fully-strict

computations

generated by Cilk

A. Fully-strict

computations

A∩B.

B. Terminally-strict

computations (X10, HJ)

Figure 3.3: Classes of multithreaded computations

different levels of the divide-and-conquer tree to execute in parallel without forcing

synchronization at the parent-child level. It can also simplify the creation of parallel

iterations over irregular data structures.

Terminally strict computations were introduced in [1] to refer to the class of

computations generated by HJ’s finish-async style parallelism. The word terminally

is used to emphasis the fact that the source of the join edge can only be the last

instruction of a task. This is also true for the class of fully strict computations

generated by Cilk. Figure 3.3 shows the relationship between different classes of

multithreaded computations. Depth-first computations are those for which a left-to-

right depth-first schedule is sufficient to meet all its dependence requirements [5].

All computations discussed in this thesis belong to this category since the sequential

stack-based execution of both HJ and Cilk programs is sufficient to satisfy the async-

finish and spawn-sync dependences. The class of strict computations is a subset of

the class of depth-first computations. The classes of fully-strict computations and

terminally-strict computations are subsets of strict computations. The class of HJ

computations corresponds to the set of terminally-strict computations and the class

18

of Cilk computations is a subset of fully-strict computations. Also the set of HJ

computations is a non-trivial superset of the set of Cilk computations.

Blumofe et al. [7] proved that fully-strict computations can be scheduled with

provably efficient time and space bound using work-stealing. They state that:

The expected time to execute a fully strict computation on P processors

using the work-stealing scheduler is T1/P + O(T∞), where T1 is the min-

imum serial execution time of the multithreaded computation and T∞ is

the minimum execution time with an infinite number of processors. Also,

the space required by the execution is at most S1P , where S1 is the min-

imum serial space requirement.

The same theoretical time and space bounds have been extended to terminally-strict

computations by Agarwal et al. [1]. Since HJ is based on X10 v1.5, its implementation

inherited X10’s work-sharing runtime. But, prior to the work reported in this thesis,

there has been no work-stealing implementation released with compiler support for

X10 and HJ.

3.2.2 Escaping Asyncs

The extension of work-stealing to support the class of terminally strict computa-

tions that are generated by HJ’s finish-async constructs, demands the need to handle

some key features that are a result of this broader class of computations. Escaping

asyncs, which refer to tasks that outlive their parents, are one important aspect of

HJ that is different from Cilk and demands additional compiler and runtime support

for work-stealing.

Let us consider the parallel DFS spanning tree graph algorithm [16] whose HJ code

is shown in Figure 3.4. In a terminally strict language like HJ, a single finish scope

19

1 class V {
2 V [] neighbors;
3 V parent;
4 V (int i) {super(i); }
5 boolean tryLabeling(V n) {
6 atomic if (parent == null)
7 parent = n;
8 return parent == n;
9 }
10 void compute() {
11 for (int i=0; i<neighbors.length; i++) {
12 V e = neighbors[i];
13 if (e.tryLabeling(this))
14 async e.compute(); //escaping async
15 }
16 }
17 void DFS() {
18 parent = this;
19 finish compute();
20 }}

Figure 3.4: Code for parallel DFS spanning tree algorithm in HJ

at line 19 suffices for all descendant tasks spawned at line 14. The spawned tasks can

still be alive after its parent (compute) returns. However, a fully strict computation

implementation, like Cilk, will automatically insert an implicit sync operation at the

end of each function thereby ensuring that every parent waits for all its children to

complete. Semantically, it is equivalent to adding a finish scope to enclose the body

of the compute function.

Figure 3.5 shows the spawn tree of Cilk’s fully strict computation and HJ’s ter-

minally strict computation for the program in Figure 3.4. The solid lines are the

spawn edges and the dotted lines are join edges. Note that in a terminally strict

computation, all the join edges go from the task to an ancestor in the tree, whereas

in a fully strict computation all the join edges go from the task to its parent.

20

DFS

compute

compute

Spawn Edge

Join Edge

compute

compute

compute

(a) Cilk

DFS

compute

compute

Spawn Edge

Join Edge

compute

compute compute

(b) HJ

Figure 3.5: Spawn tree for DFS spanning tree algorithm for Cilk and HJ

21

Space advantage in terminally strict computations

As we have already seen, in a terminally strict computation, a task may terminate

without waiting for its descendants to complete. In a managed runtime environment

such as Java (which is HJ’s runtime environment) this allows the garbage collector to

collect the space used by terminated parent tasks even while its children are executing.

Whereas in the case of fully strict computations, the garbage collector will not be able

to collect the space used by the parent tasks because they can never complete until

all their children complete. In practice, this may cause the runtime to exhaust its

space if the depth of the spawn tree exceeds a certain threshold.

The challenge imposed by escaping asyncs in performing work-stealing scheduling

is that the task that contains a finish scope has to wait for all its descendants to

complete before it executes the next statement after the finish scope. In contrast,

other tasks (those that do not contain a finish scope) need not wait for their children

to complete. Hence every task that contains a finish scope has to keep track of all

tasks that are created in that scope which include not only the tasks that it creates

but also other tasks that its children (or descendants) create.

3.2.3 Sequential Calls to Parallel Functions

Parallel functions are defined as those that may spawn tasks either directly or

indirectly by calling other functions. In Cilk, sequential calls to parallel functions

(known as cilk functions) are not allowed. As a result, all functions that may appear

on a call path to a spawn operation must be designated as cilk functions and also must

be spawned. This restriction has a significant software engineering impact because

it increases the effort involved in converting sequential code to parallel code, and

prohibits the insertion of sequential code wrappers for parallel code. In contrast,

22

A() {

B();

L1: ...

}

B() {

C();

L2: ...

}

C() {

async D();

C1: ...

}

D() {

E();

L3: ...

}

E() {

if (...)

async E();

C2: ...

}

Figure 3.6: Example HJ code: Sequential call to Parallel functions

HJ permits the same function to be invoked sequentially or via an async at different

program points.

Figure 3.6 contains a sample HJ code. Note that though the functions B(), C(),

and E() are parallel functions (i.e., they lead to the creation of asyncs), they are

called sequentially. This code cannot be directly translated to Cilk. In Cilk, C() and

E() would be cilk functions because they may spawn tasks and hence they cannot

be called sequentially in functions B() and D() respectively. Thus we may have

sequential calls to parallel functions in HJ but not in Cilk.

This imposes a challenge in work-stealing scheduling as it introduces new contin-

uation points located immediately after sequential calls to parallel functions. This

is because it is no longer necessary for the worker that executed the sequential call

to return back to the caller. It may be the case that the parallel function that was

called sequentially was stolen by some other worker and hence that worker which

executes the last continuation in the callee is the one that will return to the caller.

For example, consider the sequential call to the parallel function C() in the HJ code

in Figure 3.6. If the continuation C1 in C() gets stolen, then the thief will get to

23

complete C() and hence it is this thief that will return to B(), not the worker that

executed the sequential call. And this thief will need the stack frame of the original

caller to continue execution from the continuation point. Hence there is a need to

store the stack frame of B() in a heap object in this case even though B() has no

parallel code. The exact details of how this is accomplished are described later in

Section 4.2.

3.2.4 Arbitrarily Nested Asyncs

The syntax of spawn in Cilk requires that the new task that is spawned should

always be a procedure call. It cannot be used to spawn an arbitrary piece of code and

hence it has a significant software engineering impact since every piece of code that

needs to be executed in parallel has to be wrapped in a procedure. In contrast, the

async construct in HJ can be used to create a parallel task for any arbitrary piece of

code. The only restriction in HJ is that the body of async can only access final local

variables in outer scopes. This restriction ensures that an update to an outer local

variable in one task cannot be silently communicated to another task. (However, it

is still possible for a task to update a field of a shared object and for another task to

see the update.)

Figure 3.2 shows an HJ code with nested asyncs. In order to achieve a similar

parallelism in Cilk the parallel tasks must be wrapped in a procedure as shown in

Figure 3.1.

This arbitrary nesting of asyncs in HJ presents a challenge in scheduling by work-

stealing because with this feature there may be more than one worker executing

different parts of the same execution instance of a function at the same time. Also,

since the nested tasks can start their execution at any point in time (satisfying the

synchronization constraints imposed by the enclosing finish) the data for these tasks

24

need to be stored in a manner that ensures that they are not overwritten by a nested

or parallel task in the same function. This is unlike Cilk, where there can be only one

worker executing an instance of a function at any point in time.

3.2.5 Delayed Asyncs

The concept of delayed asyncs was introduced in HJ by Budimlic et.al as an op-

timized way to implement CnC’s prescription construct [11]. This refers to a parallel

task that can only start executing when a condition becomes true. The delayed async

statement in HJ, async when(<cond>) <stmt>, is similar to a normal async except

that the execution of <stmt> is guaranteed to be delayed until after the boolean con-

dition, <cond>, evaluates to true. The boolean condition guarding the async must

be monotonic in the sense that it remains false until a point in time after which it

changes to true permanently. Thus it gives a scheduler a definite point in time after

which the async can be scheduled. Also, the boolean condition must be side-effect

free since it may be evaluated multiple times before the async is scheduled.

The advantage of delayed asyncs is that they provide an easy way to schedule a task

to run in parallel at a later point in time when a condition, such as a data dependency,

is satisfied. When scheduled by a work-stealing runtime system, a delayed async

requires all the support of a normal async. In addition, it also needs runtime support

to quickly check if the boolean condition that guards the delayed async evaluates to

true. In particular, a work-first policy will not suffice for delayed asyncs.

3.2.6 Distributed Parallelism

The X10 programming language [14] has the notion of places which is a feature

that introduces locality explicitly into the language. This gives programmers control

25

on where every task must execute and which tasks and objects must be co-located.

The exact definition of places as given in [14] is as follows:

A place is a collection of resident (non-migrating) mutable data objects

and the activities that operate on the data. Every X10 activity runs in a

place; the activity may obtain a reference to this place by evaluating the

constant here.

The existence of places introduces a new challenge in scheduling by work-stealing

since there is a need to map the abstract (user-specified) places to actual processors

as specified by a given deployment. This mapping from abstract places to processors

can vary from a simple one-to-one mapping to something more complicated based on

the hardware that is available. Also, the work-stealing runtime now has to account for

the cost of stealing across places. This is because stealing a task from a worker that

is executing in a different place will likely be more expensive than stealing one from

a worker executing in the same place as the former would involve migrating objects.

From the compilation point of view, the only change that is needed is the support for

mappings from abstract places to actual processors. This was not an issue with the

work-stealing scheduler for Cilk since the language views all workers uniformly and

does not include any feature to support locality explicitly.

