
Language Extensions in Support of Compiler
Parallelization

Jun Shirako1,2, Hironori Kasahara1,3, and Vivek Sarkar4

1 Dept. of Computer Science, Waseda University
2 Japan Society for the Promotion of Science, Research Fellow

3 Advanced Chip Multiprocessor Research Institute, Waseda University
4 Department of Computer Science, Rice University

{shirako,kasahara}@oscar.elec.waseda.ac.jp, vsarkar@rice.edu

Abstract. In this paper, we propose an approach to automatic com-
piler parallelization based on language extensions that is applicable to
a broader range of program structures and application domains than in
past work. As a complement to ongoing work on high productivity lan-
guages for explicit parallelism, the basic idea in this paper is to make se-
quential languages more amenable to compiler parallelization by adding
enforceable declarations and annotations. Specifically, we propose the
addition of annotations and declarations related to multidimensional ar-
rays, points, regions, array views, parameter intents, array and object
privatization, pure methods, absence of exceptions, and gather/reduce
computations. In many cases, these extensions are also motivated by
best practices in software engineering, and can also contribute to per-
formance improvements in sequential code. A detailed case study of the
Java Grande Forum benchmark suite illustrates the obstacles to compiler
parallelization in current object-oriented languages, and shows that the
extensions proposed in this paper can be effective in enabling compiler
parallelization. The results in this paper motivate future work on build-
ing an automatically parallelizing compiler for the language extensions
proposed in this paper.

1 Introduction

It is now well established that parallel computing is moving into the mainstream
with a rapid increase in the adoption of multicore processors. Unlike previous
generations of mainstream hardware evolution, this shift will have a major im-
pact on existing and future software. A highly desirable solution to the mul-
ticore software productivity problem is to automatically parallelize sequential
programs. Past work on automatic parallelization has focused on Fortran and
C programs with a large body of work on data dependence tests [1,25,18,9] and
research compilers such as Polaris [7,19], SUIF [10], PTRAN [21] and the D Sys-
tem [12]. However, it is widely acknowledged that these techniques have limited
effectiveness for programs written in modern object-oriented languages such as
Java.

V. Adve, M.J. Garzarán, and P. Petersen (Eds.): LCPC 2007, LNCS 5234, pp. 78–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Language Extensions in Support of Compiler Parallelization 79

In this paper, we propose an approach to compiler parallelization based on
language extensions that is applicable to a broader range of program structures
and application domains than in past work. As a complement to ongoing work
on high productivity languages for explicit parallelism, the basic idea in this
paper is to make sequential languages more amenable to compiler paralleliza-
tion by adding enforceable declarations and annotations. In many cases, these
extensions are also motivated by best practices in software engineering, and can
also contribute to performance improvements in sequential code.

A detailed case study of the Java Grande Forum benchmarks [22,13] confirms
that the extensions proposed in this paper can be effective in enabling compiler
parallelization. Experimental results were obtained on a 16-way Power6 SMP to
compare the performance of four versions of each benchmark: 1) sequential Java,
2) sequential X10, 3) hand-parallelized X10, 4) parallel Java. Averaged over ten
JGF Section 2 and 3 benchmarks, the parallel X10 version was 11.9× faster than
the sequential X10 version, which in turn was 1.2× faster than the sequential Java
version (Figure 1). An important side benefit of the annotations used for paral-
lelization is that they can also speed up code due to elimination of runtime checks.
For the eight benchmarks for which parallel Java versions were available, the par-
allel Java version was an average of 1.3× faster than the parallel X10 version (Fig-
ure 2). However, for two of the eight benchmarks, the parallel Java version used a
different algorithm from the sequential Java version, and resulted in super-linear
speedups. When the sequential and parallel X10 versions for the two benchmarks
were modified to be consistent with the new algorithms, the parallel Java and X10
versions delivered the same performance on average (Figure 3).

The rest of the paper is organized as follows. Section 2 describes the language
extensions (annotations and declarations) proposed in this paper. Section 3 sum-
marizes the results of the case study including experimental results, and Section 5
contains our conclusions.