3.3 Help-First Policy

According to Cilk’s work-stealing strategy [21], a worker executes a spawned task

and leaves the continuation to be stolen by another worker. We call this work-stealing

with a work-first policy because it proceeds by the original worker doing the work

in a normal sequential order. In other words, the worker eagerly executes a task

when it is created. We now describe an alternate strategy to steal work, which we

26

finish {
async S1;

L1: async S2;
L2: S3;
}

startFinish();
push continuation after L1;
S1; //Worker executes S1 eagerly
return if frame stolen
push continuation after L2;
S2; //Worker executes S2 eagerly
return if frame stolen;
S3;
stopFinish();

Work-first Policy

startFinish();
push task S1 to local deque;
push task S2 to local deque;
S3;
stopFinish();

Help-first Policy

Figure 3.7: Compilation under Work-First and Help-First policies

for (i=1 to SOR_ITERATIONS) {
finish for (p = 0 to P-1) {

// parallel for.
// work partitioned into P chunks
async {...}

}
}

Figure 3.8: SOR code structure depicting iterative loop parallelism

call work-stealing with a help-first policy [23]. The help-first policy dictates that a

worker executes the continuation and leaves the spawned task to be stolen. We use

the name “help-first” for this strategy because it suggests that the worker will ask

for help from its peer workers before working on the task itself. Figure 3.7 shows the

outline of the result of compilation under work-first and help-first policies. Details of

the compilation approach for scheduling under help-first policy are provided later in

Section 4.3.

3.3.1 Comparing Help-First and Work-First Policies

The work-first policy is designed for scenarios in which stealing is a rare event.

However, the overhead of steals can become a significant bottleneck as the number

of workers increases. One example is iterative loop parallelism. Figure 3.8 shows the

code structure of a wavefront algorithm implemented in an HJ version of the Java

27

Figure 3.9: Speedup of SOR over its serial version on 64-way UltraSparc T2 under
work-first and help-first policies

Grande SOR benchmark. It has a sequential outer loop and a parallel inner loop.

The work in the inner parallel loop is divided evenly among P workers. Figure 3.9

shows the speedup of this SOR benchmark relative to its serial version on a 64-thread

UltraSparc T2 Niagara2 machine [23]. If the asyncs are executed under the work-first

policy, we observe a degradation in performance beyond 8 threads. The following

analysis from [23] explains why.

Let the total amount of work in one iteration of the outer loop be T , the time

to migrate a task from one worker to another be tsteal and the time to save the

continuation for each iteration be tcont. Under the work-first policy, one worker will

save and push the continuation onto the local deque and another idle worker will steal

it. Therefore, distributing the P chunks among P workers will require P−1 steals and

28

these steals must occur sequentially. The length of the critical path of the inner loop

is bounded below by (tsteal + tcont) ∗ (P − 1) + T/P . According to the THE protocol

described in [21], a push operation on the deque is lock-free but a thief is required to

acquire the lock on the victim’s deque before it can steal, thus tcont << tsteal. As P

increases, the actual work for each worker T/P decreases and hence, the total time

will be dominated by the time to distribute the task, which is tsteal ∗ (P − 1).

When asyncs are scheduled under the help-first policy, the performance of the SOR

benchmark scales well as shown in Figure 3.9. Under the help-first policy, the worker,

upon executing an async, creates and pushes the task onto the deque and proceeds

to execute the async’s continuation. Once the task is pushed on to the deque, it is

available to be stolen by other workers and the stealing can be performed in parallel

using non-blocking algorithms. The details on how the stealing happens in parallel

at runtime is explained in [23]. Let ttask be the time to create and push the task to

the deque. For the same reasons as explained above, ttask << tsteal. As the stealing

overhead is parallelized, the overhead of the steal operation is not a bottleneck any

more and hence the observed improvement in scalability for the help-first policy.

An alternative approach to schedule parallel loops by work-stealing is to use a

divide-and-conquer approach, i.e., the thief can be allowed to steal one-half of the

remaining iteration space of the loop that it steals work from instead of the current

strategy where it steals the entire iteration space that remains. This strategy would

help reduce the overhead due to steals for parallel loops. But this would not work for

loops whose iteration counts are unknown on loop entry. For example, it would not

work for pointer-chasing while loops with asyncs in their body.

Another example where the work-first policy suffers is the parallel Depth First

Search (DFS) spanning tree algorithm shown in Figure 3.4. If the asyncs are scheduled

under the work-first policy, the worker calls the compute function recursively and will

29

overflow any reasonably sized stack, for large graphs (like its equivalent sequential

version). Hence, one cannot use a recursive DFS algorithm if only the work-first

policy is supported for asyncs. Since the stack-overflow problem also arises for a

sequential DFS implementation, it may be natural to consider a Breadth First Search

(BFS) algorithm as an alternative. However, Cong et al. [16] show that, for the same

input problem, BFS algorithms are usually less scalable than DFS algorithms due

to their additional synchronization requirements. Our approach in such cases is to

instead use the help-first policy that has a lower stack size requirement than the

work-first policy.

3.3.2 Limitation of Help-First Policy

An important theoretical advantage of the work-first policy is that it guarantees

that the space used to run the parallel program is bounded by a constant factor of

the space used in its sequential version. In the help-first policy, since we are creating

tasks eagerly, the space bound is not guaranteed. There is a possibility to explore a

hybrid of these approaches in order to guarantee a space bound while still retaining

the benefits of the help-first policy. This can be done by adaptively switching between

help-first and work-first policies at runtime depending on the size of the local deques.

This is part of the plan for future work in the Habanero project.

30

Chapter 4

Compiler Support for

Work-Stealing

Scheduling HJ’s finish-async constructs by work-stealing is a two stage process.

The first stage involves the compilation process which transforms the input HJ code

into a version that uses the work-stealing runtime. The second stage is the actual

execution of the transformed code with a work-stealing runtime that implements

the appropriate work-stealing strategy. This chapter explains the first stage, i.e.,

the compilation process needed to support work-stealing schedulers, which is the

focus of this Master’s thesis. The work-stealing runtime which this compiler targets,

was developed collaboratively with other members of the Habanero project, and is

explained in greater detail in [23].

Figure 4.1 shows the high-level compilation structure for HJ programs. The cur-

rent front-end for HJ (which is based on Polyglot [30]) parses the input HJ source

code and generates bytecode with all the HJ constructs expanded appropriately to

use the HJ work-sharing runtime [3]. This step involves the construction of the

Polyglot AST for the input source code. The front-end then unparses the AST into

31

Front-end

Terminally Strict

Parallel Program

Transformed

Source Code with

Runtime calls for

Async/Finish

Work-Stealing

Code Gen for

Work-First policy

Work-Stealing

Code Gen for

Help-First policy

Work-Stealing

Runtime with

Work-First policy

Work-Stealing

Runtime with

Help-First policy

Work-Sharing

Runtime with

Single Queue

Async/Finish

Figure 4.1: Compilation structure for work-sharing and work-stealing runtimes

Java source code with runtime calls inserted to implement the HJ constructs using a

work-sharing runtime. For example, an HJ async is expanded to a Java inner class

with the body of the async being wrapped in a method of that class. Finally the

front-end invokes a Java compiler (javac) to translate Java source code to classfiles.

The work-stealing code generation pass then picks up the bytecode generated by

the front-end and performs the necessary transformations for use in a work-stealing

runtime. As shown in Figure 4.1, there are different code generation passes that

target the two different runtimes based on work-first and help-first policies. The

work-stealing code generation described in this thesis was performed in the Jimple

intermediate representation of Soot framework [38], which is an optimization frame-

work for Java. The same techniques can be applied to perform these transformations

in any other framework that supports the underlying language. Currently, there is

32

work in progress in the Habanero project to bypass the generation of source code, and

instead directly translate the front-end’s AST to Jimple [36].

This chapter explains the techniques used in compiler support for work-stealing

runtimes for HJ programs. Specifically, we target the work-stealing runtime devel-

oped as a part of the Habanero project though the same techniques are applicable to

other work-stealing runtime systems. Section 4.1 reviews the basic compilation tech-

niques for work-stealing (by work-first policy) of spawn-sync programs as in Cilk and

JCilk. Section 4.2 describes our extensions to support additional features in support

of terminally strict finish-async constructs. Both these sections discuss compilation

techniques needed for work-stealing using the work-first policy. Section 4.3 then de-

tails the differences in the transformations needed to target work-stealing using the

help-first policy. Section 4.4 summarizes the performance results presented in [23]

comparing the work-stealing scheduling techniques, the work-first and the help-first

policies, with the work-sharing technique.

4.1 Support for Basic Work-Stealing with Work-

First Policy

As explained in Section 3.1, basic work-stealing refers to scheduling support for

Cilk-style spawn-sync computations. Since the set of terminally strict computations

that are generated by HJ’s finish-async constructs subsumes the set of fully strict

computations that Cilk (or JCilk) generates, the compilation strategy involved in han-

dling the basic constructs remain the same. This section describes these compilation

techniques in detail.

33

4.1.1 The Two-Clone strategy

The transformation of HJ functions to support work-stealing involves generating

two clones, a fast clone and a slow clone for these functions. Every function that

contains an async or a finish needs to be transformed. As described later, there could

be other functions in HJ that will need these transformations. The details regarding

how to select the functions that need to be transformed are given in Section 4.2.

The work-first principle given by Frigo et.al [21] states that:

Minimize the scheduling overhead borne by the work of a computation.

Specifically, move overheads out of the work and onto the critical path.

where work refers to the time taken to execute the computation on one processor and

critical-path refers to the execution time of the computation on an infinite number

of processors. This is accomplished by making one of the clones really fast and the

other clone to bear most of the overhead.

Interaction between the two clones

When a worker starts executing a spawned function, it starts with the fast clone of

that function. It is the fast clone that will be executed until a part of that function is

stolen by another worker. Once a continuation of a function is stolen, the thief starts

executing the slow clone of that function. This technique guarantees that the fast

clone is never stolen because a worker which steals a function switches to executing

its slow clone and will execute the slow clone to completion, i.e., it can never come

back to executing the fast clone for that instance of the function. Since a fast clone

can never be stolen, it is actually very similar to the sequential version of the code. It

just contains some book-keeping code to ensure that the continuations can be stolen.

In contrast, the slow clone contains support for migration from one worker to another,

34

and hence will bear most of the overhead.

Let us consider the restricted case of an async statement wherein the body of

the async consists only of a function call like the Cilk spawn statement. In general,

an HJ async statement can contain any arbitrary piece of code. The details about

how general asyncs are handled are given later in Section 4.2. In a fast clone, each

async statement containing a function call body is just replaced by a sequential call

to that function. However, the local variables of the current procedure need to be

stored in the heap before this sequential call. The finish construct in HJ waits for all

its descendants to complete before proceeding on to the next statement. Thus every

statement executed in HJ has a unique Immediately Enclosing Finish (IEF) dynamic

statement instance [35]. Thus the finish construct defines a dynamic scope such that

all the asyncs created in this scope report to the IEF. We accomplish this by splitting

the finish construct into two operations: one at its start and another at its end. We

insert appropriate calls to the runtime at the start and end so that the runtime can

keep track of the finish scope accordingly.