2 Language Extensions

While modern object-oriented languages such as Java have improved program-
ming productivity and code reuse through extensive use of object encapsulation
and exceptions, these same features have made it more challenging for automat-
ically parallelizing compilers relative to Fortran programs where data structures
and control flow are more statically predictable. In this section, we propose a
set of declarations and annotations that enable compilers to perform automatic
parallelization more effectively for these languages. Unlike annotations that ex-
plicitly manage parallelism as in OpenMP [6], our approach is geared toward
enforceable declarations and annotations that can be expressed and understood
in the context of sequential programs, and that should be useful from a software
engineering viewpoint because of their ability to reduce common programming
errors. Another difference from OpenMP is that the correctness of all our pro-
posed annotations and declarations is enforced by the language system i.e., they
are all checked statically or dynamically, as outlined below.

80 J. Shirako, H. Kasahara, and V. Sarkar

2.1 Multidimensional Arrays, Regions, Points

Multidimensional arrays in Java are defined and implemented as nested unidi-
mensional arrays. While this provides many conveniences for guaranteeing safety
in a virtual machine environment (e.g., subarrays can be passed as parameters
without exposing any unsafe pointer arithmetic), it also creates several obsta-
cles to compiler optimization and parallelization. For example, a compiler cannot
automatically conclude that A[i][j] and A[i+1][j] refer to distinct locations
since the nested array model allows for the possibility that A[i] and A[i+1]
point to the same subarray. Instead, we propose the use of object-oriented mul-
tidimensional arrays as in X10 [3], in which a compiler is guaranteed that A[i,j]
and A[i+1,j] refer to distinct locations. Array Views (Section 2.2) make it possi-
ble to safely work with subarrays of multidimensional arrays without introducing
unsafe pointer arithmetic.

A related issue is that induction variable analysis can be challenging in cases
when an iterator is used or an integer variable is incremented by a step value
that is not a compile-time constant as illustrated in the following common idiom
from a DAXPY-like computation:

iy = 0; if (incy < 0) iy = (-n+1)*incy;
for (i = 0;i < n; i++) {
dy[iy +dy_off] += . . .; iy += incy;

}

In the above example, it is not easy for compilers to establish that incy �= 0
and that there are no loop-carried dependences on the dy array.

To simplify analysis in such cases, we recommend the use of regions and
points as proposed in ZPL [23] and X10, with extensions to support two kinds
of region constructors based on triple notation, [<start-expr> : <end-expr>
: <step-expr>] and [<start-expr> ; <count-expr> ; <step-expr>], both
of which are defined to throw a ZeroStepException if invoked with a zero-valued
step expression. The use of high level regions and points distinguishes our ap-
proach from past work on annotations of arrays for safe parallelization [16].

A key property of regions and points is that they can be used to define both
loops and arrays in a program. The above DAXPY-like example can then be
rewritten as follows:

iy = 0; if (incy < 0) iy = (-n+1)*incy;
// Example of [<start-expr>;<count-expr>;<step-expr>] region
for (point p : [iy ; n ; incy]) {
dy[p] += . . .;

}

In this case, the compiler will know that incy �= 0 when the loop is executed,
and that all dy[p] accesses are distinct.

2.2 Array Views

As indicated in the previous section, it is easier for a compiler to parallelize code
written with multidimensional arrays rather than nested arrays. However, this

Language Extensions in Support of Compiler Parallelization 81

raises the need for the programmer to work with subarrays of multidimensional
arrays without resorting to unsafe pointer arithmetic. Our solution is the use of
array views. An array view can be created by invoking a standard library method,
view(<start-point-expr>, <region-expr>), on any array expression (which
itself may be a view). Consider the following code fragment with array views:

// Allocate a two-dimensional M*N array
double[.] A = new double[[1:M,1:N]];
. . .
A[i,j] = 99;
. . .
// Allocate a one-dimensional view on A for row i
double[.] R = A.view([i,1], [1:N]);
. . .
temp = R[j]; // R[j] = 99, the value stored in A[i,j]

In the above example, R can be used like any one-dimensional array but ac-
cesses to R are aliased with accesses to A as specified by the region in the call to
A.view(). A ViewOutOfBoundsException is thrown if a view cannot be created
with the specified point and region. All accesses to R can only be performed with
points (subscripts) that belong to the region specified when creating the view.