Since the process of stealing a task from a worker happens from the top of the

deque of that worker, it guarantees that the parent tasks are stolen before their child

tasks. Thus, whenever the fast clone of a function is being executed, it is guaranteed

that the function itself and all its children have never been stolen. Once a function

is stolen, the slow clone of that function executes in parallel with its children. In

essence, the slow clone is very similar to the fast clone with this additional support

for migration across workers, thereby enabling parallelism. In particular it allows the

thieves to start executing from any continuation point in that function.

35

1 void fib (BoxInteger z, int n) {
2 if (n < 2) {
3 z.val = n;
4 return;
5 }
6 final BoxInteger x = new BoxInteger();
7 final BoxInteger y = new BoxInteger();
8 finish {
9 async fib(x, n-1);
10 async fib(y, n-2);
11 }
12 z.val = x.val + y.val;
13 }

Figure 4.2: Example fib code in HJ

Limitation

Cilk’s work-stealing scheduler is designed for the case when there is lots of par-

allelism and the number of steals is small, so that the fast clone is the one that is

expected to execute most of the time. This is true for many divide and conquer

parallel algorithms. But, as discussed in Section 3.3 there are other parallel codes

for which Cilk’s work-stealing scheduler (and HJ’s work-stealing with the work-first

policy) performs poorly.

4.1.2 Activation Records as Frames in the Heap

The basic strategy behind work-stealing with the work-first policy is that when a

worker W0 is executing a child task, some other worker W1 can steal the continuation

in the parent task and start executing it. The continuation of the parent task is

the same function instance with a new starting point for execution, which will be

the point after the spawned child call. For the thief W1 to execute the remainder of

the parent, it will need access to the activation record of the function instance from

the stack of W0. Since the thief is in a different thread, it cannot directly access

36

void fibFast (Worker w, BoxInteger z, int n) {
if (n < 2) {

z.val = n;
return;

}
fibFrame frame = new fibFrame();
final BoxInteger x = new BoxInteger();
final BoxInteger y = new BoxInteger();

w.startFinish();
frame.x = x;
frame.y = y;
frame.z = z;
frame.n = n;
frame.pc = 1;
fibFast (w, x, n-1);
if (w.popFrame()) {

return;
}

frame.x = x;
frame.y = y;
frame.z = z;
frame.n = n;
frame.pc = 2;
fibFast (w, y, n-2);
if (w.popFrame()) {

return;
}

w.stopFinishFast();

z.val = x.val + y.val;
}

Figure 4.3: Fast clone for the fib function in Figure 4.2 (unoptimized)

the stack of W0 without access to the internal stack representation (especially in a

strongly typed managed runtime environment like a Java virtual machine). Hence we

maintain a copy of the activation frame of the parent (in the same state as when the

child was spawned) explicitly in a frame data structure in the heap. This frame will

then be used by W1 to execute the remainder of the parent task.

The fast and slow clones for the fib example in Figures 4.3 and 4.4 show how

a frame data structure is used to store all the local variables of the function. This

37

void fibSlow (Worker w, Frame f) {
fibFrame frame = (fibFrame) f;
int n = frame.n;
BoxInteger x = frame.x;
BoxInteger y = frame.y;
BoxInteger z = frame.z;
switch (frame.pc) {
case 0:

if (n < 2) {
z.val = n;
return;

}
final BoxInteger x = new BoxInteger();
final BoxInteger y = new BoxInteger();
w.startFinish();
frame.x = x;
frame.y = y;
frame.z = z;
frame.n = n;
frame.pc = 1;
fibFast (w, x, n-1);
if (w.popFrame()) {

return;
}

case 1:
frame.x = x;
frame.y = y;
frame.z = z;
frame.n = n;
frame.pc = 2;
fibFast (w, y, n-2);
if (w.popFrame()) {

return;
}

case 2:
frame.x = x;
frame.y = y;
frame.z = z;
frame.n = n;
frame.pc = 3;
w.stopFinishSlow();
if (w.popFrame()) {

return;
}

case 3;
z.val = x.val + y.val;

}
}

Figure 4.4: Slow clone for the fib function in Figure 4.2 (unoptimized)

38

frame data structure is unique for every function since it holds the local variables for

that function. In this example, the fibFrame is the structure corresponding to the

function fib. In addition to the local variables, the frame data structure also contains

a field for a pseudo program counter, pc. This field is set before spawning a child so

that any worker that steals the continuation knows the point in the stolen function

at which it should resume execution.

It is worth noting that at any point in time there will be only one worker executing

the body of an instance of a function (excluding the body of the asyncs). In other

words at any point every function instance can have at most one continuation that is

available to be stolen. This invariant ensures that only one instance of the frame is

needed for every instance of a function. This approach works for the restricted case

when the body of an async is a function call. But asyncs in HJ can contain arbitrary

statements in general, in which case a single frame for the entire function is no longer

sufficient. The techniques to handle this case are described later in Section 4.2.3.

4.1.3 Continuations as Jumps in the Bytecode

The slow clone should have the property that any worker executing it after a steal

must be able to resume execution from any of the continuation points in that method.

The continuation point from which the execution must start is dictated by a logical

program counter value in the frame. In order to achieve this, a tableswitch bytecode

instruction is inserted at the start of the slow clone, which jumps to the appropriate

statement in the code based on the pc value in the frame. Also, since the code from

the continuation point will use the local variables of the method, all the local variables

must be initialized with the corresponding values from the frame before the switch

statement.

An important issue to be noted here is that the jump to a continuation point

39

could target any point in the code (any statement after an async or finish). Hence

there is a chance that this jump’s target could be a statement within a loop. In this

case, the generated jumps will not be valid in Java source code. But since we directly

emit bytecode after the transformation, this transformation remains valid as long as

it passes the bytecode verifier. Specifically, this transformation has to satisfy the

static constraints on Java bytecode that relate to jumps. The Java Virtual Machine

Specification [28] states that:

• The target of each jump and branch instruction jsr, jsr w, goto, goto

w, ifeq, ifne, ifle, iflt, ifge, ifgt, ifnull, ifnonnull, if icmpeq, if icmpne,

if icmple, if icmplt, if icmpge, if icmpgt, if acmpeq, if acmpne must

be the opcode of an instruction within this method. The target of a

jump or branch instruction must never be the opcode used to specify

the operation to be modified by a wide instruction; a jump or branch

target may be the wide instruction itself.

• Each target, including the default, of each tableswitch instruction

must be the opcode of an instruction within this method. Each

tableswitch instruction must have a number of entries in its jump

table that is consistent with the value of its low and high jump table

operands, and its low value must be less than or equal to its high

value. No target of a tableswitch instruction may be the opcode

used to specify the operation to be modified by a wide instruction; a

tableswitch target may be a wide instruction itself.

The tableswitch instruction inserted by this transformation contains one target for

each continuation point in the method, and hence the low and high values of jump

table operands in the instruction are consistent with the number of its targets. Also,

40

the targets of the tableswitch instruction are statements within the same method and

hence do not cross method boundaries. Though the transformation happens at the

Jimple intermediate language level, which is close to Java bytecode, the targets are

derived from Java source statements. Hence these targets cannot be the opcode which

is an operand of a wide instruction. Thus, this transformation produces bytecode that

is consistent with the constraints imposed by the Java Virtual Machine.

4.2 Support for Extended Work-Stealing

This section describes the compilation support needed to extend work-stealing

for terminally strict finish-async constructs. In general, this section includes the de-

tails regarding how the challenges mentioned in Section 3.2 are addressed. First, we

discuss the details regarding potentially parallel functions and techniques to identify

such functions. Then, we describe the different approaches to handle sequential calls

to potentially parallel functions. Finally, we discuss the transformations needed to

handle arbitrarily nested asyncs in HJ. These techniques refer to the compilation sup-

port needed for work-stealing with the work-first policy. The modifications needed to

support the help-first policy are discussed in Section 4.3.

4.2.1 Potentially Parallel Functions

We define parallel functions as those that contain either a finish or an async. These

are the constructs that directly result in a continuation which might be executed by

a thief. In order to collect a list of parallel functions, the compiler needs to scan

each function body to look for an async or a finish or ensure that the intermediate

representation contains summary information indicating if the function contains a

finish or an async.

41

A function is potentially parallel if it contains a call to a parallel or potentially

parallel function. Thus, any function that contains a continuation is said to be poten-

tially parallel. An important point to be noted is that the set of potentially parallel

functions is a super-set of the set of parallel functions. It is necessary to identify po-

tentially parallel functions because they have continuation points even though they

do not contain any async or finish constructs (as discussed earlier).

Identifying Potentially Parallel Functions

We need to perform a static interprocedural analysis in order to identify the po-

tentially parallel functions. A correct analysis may conservatively err on the side of

identifying a function as potentially parallel, even if it is not. Doing so will preserve

correctness but could create additional overhead. The first step in the analysis in-

volves building the call-graph of the entire application program. We use the Class

Hierarchy Analysis [17, 18] that exists in the Soot framework [38] for building the

call-graph. This is a standard analysis that is used to determine, at compile time,

a conservative call graph of the entire application. It is implemented by building an

internal representation of the hierarchy of classes in the application and using this

hierarchy to determine all possible methods that can be the target for a given virtual

method call.

Once we have the call-graph, the next step is to traverse it in an efficient manner to

identify all the potentially parallel functions. The algorithm to identify the potentially

parallel functions involves the following steps. We use the reverse call-graph edges to

do the traversal.

• Identify Parallel functions.

• Perform a DFS on the reverse call-graph edges and mark all functions reachable

42

Amain B C

D

E

F

Figure 4.5: An example call-graph

from a parallel function as potentially parallel.

This algorithm identifies the potentially parallel functions in time that is linear in the

number of edges in the call-graph of the application. The step to identify the parallel

functions is also linear in the number of functions, assuming that each function is

annotated with summary information to indicate if it contains a finish or an async. If

summary information is unavailable, each test would take time linear in the size of the

function to traverse the body of the function in order to check if it contains an async

or a finish. Since we perform a DFS traversal of the call-graph to identify potentially

parallel functions, it is clearly linear in the number of edges in the call-graph. It also

avoids traversing the unnecessary edges, i.e., those edges whose target can never be

potentially parallel since we always start from parallel functions.

A possible refinement to this algorithm is to check if a function containing a finish

does not indirectly call any asyncs. In this case, the finish can be removed, and no

continuation is needed.

For example, consider the call-graph in Figure 4.5. Suppose that the functions

represented by nodes D, and E are parallel functions. Note that the algorithm per-

forms a DFS traversal on the reverse call-graph. First it starts from the parallel

function D, traverses the reverse edges till the root is reached, marking C, B, A, and

43

main as potentially parallel. Then it starts from E, but find nothing more to traverse

on the reverse edges. The algorithm would not traverse the edges from D to F and

from E to F since F can never be potentially parallel.

4.2.2 Sequential Calls to Potentially Parallel Functions

In Cilk, each cilk function corresponds to a task in the computation dag. A parallel

function cannot be called sequentially and must be spawned. For the work-stealing

scheduler this simplifies the continuation to contain only the activation frame of the

current function because the thief that executes the continuation will never return to

its caller as its caller must be its parent task whose continuation must have already

been stolen. But sequential calls to potentially parallel functions are allowed in HJ.

Any such sequential call to a potentially parallel function results in a continuation

point immediately after the call for the reasons explained earlier. We now list three

approaches to supporting such sequential calls.

Approach 1: Wrap the Call in Finish-Async

A naive way to handle sequential calls to potentially parallel functions is by wrap-

ping the call in a finish-async construct. This would ensure that there is a continuation

at the end of the finish, by essentially converting every potentially parallel function

into a parallel function. Figure 4.6 shows an example HJ code fragment and the

transformed code resulting from this approach. C() and E() are parallel functions

while the other functions A(), B(), and D() are potentially parallel. The sequential

calls to B(), C(), and E() are of interest here. This approach wraps the calls to these

functions with finish-async as shown in the figure.

A major problem with this approach is that it loses parallelism by disallowing the

code after the sequential call to run in parallel with the task that escapes the callee of

44

A() {

B();

L1: ...

}

B() {

C();

L2: ...

}

C() {

async D();

C1: ...

}

Sample Code

D() {

E();

L3: ...

}

E() {

if (...)

async E();

C2: ...

}

Transformed Code

A() {

finish async B();

L1: ...

}

B() {

finish async C();

L2: ...

}

C() {

async D();

C1: ...

}

D() {

finish async E();

L3: ...

}

E() {

if (...)

async E();

C2: ...

}

Figure 4.6: Supporting Sequential calls to Potentially Parallel Functions by wrapping
the call in Finish-Async

the sequential call. In the example in Figure 4.6, since the function E() contains an

async, the new task that is created and the rest of E() can run in parallel. Similarly

the worker that completes E() should be able to continue executing the rest of D()

starting at the continuation point L3, effectively in parallel with the async in E().

By wrapping the call to E() in a finish-async, the worker that completes E() is not

allowed to execute the rest of D() and has to suspend.

Another disadvantage of this approach is that it gives rise to extra steals at the

continuation points after the sequential calls. A property of the continuations af-

ter such sequential calls is that its execution cannot begin until the sequential call

completes (though there are no implicit finish statements in that function) because

of the semantics of sequential calls. The best way to model this would be to allow

the worker that completes the sequential call to execute the continuation in the par-

ent. But according to this technique, since the parent function contains a finish-async

around the call, the continuation at the end of the finish is pushed on to this worker’s

45

A() {

B();

L1: ...

}

B() {

C();

L2: ...

}

C() {

async D();

C1: ...

}

Sample Code

A

B

C

Calling Stack

D

E

Deque Continuation

Stack

L2 @ B

L1 @ A

C1 @ C

L3 @ D

C2 @ E

D() {

E();

L3: ...

}

E() {

if (...)

async E();

C2: ...

}

Figure 4.7: Supporting Sequential calls to Potentially Parallel Functions by main-
taining the call stack on heap frame

deque first before any other continuation of the callee. Any worker that comes to

steal from this worker would end up stealing this continuation first and suspending it

immediately since it does not have any work to do. It would then go ahead to steal

the next continuation of the child which may have some useful work. Thus every such

sequential call could result in an unwanted steal. These overheads can be avoided in

the alternative approaches described below.

Approach 2: Maintain the Call Stack on Heap Frame

The sequential calls to potentially parallel functions have a special property that

the continuations after such sequential calls can start immediately after the callee

returns. There is no other dependency here because it does not involve a finish op-

eration. As mentioned before, one way to model this is to allow the worker that

completes the callee to continue executing the continuation in the caller. This way

the worker that completes the callee is able to do some more useful work without

46

stealing. In order to make this possible, every continuation is extended to contain a

stack of activation frames up to the previous async in the call chain. There is no need

to store any activation frames beyond the previous async because when a worker com-

pletes an asynced task it just has to report to the dynamically enclosing finish whose

continuation would have been saved already. Thus we do not push the continuations

after these sequential calls on to the deque. Instead we attach it to the actual contin-

uation (the ones after an async or finish) which would be executed before this. This

approach needs runtime support by which any worker that completes a stolen task

looks up the link attached to the task’s frame to see if there are more continuations. If

there are more continuations, then the same worker proceeds to execute it repeating

the same check on completion until there are no more continuations attached.

Consider the example in Figure 4.7. Labels C1 and C2 denote the points where

stealing can actually occur. At C1, the frame pushed on to the deque contains the

stack of activation frames for C1, L2, L1 in that order. The thief that steals the frame

is responsible for starting the continuation at C1. Upon returning from function C,

the thief will resume the execution at L2, after which it will return to L1. At each

return, the thief will find the activation frame required to resume the execution by

popping the stack. Similarly, the activation frame stack for C2 contains the activation

frames up to the previous spawn i.e., C2 and L3.

This approach allows the continuation after the sequential call to execute in par-

allel with the task that escapes the callee. This is because it does not have any

synchronization points after the sequential call in the caller. Also it avoids a steal at

the continuation points after the sequential call since we do not push these continu-

ations on to the deque. We also save the cost of a steal by assigning the worker that

completes the callee to execute this continuation in the caller.

The disadvantage with this technique is that it creates activation frames for all

47

the functions that are potentially parallel and links them together to form a stack

of frames according to the call chain. But sometimes these sequential calls may not

create continuations, i.e., they may not execute any finish or async. In such cases,

their activation frames are redundant.

Approach 3: Copy the stack

One way to avoid the overhead of unnecessary activation frames is to copy the

call stack when the stealing occurs [32]. This approach to support sequential calls

to potentially parallel functions allows the thief to copy the entire call stack as part

of the stealing process. This approach proposes that the execution of asyncs proceed

as normal function calls, with some book-keeping operations. The worker thread

continues to execute normally. When a thief attempts to steal, it copies the activation

stack of the victim upto the first continuation point and start its execution from

this continuation point. Thus the thief gets the maximal chunk of work from the

victim. But this approach requires access to the runtime stack by user code, which

is not allowed by many high-level programming languages, such as Java, for security

reasons. So, in order to support this in Java the JVM has to be extended with this

functionality. Our approach instead saves local variables in heap frames that are

manipulated with compiler and runtime support.

4.2.3 Arbitrarily Nested Asyncs

In HJ, an async can contain any arbitrary statement. This is unlike Cilk where the

spawn can only contain a function call. Thus in HJ, the parallel task can be a piece of

code in the same function as the parent. This allows the user to write code that can

have asyncs with arbitrary nesting depths. In order to handle this, the body of the

asyncs can be “outlined” into a separate function by the compiler. But the problem

48

A() {
1 S0;
2 finish {//startFinish
3 async {
4 S1;
5 async { S2; }
6 S3;
7 async { S4; }
8 }
9 S5;
10 }//stopFinish
11 S6;

}

A() {
frame1 = new AFrame;

1 S0;
2 finish {//startFinish
3 async {

frame2 = new async1Frame;
4 S1;
5 async { S2; }
6 S3;
7 async { S4; }
8 }
9 S5;
10 }//stopFinish
11 S6;

}

Figure 4.8: HJ code to depict the use of frames in the case of arbitrarily nested asyncs.

with this approach is that the execution of async will then involve a sequential call and

this in turn has to be handled using the techniques described in Section 4.2.2. The

other alternative is to retain the body of the asyncs in the parent method and perform

the necessary transformations in place. We use this approach in our transformations.

With no constraint on the nesting of asyncs, there can be more than one worker

that is executing the same instance of a function, i.e., one worker can be executing the

parent task while the other can be executing its child task. Thus having one frame

for every function instance will no longer be sufficient. There is a need to have one

heap frame per task/activity in order to allow the child tasks in the nested asyncs to

run in parallel with their parents. Hence, to translate such functions with arbitrarily

nested asyncs into the two clones, we allocate a new frame per task in every function

that contains a continuation. This ensures that every new task can execute in parallel

with its parent. This also ensures that the same frame is used for all the continuations

in a particular task. Figure 4.8 shows an HJ code fragment that contains arbitrarily

nested asyncs and an equivalent version with frames created at appropriate points.

Note that two frames are being created in this method, one for the method (which

is also a task) and the other for the async (which is a child task), because both the

49

tasks contain continuations.

4.3 Compilation Support for the Help-First Policy

Work-stealing by the help-first policy, explained in Section 3.3, states that the

tasks that are created by asyncs are not executed immediately by the worker that

creates the tasks. Instead this worker proceeds to execute the continuation after

making the new task available to be stolen by other workers. In contrast, in the

work-first policy, the worker proceeds to execute the newly created task after making

the continuation available to be stolen by other workers. This inherent difference

between the work-first and the help-first policies for work-stealing dictates the need

for some changes during code generation for help-first work-stealing as compared to

that for work-first work-stealing. This section explains in detail all the changes that

are necessary to support code generation for help-first work-stealing.

We change the definition of a parallel function to reflect the fact that asyncs no

longer create continuation points. It is only the end point of finish constructs that

result in continuation points for the help-first policy. Though the asyncs need to be

handled uniquely in order to make them available for stealing, they will not result in

any suspensions or continuation points. Hence, we now define a parallel function as

one that contains a finish construct. Figure 4.9 shows the fast clone of the fib function

given in Figure 4.2 when compiled for help-first policy work-stealing. Figure 4.10

shows the corresponding slow clone. The different components of the clones in the

example are explained below.

50

void fibFast (Worker w, BoxInteger z, int n) {
if (n < 2) {

z.val = n;
return;

}
fibFrame frame = new fibFrame();
final BoxInteger x = new BoxInteger();
final BoxInteger y = new BoxInteger();

w.startFinish();

TaskFrame tFrame1 = new Async1TaskFrame(x, n-1);
w.pushTaskFrame(tFrame1);

TaskFrame tFrame2 = new Async2TaskFrame(y, n-2);
w.pushTaskFrame(tFrame2);

frame.x = x;
frame.y = y;
frame.z = z;
frame.pc = 1;
w.pushFrame(frame);
w.stopFinishFast();
if (w.popFrame()) {

return;
}

z.val = x.val + y.val;
}

Figure 4.9: Fast clone for the fib function for help-first policy work-stealing (unopti-
mized)

4.3.1 Task Frames for Asyncs

According to the help-first policy in work-stealing, the tasks defined by async’s

are to be made available for idle workers to steal. Hence they have to be wrapped

in a data structure that carries all the information that is needed to execute the

async. This includes the value of all the local variables that are used in the async

at the point when the async was created, the body of the async and the Immediately

Enclosing Finish (IEF) that this task must report to on completion. Thus, we create

a new frame, called the TaskFrame that acts as a wrapper for all this information.