Views can also be created with an optional intent parameter that must have
a value from a standard enum, {In, Out, InOut}. The default value is InOut
which indicates that the view can be used to read and write array elements. In
and Out intents are used to specify read-only and write-only constraints on the
array views. Read-only views can be very helpful in simplifying compiler paral-
lelization and optimization by identifying heap locations that are guaranteed to
be immutable for some subset of the program’s lifetime [17]. The runtime system
guarantees that each array element has the same intent in all views containing
the element. If an attempt is made to create a view that conflicts with the intent
specified by a previous view, then a ViewIntentException is thrown.

2.3 Annotations on Method Parameters

We propose the use of a disjoint annotation to assert that all mutable (non-
value) reference parameters in a method must be disjoint. (The this pointer is also
treated as a parameter in the definition of the disjoint annotation.) If a disjoint
method is called with two actual parameters that overlap, a ParameterOverlap-
Exception is thrown at runtime. Declaring a method as disjoint can help op-
timization and parallelization of code within the method by assisting the com-
piler’s alias analysis. This benefit comes at the cost of runtime tests that the
compiler must insert on method entry, though the cost will be less in a strongly
typed language like Java or X10 compared to a weakly typed language like C
since runtime tests are not needed for parameters with non-compatible types in
X10 but would be necessary in C due to its pointer addressing and cast opera-
tors. This is also why we expect it to be more effective for X10 than the noalias
and restricted proposals that have been made in the past for C.

82 J. Shirako, H. Kasahara, and V. Sarkar

In addition to the disjoint annotation, we also propose the use of in, out,
and inout intent annotations on method parameters as in Fortran. For ob-
ject/array references, these annotations apply only to the object/array that is
the immediate target of the reference.

2.4 Array and Object Privatization

It is well known that privatization analysis is a key enabling technique for com-
piler parallelization. For modern object-oriented languages with dynamically al-
located objects and arrays, the effectiveness of privatization analysis is often
bounded by the effectiveness of escape analysis [4]. We propose a retained
type modifier1 for declarations of local variables and parameters with reference
types which asserts that the scope in which the local/parameter is declared will
not cause any reference in a retained variable to escape. We also permit the
retained modifier on declarations of methods with a non-value reference return
type, in which case it ensures that the this pointer does not escape the method
invocation.

The following loop from the MonteCarlo benchmark illustrates the use of
the retained modifier to declare that each ps object is private to a single loop
iteration.

results = new Vector(nRunsMC);
for(int iRun=0; iRun < nRunsMC; iRun++) {

// ps object is local to a single loop iteration
retained PriceStock ps = new PriceStock();
// All methods invoked on ps must be declared as "retained"
ps.setInitAllTasks((ToInitAllTasks) initAllTasks);
ps.setTask((x10.lang.Object) tasks.elementAt(iRun));
ps.run();
results.addElement(ps.getResult());

} // for

To enable automatic parallelization, the compiler will also need information
that indicates that results.addElement() is a reduction-style operator (associa-
tive and commutative). We discuss later in Section 2.7 how this information can
be communicated using a gather clause.

2.5 Pure Annotation for Side-Effect-Free Methods

The return value (or exception value) and all parameters of a method annotated
as pure must have value types i.e., they must be immutable after initialization.
Pure methods can call other pure methods and only allocate/read/write mutable
heap locations whose lifetimes are contained within the method’s lifetime (as
defined with the retained type modifier). Therefore, if two calls are made to
the same pure method with the same value parameters, they are guaranteed
1 The retained name chosen because other candidates like “private” and “local” are

overloaded with other meanings in Java.

Language Extensions in Support of Compiler Parallelization 83

to result in the same return value (or exception value). The only situation in
which the two calls may not have the same outcome is if one of the calls triggers a
nonfunctional error such as OutOfMemoryError. This definition of method purity
is similar to the definition of “moderately pure” methods in [26]. The correctness
of all pure annotations is enforced statically in our proposed approach, analogous
to the static enforcement of immutability of value types in the X10 language [3].

2.6 Annotations Related to Exceptions

We propose the following set of declarations and annotations that can be used to
establish the absence of runtime exceptions. All type declarations are assumed
to be checked statically, but dynamic cast operations can be used to support
type conversion with runtime checks. Some of the type declarations are based
on the theory of dependent types (e.g., see [11]) as embodied in version 1.01 of
the X10 language [20].