51

void fibSlow (Worker w, Frame f) {
fibFrame frame = (fibFrame) f;
int n = frame.n;
BoxInteger x = frame.x;
BoxInteger y = frame.y;
BoxInteger z = frame.z;
switch (frame.pc) {
case 0:

if (n < 2) {
z.val = n;
return;

}
final BoxInteger x = new BoxInteger();
final BoxInteger y = new BoxInteger();
w.startFinish();

TaskFrame tFrame1 = new Async1TaskFrame(x, n);
w.pushTaskFrame(tFrame1);

TaskFrame tFrame2 = new Async2TaskFrame(y, n);
w.pushTaskFrame(tFrame2);

frame.x = x;
frame.y = y;
frame.z = z;
frame.n = n;
frame.pc = 1;
w.stopFinishSlow();
if (w.popFrame()) {

return;
}

case 1;
z.val = x.val + y.val;

}
}

Figure 4.10: Slow clone for the fib function for help-first policy work-stealing (unop-
timized)

public class Async1TaskFrame extends TaskFrame {
BoxInteger x;
int n;

public void execute() {
fibFast (x, n-1);

}
}

Figure 4.11: Task Frame for First Async in the fib example from Figure 4.2

52

A new type of TaskFrame has to be created for every async such that it holds all

the information corresponding to this particular async. These TaskFrames must be

instantiated once for every instance of an async since each such instance represents

a separate task that can be stolen. Figure 4.11 shows the TaskFrame corresponding

to the first async in the fib example in Figure 4.2. This contains the local variables

that are used by this particular async, x and n, and it is instantiated once for every

execution instance of the first async.

Also since the new tasks generated by the asyncs are executed independently either

by the worker that creates the tasks or by a different one in case it is stolen, it is

better to “outline” the async into a separate function since then we can avoid jumps

in to the async body and returns on end of it. This outlining transformation happens

automatically in the front-end where the asyncs are implemented as inner classes with

their body in a separate method of the class. Note that, in the work-first case, the

“outlined” async is “inlined” into the body of the parent method. The execute method

in the TaskFrame in Figure 4.11 is an example of the async being outlined in to a

separate method. An important point to be noted is that the evaluation of the actual

arguments to the function fibFast, which are part of the async body, also occurs inside

this method.

4.3.2 Fewer Continuation points

The number of continuation points in each function is smaller in the case of help-

first work-stealing as compared to that for work-first work-stealing. As mentioned

earlier, the continuation points in the help-first case are the end points of finishes

only. There are no continuation points after asyncs since the code following an async

is executed immediately after making the async available for stealing. This is clearly

seen in the slow clone of fib for help-first work-stealing in Figure 4.10, where there is

53

only one continuation point at the end of the finish. Though the slow clone in this

example does not have much work to do after the continuation, in general, there can

be any number of finishes in the same function in which case there will be more useful

work after the continuation points.

4.3.3 Need to maintain the activation frame

Though we have a TaskFrame for each async, we also need another frame data

structure like the one used for work-first work-stealing technique in order to store

the activation frame of the functions. We call this a ContinuationFrame. The Con-

tinuationFrame in addition to holding the local variables that will be used in the

continuation of the function, also contains the program counter which indicates the

continuation point the execution should resume from. It also holds links to the Con-

tinuationFrames of the parent functions if this function had been called sequentially.

This ContinuationFrame is exactly the same as the one used for the work-first case.

One such ContinuationFrame is created for every function. There is no need for the

ContinuationFrame in a function if that function does not contain any continuation

points, which in this case include the end point of finishes and the program points

after a sequential call to a potentially parallel function.

4.4 Summary of Performance Results

This section summarizes the performance results comparing the work-first and

help-first work-stealing scheduling techniques with the work-sharing techniques, as

presented in [23]. All these results were obtained with the compiler support described

in this chapter. They also serve as the baseline for the optimizations described in the

next chapter.

54

The performance results were obtained on a 64-thread 1.2 GHz UltraSPARC T2

(Niagara 2) with 32 GB main memory; the runs on this machine were performed

using Sun’s Hotspot VM for Java version 1.6. All results were obtained using the

-Xmx2000M -Xms2000M JVM options to limit the heap size to 2GB, thereby ensur-

ing that the memory requirement for our experiments was well below the available

memory on all the machines. All performance measurements followed the “Best of 30

runs” methodology proposed in [22] for Java runtime environments. The performance

results are reported for eight Java Grande Forum (JGF) benchmarks, two NAS Par-

allel Benchmarks (NPB). The JGF and NPB benchmarks are more representative of

iterative parallel algorithms rather than recursive divide-and-conquer algorithms that

have been used in past work to evaluate work-stealing schedulers. All JGF experi-

ments were run with the largest data size provided for each benchmark except for the

Series benchmark for which Size B was used instead of Size C. There are five available

sizes for the NPB benchmarks (S, W, A, B, C), and we used the intermediate Size A

for all runs.

Figure 4.12 shows the performance of the JGF and NPB benchmarks. For conve-

nience, the speedup measurements are normalized with respect to a single-processor

execution of the X10 work-sharing scheduler [3]. We observe that on average, work-

stealing schedulers outperform the work-sharing scheduler and the help-first policy

performs better than work-first policy for work-stealing. This is because the JGF

and NPB benchmarks contain large amounts of loop-based parallelism. For the SOR,

CG, and LUFact benchmarks, the help-first policy outperforms the work-first policy

by a large margin. In summary, the performance results show significant improve-

ments (up to 22.8× on a 64-thread UltraSPARC T2) for our work-stealing scheduler

compared to the existing work-sharing scheduler for X10.

55

!"!#

$"!#

%!"!#

%$"!#

&!"!#

&$"!#

'!"!#

'$"!#

(!"!#

($"!#

$!"!#

!
"
#
#
$
%
"
&'
#
()
*
+
#
&,
-
&.
/,
0
'#
)
$
&&
1
-
'2
/3
0
)
'4
5
6
&

!"##$%"&-5&7/8-'#&9&7/,0'#)$&&:(,')!")'8&;<&

)*+,-./+0#)-1)23#)-1.23#

Figure 4.12: Comparison of work-sharing, HFP (Help-First Policy) and WFP (Work-
First Policy) on a 64-thread UltraSparc T2 SMP.

56

Chapter 5

Optimizations in Work-Stealing

Compilation

Compilation for work-stealing parallel runtime systems transforms parallel con-

structs like finish and async into equivalent code that implements the parallel semantics

of these constructs atop the underlying runtime system. These transformations are

usually performed separately for every parallel construct, without taking their context

into account. We observe that there are significant opportunities for optimization.

Our hope is that future optimizations, including the ones listed in this chapter, will

greatly reduce the redundancies introduced by current compilation techniques for

work-stealing runtimes, and that their relevance will increase as more applications

are enabled for multicore execution.

This chapter describes some of these optimizations that can be performed on the

code transformed for work-stealing parallel runtimes. Section 5.1 discusses the prob-

lem of identifying redundant stores into the heap frame data structure. Section 5.2

introduces a new optimization that identifies application objects that can be used as

TaskFrames under work-stealing with the help-first policy, thereby eliminating the

57

overhead of allocating TaskFrames. It also shows the transformations necessary to

use these application objects as TaskFrames.

5.1 Frame-Store Optimizations

The compilation techniques for work-stealing parallel runtime systems discussed

thus far follow a strategy in which the activation record for a function is stored in

a heap object, called a frame, which in turn can be used by a thief to execute the

continuation in that function. This strategy requires that the fields in the frame be

up to date before every continuation point, so that the thief accesses the most re-

cent values of local variables when it starts executing the continuation. The naive

approach outlined in Section 4.1.2 dictates that all the local variables be stored in the

frame before every continuation point. Hence this code to store local variables on to

the frame is linear in the number of local variables, at every continuation point. This

can be a significant overhead in code size for large methods. We have observed that

not every local variable needs to be stored into the frame before every continuation

point since some of them would already be in the frame and some may not be live

in the continuation. This observation is analogous to identification of redundant spill

store instructions in register allocation. Thus there are opportunities to eliminate

the redundant stores by performing data-flow analysis on the transformed code. This

section describes the different kinds of analysis that can be used to identify redun-

dant stores. Section 5.1.1 describes the usage of Live Variables analysis to remove

redundant frame-store statements. Section 5.1.2 explains how Available Expressions

analysis is used to identify and eliminate redundant frame-store statements. Sec-

tion 5.1.3 presents the experimental results analyzing this set of optimizations and

Section 5.1.4 proposes some extensions.

58

Foo(int x, int y) {

S1: int b;

S2: final int a = f1(x,y);

S3: async f2(a);

S4: b = f3(a,x);

S5: async f4(a);

S6: return f5(a,b);

}

Figure 5.1: Example HJ code snippet

Figure 5.1 shows an example HJ code snippet which will be used to illustrate the

analyses needed to identify redundant stores. The statements S3 and S5 are asyncs

and hence there are continuation points starting at statements S4 and S6. Also,

let us assume that the functions f1, f3, and f5 are not potentially parallel functions

and hence there are no continuation points after calls to these functions. Note that

functions f2 and f4 may still be potentially parallel. They do not affect our analyses,

since they do not create any continuation points in function foo. For simplicity, we

consider parameters as local variables defined at the beginning of the method.

Figure 5.2 gives a simplified version of the example code transformed for work-

stealing with the work-first policy without any optimizations. This version just shows

the frame-stores added without depicting other transformations since we confine our

interests to frame-stores in these optimizations. Since there are continuation points

after statements S3 and S5, all the local variables in the method are stored on to the

frame before these statements.

5.1.1 Live Variables Analysis

The local variables are stored in the frame before every continuation point so that

the thief executing the continuation can use their values. If a local variable is never

used beyond a continuation point, it need not be stored into the frame before that

59

Foo(int x, int y)

S1: int b;

S2: final int a = f1(x,y);

frame.x = x;

frame.y = y;

frame.a = a;

frame.b = b;

S3: async f2(a);

S4: b = f3(a,x);

frame.x = x;

frame.y = y;

frame.a = a;

frame.b = b;

S5: async f4(a);

S6: return f5(a,b);

Figure 5.2: Code transformed for work-stealing with the work-first policy (unopti-
mized)

continuation point. This can be modeled using Live Variables analysis, i.e., only those

variables that are live beyond the continuation point need to be stored into the frame

before that continuation. The frame-stores of all other variables are unnecessary and

hence they are marked as useless by the analysis. All such frame-stores are removed

by a later pass over the transformed code.

The data-flow equations used to perform the Live Variables analysis are shown in

Equations 5.1 and 5.2. The set UEUses(b) refers to the set of variables which have

an “Upward Exposed Use” in the basic block b, Kill(b) refers to the set of variables

that are “killed” in the basic block b, LiveIn(b) is the set of all variables that are

“live” on entry to the basic block b, and LiveOut(b) refers to the set of all variables

that are “live” on exit from the basic block b.

60

LiveIn(b) = UEUses(b) ∪ (LiveOut(b)−Kill(b)) (5.1)

LiveOut(b) =
⋃

s∈succ(b)

(LiveIn(s)) (5.2)

Figure 5.3 shows the frame-stores that are marked for deletion after performing

Live Variables analysis on the code. The local variable y and b are not live in the

continuation starting at S4 and hence they need not be stored on to the frame before

S3. Similarly both x and y are not live beyond S5 and hence need not be stored

before S5.

An important point to note here is that if the Live Variable analysis is performed

on the transformed code, it may yield pessimistic results. This is because since

the transformed code already contains the frame-store statements for all the local

variables, Live Variable analysis will incorrectly identify some local variables as live

even though they are not used in the actual code (due to uses of the variables in

the frame-store statements). One way to handle this issue is to do this analysis on

the non-transformed code. But this would mean doing the optimization during the

transformation which is not usually preferred. So, in our approach, we modify the

Live Variables analysis to ignore the frame-store statements. This essentially means

that the set UEUses(b) used in Equation 5.1 will not include any uses from frame-

store statements in the basic block b. This ensures that there are no incorrect reports

of live variables due to the uses in frame-store statements.

Uninitialized Local Variables

Since our work-stealing transformation stores every local variable in to the frame

before every continuation point, it introduces uninitialized access to some local vari-

61

Foo(int x, int y)

S1: int b;

S2: final int a = f1(x,y);

frame.x = x;

((((((((
frame.y = y;

frame.a = a;

((((((((
frame.b = b;

S3: async f2(a);

S4: b = f3(a,x);

((((((((
frame.x = x;

((((((((
frame.y = y;

frame.a = a;

frame.b = b;

S5: async f4(a);

S6: return f5(a,b);

Figure 5.3: Redundant stores marked by Liveness analysis

ables. Suppose there is a local variable ‘a’ that is not defined until after the con-

tinuation point ‘p’. But our transformation stores ‘a’ in to the frame before the

continuation point ‘p’ which leads to an uninitialized access. It is illegal in Java to

access such uninitialized local variables, and the Java bytecode verifier signals an error

when such uninitialized accesses are present.

Such uninitialized accesses introduced by frame-store statements are handled au-

tomatically by the Live Variables analysis. If there is an uninitialized access to a

local variable ‘a’ in a frame-store statement, that essentially means no definition of

‘a’ reaches the frame-store statement. This in turn means that there can not be a use

of ‘a’ before a definition in the continuation following the frame-store statement. This

is because the use of ‘a’ will then be an uninitialized access in the input code which

is not allowed according to Java’s strict typing rules. Now, since there is no use of

62

‘a’ before a definition in the continuation, ‘a’ is not live at the frame-store statement.

Hence, the Live Variables analysis will mark all the frame-store statements that con-

tain uninitialized access to local variables as redundant. The frame-store statement

of the local variable b before statement S3 in the example shown in Figure 5.3 is an

uninitialized access to b and it is marked redundant by the Live Variables Analysis.

5.1.2 Available Expressions Analysis

In addition to the frame-stores marked for removal by performing the Live Vari-

ables analysis, we noticed that there are more frame-stores that are redundant. These

are the frame-stores of the local variables that have already been stored on to the

frame before a continuation point along all paths that reach this frame-store and have

not been modified since they were last stored. This case ensures that the previous

store of this local variable updated the frame with its latest value and hence the

current frame-store is redundant and can be removed.

This case requires the ability to find if a local variable is redefined after it was last

stored on to the frame along any path. The ideal way to model this is to think of the

use of a local variable in a frame-store statement as an expression that is computed

in that statement. The expression in this case is trivial because it just contains the

value of the variable. This expression gets killed whenever the variable is redefined.

Now the availability of this trivial expression before a frame-store statement indicates

that the variable has already been stored on to the frame and it has not be redefined

along any path since it was stored.

The data-flow equation used to perform the Available Expressions analysis is given

in Equation 5.3. The set DEExpr(b) refers to the set of expressions defined in the basic

block b and not subsequently killed in b, ExprKill(b) refers to the set of expressions

that are killed in the basic block b, and Avail(b) is the set of all expressions that are

63

Foo(int x, int y)

S1: int b;

S2: final int a = f1(x,y);

frame.x = x;

frame.a = a;

S3: async f2(a);

S4: b = f3(a,x);

((((((((
frame.a = a;

frame.b = b;

S5: async f4(a);

S6: return f5(a,b);

Figure 5.4: Redundant stores marked by Available Expressions analysis

“available” on entry to the basic block b.

Avail(b) =
⋂

p∈pred(b)

(DEExpr(p) ∪ (Avail(p)− ExprKill(p))) (5.3)

We use the results of the Available Expressions analysis only to check if the trivial

expressions involving the local variables are “available” at the frame-store statements.

Hence the analysis only needs to involve trivial expressions involving local variables

that are stored in to the frame. Figure 5.4 shows the frame-stores that are marked for

deletion after performing Available Expressions analysis on the code. The frame-store

of the local variable a before statement S5 is redundant in this case, since there was a

store of a in to the frame before statement S3 and it has not been modified since the

store. So the analysis identifies that the expression a is available at the frame-store

point before S5, and marks the frame-store as redundant.

An important point to note here is that we again need to differentiate between the

use of a variable in a frame-store statement and other uses of the same variable. This

64

is because we perform the Available Expressions analysis by considering the use of a

local variable in a frame-store statement as a computation of the trivial expression

involving that variable. But there could be other uses of the same local variable in the

method which should not be considered as a computation of the expression. Hence we

modify the Available Expressions analysis to consider only the frame-store statements

for trivial expressions involving local variables. This essentially means that the set

DEExpr(b) will contain only the trivial expressions involving the local variables that

are stored on to the frame in the basic block b and are not subsequently defined in b.

5.1.3 Performance Analysis

We now evaluate the performance of the Frame-Store optimizations on the code

transformed for work-stealing schedulers. Initially, we use the work-stealing runtime

with the work-first policy to study the performance of these optimizations. We study

the performance on a wide variety of benchmarks which include seven Java Grande

Forum (JGF) benchmarks, two NAS Parallel Benchmarks (NPB), and the Fibonacci,

N-Queens, Graph-Coloring, and Graph Spanning Tree micro-benchmarks. As men-

tioned earlier, the JGF and NPB benchmarks are more representative of iterative

parallel algorithms. Fibonacci and N-Queens micro-benchmarks have been used in

the past [21] to evaluate the performance of work-stealing schedulers. We include the

graph algorithms in our evaluations since there has been some attention to scheduling

such applications using work-stealing [16]. The performance results were obtained on

a 64-thread 1.2 GHz UltraSPARC T2 (Niagara 2) using Sun’s Hotspot VM for Java

version 1.6.

65

20.00

30.00

40.00

50.00

60.00

% Increase in Code Size w/o Frame-Store Optimizations

% Increase in Code Size w/ Frame-Store Optimizations

0.00

10.00

20.00

30.00

40.00

50.00

60.00

% Increase in Code Size w/o Frame-Store Optimizations

% Increase in Code Size w/ Frame-Store Optimizations

Figure 5.5: Increase in Code Size (in terms of the number of Jimple instructions) w/
and w/o Frame-Store Optimizations

Code Size with Frame-Store Optimizations

We first study the reduction in code size (in terms of the number of Jimple in-

structions) due to the frame-store optimizations. In order to analyze the effect of

these optimizations on code size, we statically counted the number of frame-store

instructions that were added during compilation for work-stealing with the work-first

policy and the total number of Jimple instructions in every potentially parallel func-

tion. We also counted the number of frame-store instructions that remained in these

functions after Frame-Store optimizations. Figure 5.5 gives the percentage increase in

code size of the potentially parallel functions in the benchmarks under study w/ and

w/o Frame-Store optimizations. The reduction in code size that we have observed

is as high as 52% for the potentially parallel functions of the ‘CG’ benchmark. On

66

40%

50%

60%

70%

80%

90%

100%

Frame Stores Remaining Frame Stores Removed

0%

10%

20%

30%

40%

Figure 5.6: Dynamic counts of Frame-Stores instructions

average, there is a 14% reduction in size of the potentially parallel functions across

all the benchmarks.

Dynamic Frame-Store Counts with Frame-Store Optimizations

We now show the dynamic counts of frame-store statements that were removed

by this set of optimizations. The benchmark codes were first transformed to target

work-stealing with the work-first policy. The set of frame-store optimizations were

then applied on the transformed code. In order to obtain the dynamic counts, the op-

timized code was instrumented to get the dynamic count of the number of frame-store

statements removed by the optimizations and the number of frame-store statements

that remain. The instrumented code was run for each of these benchmarks under

1-thread case.

67

50%

60%

70%

80%

90%

100%

Other Instructions Remaining Frame Stores Remaining Frame Stores Removed

0%

10%

20%

30%

40%

Figure 5.7: Dynamic counts of instructions

Figure 5.6 shows the percentage of frame-stores that were removed for each of

the benchmarks. As evident from the graph, a significant number of frame-stores

are being removed by the frame-store optimizations. On an average, about 60% of

the dynamically executed frame-stores were removed. For some of the benchmarks

like ‘CG’ and ‘Moldyn’, more than 90% of the dynamically executed frame-stores

statements were removed.

We then turned our attention to study the significance of the dynamic counts of

frame-store statements removed when compared to the total number of instructions1

executed. Again, we instrumented the code to count the total number of bytecode

instructions that were executed, other than the frame-store statements. Figure 5.7

1The terms ‘statement’ and ‘instruction’ are used interchangeably in this thesis. Both refer to a
statement at the bytecode level.

68

gives the percentage of frame-stores removed with respect to the total number of

instructions executed. On an average, the percentage of frame-store statements in

the application is clearly low, i.e., around 10%, when compared to the total num-

ber of instructions executed. The percentage of frame-stores removed is thus even

lower, around 6%. However, a significant percentage of instructions were removed for

benchmarks like ‘MG’ and ‘Fib’.

As mentioned earlier, the JGF and NPB benchmarks are representative of iterative

parallel algorithms, i.e., the core of the algorithm is a parallel ‘for’ loop. These parallel

‘for’ loops could be chunked by the number of threads executing the benchmark [36].

But the versions used for this evaluation are unchunked, i.e., every iteration of the

core loop is effectively an async. Hence the transformed versions of these benchmarks

will include frame-store statements for every iteration of the loop. Even with these

versions that have maximal frame-store statements, the percentage of the instructions

that are frame-stores is just 10%. If the chunked versions of the benchmarks were

used, the percentage of instructions that are frame-stores would be even smaller.

Execution Times with Frame-Store Optimizations

With the knowledge about the dynamic counts of the frame-stores removed with

respect to the number of instructions executed, we compare the execution times of the

optimized code with the unoptimized version. Figures 5.8 and 5.9 show the execution

times of ‘MG’ and ‘Fib’ benchmarks running with threads varying from 1 to 64 on

an ULTRASPARC T2. There is no measurable difference in the running times of the

optimized and unoptimized versions for both the benchmarks. The same trend is seen

with other benchmarks too. This clearly shows that the overhead due to the frame-

stores is not a significant component of the execution time for these benchmarks,

though 10% of the instructions executed are frame-store statements on an average.