– Null Pointer exceptions: A simple way to guarantee the absence of a
NullPointerException for a specific operation is to declare the type of the un-
derlying object/array reference to be non-null. As an example, the Java lan-
guage permits null-valued references by default, with a proposal in JSR 305
[15] to introduce an @NonNull annotation to declare selected references as
non-null. In contrast, the X10 language requires that all references be non-
null by default and provides a special nullable type constructor that can be
applied to any reference type. Though the results in our paper can be used
with either default convention, we will use the X10 approach in all examples
in this paper.

– Array Index Out of Bounds exceptions: A simple way to guarantee the
absence of an IndexOutOfBoundsExecption for an array access is to ensure
that the array access is performed in a loop that is defined to iterate over
the array’s region e.g.,

for (point p : A.region) A[p] = ... ; //Iterate over A.region

This idea can be extended by iterating over a region that is guaranteed to
be a subset of the array’s region, as in the following example (assuming &&
represents region intersection):

// Iterate over a subset of A.region
for (point p : A.region && region2) A[p] = ... ;

When working with multiple arrays, dependent types can be use to establish
that multiple arrays have the same underlying region e.g.,

final region R1 = ...;
// A and B can only point to arrays with region = R1
final double[:region=R1] A = ...;
final double[:region=R1] B = ...;
for (point p : R1) A[p] = F(B[p]) ; // F is a pure method

84 J. Shirako, H. Kasahara, and V. Sarkar

In the above example, the compiler knows from the dependent type decla-
rations (and from the fact that the loop iterates over region R1) that array
accesses A[p] and B[p] cannot throw an exception.

Dependent types can also be used on point declarations to ensure the
absence of IndexOutOfBoundsException’s as in the access to A[p] in the
following example:

final region R1 = ...;
final double[:region=R1] A = ...;
// p can only take values in region R1
point(:region=R1) p = ...;
double d = A[p];

– Zero Divide/Step exceptions: A simple way to guarantee the absence of
a DivideByZeroException or a ZeroStepException for a specific operation is
to declare the type of the underlying integer expression to be nonzero using
dependent types as follows:

int(:nonzero) n = ...; // n’s value must be nonzero
int q = m / n; // No DivideByZeroException
region R3 = [low : high : n]; // No ZeroStepException

– ExceptionFree annotation: A code region annotated as ExceptionFree is
guaranteed to not throw any user-defined or runtime exception. As with pure
methods, it is possible that a region of code annotated as ExceptionFree
may encounter a nonfunctional error such as an OutOfMemoryError. The
compiler checks all operations in the annotated code region to ensure that
they are statically guaranteed to not throw an exception (by using the dec-
larations and annotations outlined above).

2.7 Gather Computations and Reductions in Loops

A common requirement in parallel programs is the ability to either gather or
reduce values generated in each loop iteration into (respectively) a collection or
aggregate value. There has been a large body of past work on compiler analyses
for automatically detecting gather and reduction idioms in loops and arrays
e.g., [14,8], but the presence of potentially aliased objects and large numbers
of virtual calls render these techniques ineffective for object-oriented programs.
Instead, we propose an extension to counted pointwise for loops that enables the
programmer to specify the gather and reduce operators explicitly in a sequential
program in a way that simplifies the compiler’s task of automatic parallelization.
Specifically, we extend the for loop with an optional gather clause as follows:

for (...) { <body-stmts> gather <gather-stmt> }

A unique capability of the gather statement is that it is permitted to read
private (retained) variables in the loop body that have primitive or value types,
including the index/point variables that control the execution of the counted for
loop. The design of gather clause is similar to the inlet feature in Cilk [24],
which represents a post-processing of each parallel thread. Informally, the se-
mantics of a for loop with a gather clause can be summarized as follows:

Language Extensions in Support of Compiler Parallelization 85

1. Identify retained variables in <body-stmt> with primitive or value types
that are also accessed in <gather-stmt>. We refer to these as gather vari-
ables.

2. Execute all iterations of the for loop sequentially as usual, but store the
values of all gather variables at the end of each iteration.

3. Execute <gather-stmt> once for each iteration of the for loop in a non-
deterministic order (analogous to the nondeterminism inherent in iterating
over an unordered collection in Java).

4. During execution of an instance of <gather-stmt> in Step 3, resolve read
accesses to gather variables by returning the corresponding instances stored
in Step 2.