69

80

100

120
T

im
e

 (
s
)

MG (WF) on 8-core x 8-thread UltraSPARC T2

W/o Frame-Store Optimizations W/ Frame-Store Optimizations

0

20

40

60

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of Processors

Figure 5.8: Execution Times for MG w/ and w/o Frame-Store Optimizations

These two benchmarks were selected for reporting since they showed promise with the

highest percentage of frame-stores removed when compared with the total number of

instructions executed.

5.1.4 Extending Frame-Store Optimizations

The Frame-Store Optimizations can be readily performed on the code transformed

for work-stealing with the help-first policy. But, as mentioned earlier, the code trans-

formed for the help-first policy has fewer continuation points as compared to the code

for the work-first policy. Hence, the percentage of frame-stores that will be removed

will be ever smaller. As we did not see any benefit even in the work-first case, we

decided not to perform these optimizations for the help-first case.

There are more opportunities to remove frame-store statements by performing

70

200

250

300

350
T

im
e

 (
s
)

Fib (40) (WF) on 8-core x 8-thread UltraSPARC T2

W/o Frame Store Optimizations W/ Frame-Store Optimizations

0

50

100

150

200

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of Processors

Figure 5.9: Execution Times for Fib w/ and w/o Frame-Store Optimizations

partial redundancy elimination. This will catch the cases when the frame-stores are

redundant along some paths but not on others. In this case, the frame-stores will then

be moved to the paths along which it is necessary thereby removing the redundancy

along other paths. As we did not see any benefit in the execution times with the

current set of optimizations and benchmarks, we decided not to pursue this further

with partial redundancy elimination.

5.2 Using Application Objects as Frames

This section introduces a new optimization that uses the application objects as

TaskFrames under the help-first policy of work-stealing. Section 5.2.1 describes the

steps involved in identifying the objects that can be used as TaskFrames and the

71

transformations needed. Section 5.2.2 presents the study analyzing the performance

of this optimization and Section 5.2.3 proposes some extensions to this optimization.

5.2.1 Objects-As-Frames Optimization

The code transformations for work-stealing with the help-first policy create Task-

Frames that are used as a wrapper for the asyncs. A new type of TaskFrame is

created for every async and they are instantiated once for every execution instance

of an async. The TaskFrames contain information regarding the value of the local

variables that are used in the async, the body of the async, and the Immediately En-

closing Finish (IEF). The local variables that are stored in TaskFrames may include

some user-defined application objects. This optimization tries to use such application

objects themselves as TaskFrames, thereby reducing the need for additional memory

instantiations for the TaskFrames.

The challenge with this optimization is to find an application object that can be

used as a TaskFrame for an async. Using an application object as a TaskFrame would

involve extending the type of the object to include the fields and methods correspond-

ing to a TaskFrame. Since a TaskFrame is specialized for a particular async, a type

cannot be extended to represent more than one TaskFrame. This clearly dictates

that two objects of the same type cannot be used to represent the TaskFrames of two

different asyncs. Also, since a new instance of a TaskFrame has to be instantiated for

every execution instance of an async, an object cannot be used as a TaskFrame for

more than one execution instance of the async. In order to avoid this, we add a flag

field to the object’s type. We then use this flag to dynamically check if a particular

object has already been used as a TaskFrame.

This optimization proceeds as follows. For every async in the application, we

inspect the list of local variables that are passed as parameters to the async. If there

72

is a variable v of a user-defined type that has not been used as a TaskFrame before,

then we use v as the TaskFrame for this async. Now, to use v as a TaskFrame we

extend the type of v to include the methods and fields needed by a TaskFrame. It is

also extended to contain a boolean flag used to indicate if an object has already been

used as a TaskFrame. The point where the TaskFrame is created is now wrapped by

a conditional to check the used flag of the object that is selected to be used as the

TaskFrame. If the object has already been used, then a new TaskFrame is created.

Otherwise, the object is used as the TaskFrame for this particular instance of the

async. In this case, the remaining parameters of the async are stored on to the object.

Figure 5.10 shows the optimized version of the fast clone of the Fib example

that was transformed for work-stealing with the help-first policy. Here the variable x

which is a BoxInteger is being used as a TaskFrame for the first async. The modified

version of BoxInteger is shown in Figure 5.11. It now contains a field for the variable

n, a boolean flag used, and the body of the async outlined in the execute method.

The TaskFrame creation for the first async in the fast clone is now replaced with

a conditional statement checking the used flag of x. A new TaskFrame is created

under the true case. x is used as the TaskFrame under the false case, where the local

variable n is stored in to x and the used flag of x is set to true.

Note that the flag used is actually not needed in the fib example in Figure 5.10

because there is a new instance of the variable x being created for every execution

instance of the first async in the method. But, in general, this may not be true. Also,

if the variable that is promoted to a TaskFrame is a parameter to the method, there

is no way to check if it has already been used as a TaskFrame. This is especially true

for the Graph Spanning Tree example that is used to study the performance of this

optimization later in Section 5.2.2. Hence, we stick to the use of the flag to overcome

this problem. Also, note that the local variable y is not being used as a TaskFrame

73

void fibFast (Worker w, BoxInteger z, int n) {
if (n < 2) {

z.val = n;
return;

}
fibFrame frame = new fibFrame();
final BoxInteger x = new BoxInteger();
final BoxInteger y = new BoxInteger();

w.startFinish();

TaskFrame tFrame1;
if (x.used is true) {

tFrame1 = new Async1TaskFrame(x, n-1);
} else {

x.used = true;
x.n = n;
tFrame1 = x;

}
w.pushTaskFrame(tFrame1);

TaskFrame tFrame2 = new Async2TaskFrame(y, n-2);
w.pushTaskFrame(tFrame2);

frame.x = x;
frame.y = y;
frame.z = z;
frame.pc = 1;
w.pushFrame(frame);
w.stopFinishFast();
if (w.popFrame()) {

return;
}

z.val = x.val + y.val;
}

Figure 5.10: Fast clone for the fib function for help-first policy work-stealing optimized
using application object as a frame

74

public class BoxInteger extends TaskFrame {
int n;
boolean used;

public void execute() {
fibFast (this, n-1);

}
}

Figure 5.11: BoxInteger being used as a Task Frame for First Async in the fib example
from Figure 5.10

for the second async in the fib example. This is because y is of type BoxInteger too

and our restriction clearly says that a type cannot be promoted to a TaskFrame for

two different asyncs.

Overheads due to this Optimization

During the optimization, we extend the type of the object being promoted as a

TaskFrame to contain a field for every local variable used in the async. There could

be other objects of this modified type in the application which are not being used

as TaskFrames. These objects carry the overhead of the extra fields that are added

to promote the type to a TaskFrame. There is also the additional boolean field, the

used flag, that is added to every type when it is extended to a TaskFrame. This adds

to the overhead of the objects of this modified type. Also, the optimization adds

a conditional statement to test if an object has already been used as a TaskFrame.

There is one conditional statement for every execution instance of an async that is

optimized. This is one additional overhead that comes about because the choice of

using an object as a TaskFrame is delayed until the execution time. This can be

avoided if we can determine whether an object can be used as a TaskFrame for an

async at compile time. We plan to address these issues as part of our future work.

75

6

7

8

9
T

im
e

 (
s
)

DFS Spanning Tree (HF) on 8-core x 8-thread UltraSPARC T2

w/o Objects as Frames Opt w/ Objects as Frames Opt

0

1

2

3

4

5

1 2 4 8 16 32 64

T
im

e
 (

s
)

Number of Processors

Figure 5.12: Objects-As-Frames Optimization on Graph Spanning Tree

5.2.2 Performance Analysis

We now use the Graph Spanning Tree benchmark to analyze the performance of

the Objects-As-Frames Optimization. This benchmark constructs a spanning tree of

a randomly generated Taurus graph by performing a Depth-First Search (DFS) on the

graph. This benchmark was selected for evaluation since it has a nice structure that

makes it a very good candidate for Objects-As-Frames Optimization. The code for

this benchmark is given in Figure 3.4. As is evident from the code, there is an async for

every neighboring Vertex that has not been traversed already. This essentially means

that there is one async for every vertex in the graph. This clearly suggests that the

vertex object can be used as the TaskFrame for these asyncs. The optimization does

exactly that.

Figure 5.12 shows the execution time of the optimized and the unoptimized ver-

76

sions of the DFS Graph Spanning Tree benchmark on 64-way UltraSPARC T2. The

execution times reported are the minimum among 5 runs for each of the cases. We

see an improvement of 5-8% on the execution times for 1 to 8 processors. From 8

processors onwards, there is no significant difference in the execution times. This is

because, the overhead of the creation of new TaskFrames that were avoided by this

optimization is linear in the number of vertices in the graph. This is the overhead

that is seen under the 1-processor case. When the number of processors increase, this

overhead is distributed among all the processors involved and hence there is lesser

overhead involved with each processor. Also, as described earlier, the overheads due

to this optimization catch up with the gains obtained by this optimization as the

number of processors increase.

5.2.3 Extending Objects-As-Frames Optimization

The current version of this optimization targets the use of application objects in

the place of TaskFrames under work-stealing with the help-first policy. However, this

can be extended to do the same for the ContinuationFrame or the Frame as it is called

under the work-first policy. The only difference in this case would be that the type of

the object (that is being promoted to a Frame) should now be extended to contain

fields for all the local variables that are used in the method from the continuation

point. This could incur additional overhead since the number of local variables used

in a continuation is, in general, greater than the number of locals used in an async.

We plan to do this extension as part of our future work.

77

Chapter 6

Related Work

The three programming languages developed as part of the DARPA HPCS pro-

gram (Chapel, Fortress, X10) all identified dynamic lightweight task parallelism as

one of the prerequisites for success. Dynamic task parallelism is also being included

for mainstream use in many new programming models for multicore processors and

shared-memory parallelism, such as Cilk, OpenMP 3.0, Java Concurrency Utilities,

Intel Thread Building Blocks, and Microsoft Task Parallel Library. Our results on

efficient and scalable implementation of terminally-strict async-finish task parallelism

can easily be integrated into any of the programming models listed above.

Work-stealing schedulers have a long history that includes lazy task creation [29]

and the theoretical and implementation results from the MIT Cilk project. Blumofe

et al. defined the fully-strict computation model and proposed a randomized work

stealing scheduler with provable time and space bounds [8]. An implementation of

this algorithm with compiler support for Cilk was presented in [21]. Agarwal et al.

proved that terminally-strict parallel programs can be scheduled with a work-first

policy so as to achieve the same time and space bounds as fully-strict programs [1].

To the best of our knowledge, our work presented in [23] is the first work stealing

78

implementation including compiler and runtime support for an async-finish parallel

language which allows escaping asyncs and sequential calls to a parallel function1.

The X10 Work Stealing framework (XWS) is a recently released library [16] that

supports help-first scheduling for a subset of X10 programs in which sequential and

async calls to the same function and nesting of finish constructs are not permitted.

The single-level-finish restriction leads to a control flow structure of alternating se-

quential and parallel regions as in OpenMP parallel regions, and enables the use of a

simple and efficient global termination detection algorithm to implement each finish

construct in the sequence. The library interface requires the user to provide code

for saving and restoring local variables in the absence of compiler support. With

these restrictions and an additional optimization for adaptive batching of tasks, the

results in [16] show impressive speedups for solving large irregular graph problems. In

contrast, our approach provides a language interface with compiler support for gen-

eral nested finish-async parallelism, and our runtime system supports both work-first

and help-first policies. An interesting direction for future research is to extend our

compiler support to generate calls to the XWS library so as to enable performance

comparisons for the same source code, and explore integration of the scheduling al-

gorithms presented in this paper with the adaptive batching optimization from [16].

The Fork/Join framework [26] is a library-based approach for programmers to

write divide-and-conquer programs. It uses a work-stealing scheduler that supports

a help-first policy implemented using a variant of Cilk’s THE protocol. In their

approach, the thief needs to acquire a lock on the victim’s deque when performing a

steal in the Fork/Join framework.

1The recent Cilk++ release from Cilk Arts [15] allows the same function to be spawned and
called sequentially from different contexts.

79

Chapter 7

Conclusions and Future Work

Though work-stealing has received a lot of attention in the recent past, the target

of work-stealing has been the restricted set of fully-strict computations. Our joint

effort [23] extended work-stealing for terminally strict computations and also intro-

duced an alternate approach to work-stealing: the help-first policy. In this thesis, we

discussed in detail the compilation techniques needed to support work-stealing along

with some optimizations. We now summarize the contributions of this thesis and also

propose extensions to be pursued as part of future work.

We gave a detailed description of the compilation support needed to schedule fully-

strict computations characterized by Cilk’s spawn-sync constructs using work-stealing.

This included generating two clones, a fast and a slow clone, for each method that

can spawn parallel tasks. The activation stack of the functions was stored in a heap

frame data structure so that the thief gets the correct values of local variables to start

the continuation with.

We extended these compilation techniques to support a broader class of compu-

tations known as terminally strict computations generated by HJ’s async-finish con-

structs. We proposed different approaches to handle the challenges involved with

80

terminally strict computations. In order to support sequential calls to parallel func-

tions, we extended the heap frame data structure to maintain the complete call stack.

We also performed an inter-procedural analysis by building the call-graph to identify

potentially parallel functions. We supported arbitrarily nested asyncs by introducing

a new frame for every task containing a continuation. A topic for future work is to

extend work-stealing to support other parallel constructs in HJ, like phasers.

We also described in detail the compilation strategies needed to support work-

stealing by help-first policy. This involved creation of a new frame, known as a

TaskFrame that acts as a wrapper for tasks created with asyncs. We also discussed

how the continuations in a function differ in the case of help-first policy. Our results

showed that there is a performance improvement of up to 22.8× on a 64-way SMP

for our work-stealing scheduler compared to X10’s work-sharing scheduler. We also

observed that on average the help-first policy performs better than the work-first

policy for work-stealing. Currently, the compilation targets either the work-first or

the help-first policy work-stealing. A topic for future work is to have the compiler

automatically decide if a task must be scheduled under work-first or help-first policy.

We performed an optimization to remove both the useless and redundant frame-

store statements that were introduced to store the local variables in to the frame by

these transformations. We described the different kind of data-flow analyses needed

to identify the redundant frame-store statements. We showed that, on an average,

there is a 14% reduction in code size (based on the number of Jimple instructions) of

the potentially parallel functions across all benchmarks, with a maximum reduction

of 52% for the potentially parallel functions of ‘CG’. Though we were able to remove a

significant percentage of the dynamically executed frame-store statements, 60% on an

average, we did not see any benefit in the execution times since the overall overhead

due to frame-store statements is low on current systems. This does not necessarily

81

mean that these optimizations are of no use. If the time to access memory increases

compared to processor cycles and the memory bandwidth per core decreases, as is the

trend now, we could see more benefits with the removal of frame-store statements in

future than what our current results show.

The other optimization we described was that of using the application objects

as TaskFrames in the case of work-stealing with the help-first policy. This aimed

at reducing the cost of instantiating new TaskFrames for every async. Our results

showed that there is a performance improvement of 5-8% for 1-8 threads on a 64-way

SMP. Currently, the decision to use the application objects as TaskFrames is delayed

till execution time. A topic for future work is to extend this optimization so that

we could decide and replace the use of TaskFrame with an application object, at

compile time. Another future work topic is to extend this optimization to identify

application objects that could replace the Frames used under the work-first policy

and the ContinuationFrames used under the help-first policy.

82

Bibliography

[1] S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K. Shyamasundar, and

K. Yelick. Deadlock-free scheduling of X10 computations with bounded resources.

In SPAA ’07: Proceedings of the nineteenth annual ACM symposium on Parallel

algorithms and architectures, pages 229–240, New York, NY, USA, 2007. ACM.

[2] E. Allan, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S.

Jr., and S. Tobin-Hochstadt. The Fortress language specification version 1.0.

Technical report, Sun Microsystems, Apr. 2005.

[3] R. Barik, V. Cave, C. Donawa, A. Kielstra, I. Peshansky, and V. Sarkar. Experi-

ences with an SMP Implementation for X10 based on the Java Concurrency Util-

ities. In Workshop on Programming Models for Ubiquitous Parallelism (PMUP),

held in conjunction with PACT 2006, Sep 2006, 2006.

[4] R. D. Blumofe. Executing multithreaded programs efficiently. PhD thesis, Cam-

bridge, MA, USA, 1995.

[5] R. D. Blumofe, Charles, C. E. Leiserson, and S. J. C. C. Space-efficient scheduling

of multithreaded computations. In SIAM Journal on Computing, pages 362–371,

1998.

83

[6] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou. Cilk: an efficient multithreaded runtime system. SIGPLAN Not.,

30(8):207–216, 1995.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. In In Proceedings of the 35th Annual Symposium on Foundations

of Computer Science (FOCS), pages 356–368, 1994.

[8] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.

[9] A. R. Board. OpenMP Fortran Application Program Interface v 1.0, 1997.

[10] A. R. Board. OpenMP Fortran Application Program Interface v 3.0, 2008.

[11] Z. Budimlic, A. M. Chandramowlishwaran, K. Knobe, G. N. Lowney, V. Sarkar,

and L. Treggiari. Multi-core implementations of the concurrent collections pro-

gramming model. In CPC ’09: 14th International Workshop on Compilers for

Parallel Computers, 2009.

[12] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree

of processors. In FPCA ’81: Proceedings of the 1981 conference on Functional

programming languages and computer architecture, pages 187–194, New York,

NY, USA, 1981. ACM.

[13] B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and the

chapel language. Int. J. High Perform. Comput. Appl., 21(3):291–312, 2007.

[14] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform

84

cluster computing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIG-

PLAN conference on Object-oriented programming, systems, languages, and ap-

plications, pages 519–538, New York, NY, USA, 2005. ACM.

[15] Cilk Arts. Cilk++ Programmer’s Guide Version 1.0.2.

[16] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen. Solv-

ing Large, Irregular Graph Problems Using Adaptive Work-Stealing. In ICPP

’08: Proceedings of the 2008 37th International Conference on Parallel Process-

ing, pages 536–545, Washington, DC, USA, 2008. IEEE Computer Society.

[17] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Pro-

grams Using Static Class Hierarchy Analysis. In ECOOP’95 Object-Oriented

Programming, 9th European Conference, 1995.

[18] M. F. Fern’andez. Simple and effective link-time optimization of Modula-3 pro-

grams. In In Proceedings of the ACM SIGPLAN’95 Conference on Programming

Language Design and Implementation (PLDI), pages 103–115, 1995.

[19] R. Finkel and U. Manber. DIB—a distributed implementation of backtracking.

ACM Trans. Program. Lang. Syst., 9(2):235–256, 1987.

[20] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Distributed filaments: Effi-

cient fine-grain parallelism on a cluster of workstations. In In First Symposium

on Operating Systems Design and Implementation, pages 201–213, 1994.

[21] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5

multithreaded language. In PLDI ’98: Proceedings of the ACM SIGPLAN 1998

conference on Programming language design and implementation, pages 212–223,

New York, NY, USA, 1998. ACM.

85

[22] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java perfor-

mance evaluation. SIGPLAN Not., 42(10):57–76, 2007.

[23] Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-First and Help-First Schedul-

ing Policies for Async-Finish Task Parallelism. In IPDPS ’09: International

Parallel and Distributed Processing Symposium (To Appear), 2009.

[24] IBM. X10: The New Concurrent Programming Language for Multicore and

Petascale Computing.

[25] R. H. H. Jr. Implementation of multilisp: Lisp on a multiprocessor. In LFP ’84:

Proceedings of the 1984 ACM Symposium on LISP and functional programming,

pages 9–17, New York, NY, USA, 1984. ACM.

[26] D. Lea. A Java fork/join framework. In JAVA ’00: Proceedings of the ACM 2000

conference on Java Grande, pages 36–43, New York, NY, USA, 2000. ACM.

[27] I.-T. A. Lee. The JCilk Multithreaded Language. Master’s thesis, Massachusetts

Institute of Technology Department of Electrical Engineering and Computer Sci-

ence, Aug. 2005.

[28] T. Lindholm and F. Yellin. The Java Virtual Machine Specification Second Edi-

tion. Addison-Wesley, 1999.

[29] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr. Lazy task creation: a technique

for increasing the granularity of parallel programs. In LFP ’90: Proceedings of

the 1990 ACM conference on LISP and functional programming, pages 185–197,

New York, NY, USA, 1990. ACM.

86

[30] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler

framework for java. In In 12th International Conference on Compiler Construc-

tion, pages 138–152. Springer-Verlag, 2003.

[31] T. Peierls, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes. Java Concurrency in

Practice. Addison-Wesley Professional, 2006.

[32] D. M. Peixotto and R. Barik. Implementing work-stealing with lazy frame-

copying. Private Communication, 2008.

[33] J. Reinders. Intel threading building blocks. O’Reilly & Associates, Inc., Se-

bastopol, CA, USA, 2007.

[34] Rice University. Habanero Multicore Software Research project.

[35] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phasers: a unified

deadlock-free construct for collective and point-to-point synchronization. In ICS

’08: Proceedings of the 22nd annual international conference on Supercomputing,

pages 277–288, New York, NY, USA, 2008. ACM.

[36] J. Shirako, J. Zhao, V. Nandivada, and V. Sarkar. Chunking Parallel Loops

in the Presence of Synchronization. In ICS ’09: International Conference on

Supercomputing (To Appear), 2009.

[37] X. Teruel, P. Unnikrishnan, X. Martorell, E. Ayguadé, R. Silvera, G. Zhang, and

E. Tiotto. Openmp tasks in ibm xl compilers. In CASCON ’08: Proceedings of

the 2008 conference of the center for advanced studies on collaborative research,

pages 207–221, New York, NY, USA, 2008. ACM.

[38] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot

- a Java bytecode optimization framework. In CASCON ’99: Proceedings of the

87

1999 conference of the Centre for Advanced Studies on Collaborative research,

page 13. IBM Press, 1999.

88