We use the loop from the MonteCarlo benchmark discussed earlier to illustrate
the use of the gather clause to specify the gather statement:

results = new Vector(nRunsMC);
for(point p[iRun] : [0 : nRunsMC-1]) {

// ps object is local to a single loop iteration
retained PriceStock ps = new PriceStock();
// All methods invoked on ps must be declared as "retained"
ps.setInitAllTasks((ToInitAllTasks) initAllTasks);
ps.setTask((x10.lang.Object) tasks.elementAt(iRun));
ps.run();
retained ToResult R = ps.getResult(); // must be a value type
gather {

// Invoked once for each iteration of the for loop
results.addElement(R));

}
}

3 Case Study: Java Grande Forum Benchmarks

In this section, we present the results of a case study that we undertook to val-
idate the utility of the language annotations and extensions introduced in the
previous section for compiler parallelization. The case study was undertaken on
the Java Grande Forum (JGF) benchmark suite [22] because this suite includes
both sequential and parallel (multithreaded) Java versions of the same bench-
marks. We converted the sequential Java versions into sequential X10 versions,
and then studied which annotations were necessary to enable automatic paral-
lelization. A summary of the results can be found in Table 1, with discussion
of the LUFact and Euler benchmarks in the following subsections. Performance
results for sequential and parallel versions of the Java and X10 programs are
presented later in Section 4.

3.1 LUFact

This benchmark solves a N × N linear system using LU factorization followed
by a triangular solve. The kernel computation of the sequential Java version is
as follows:

86 J. Shirako, H. Kasahara, and V. Sarkar

Table 1. Annotations required to enable parallelization of Java Grande Forum bench-
marks

Series Sparse∗ SOR Crypt LUFact FFT Euler MolDyn Ray∗ Monte∗

Multi-dim arrays × × × ×

Regions, Points × × × × × ×

Array views × ×

In/Out/InOut ×

Disjoint × × ×

Retained × × ×

Pure method × ×

NonNull × × × × × × × × × ×

Region Dep-type × × × × ×

Nonzero ×

Exception free × × × × × ×

Reduction × × × ×

* Sparse: SparseMatmult, Ray: RayTracer, Monte: MonteCarlo

for (k = 0; k < nm1; k++) {
col_k = a[k];
l = idamax(n-k, col_k, k, 1) + k;
...
for (j = kp1; j < n; j++) {

col_j = a[j];
t = col_j[l];
if (l != k) { col_j[l] = col_j[k]; col_j[k] = t; }
daxpy(n-(kp1), t, col_k, kp1, 1, col_j, kp1, 1);

}
}

It is well known that all iterations of the inner j-loop can logically be executed
in parallel, however there are numerous obstacles that make it challenging or in-
tractable for a parallelizing compiler to discover this fact automatically. First,
most compilers will have to conservatively assume that references to col j from
distinct iterations could potentially be aliased to the same subarray. Second,
it will be hard for a compiler to statically establish that no array element ac-
cess in the loop will throw an ArrayIndexOutOfBoundsException, especially the
col j[l] access with subscript l that is the return value of the call to function
idamax. Third, a compiler will need to establish that the call to daxpy will not
inhibit parallel execution of the j loop.

Now, consider the scenario in which the sequential code is written as follows
using some of the language extensions proposed in this paper:

for (point k : [0:nm1-1] && a.region.rank(0) && a.region.rank(1)) {
final double[.] col_k = a.view([k,0], [0:nm-1], IN);
point (:region=a.region.rank(1)) l =

(point (:region=a.region.rank(1))) idamax(n-k, col_k, k, 1) + k;
...

Language Extensions in Support of Compiler Parallelization 87

for (point j : [kp1:n-1] && a.region.rank(0)) {
final double[.] col_j = a.view([j,0], [0:nm-1], OUT);
t = a[j, l];
if (l != k) { a[j, l] = a[j, k]; a[j, k] = t; }
daxpy(n-(kp1), t, col_k, kp1, 1, col_j, kp1, 1);

}
}

As indicated in Table 1, the following annotations are sufficient to enable
compiler parallelization for the LUFact benchmark:

– Multi-dimensional arrays, Regions and Points, Array views: In this
example, array a is allocated as a two-dimensional array, and the use of
multidimensional array views ensures that references to col j from distinct
iterations are guaranteed to point to distinct subarrays.

– In/Out intents: The use of an IN intent for col k and an OUT intent for
col j ensures that accesses to the two subarrays will not inhibit parallelism.

– NonNull: Unlike Java, the default in X10 is that all object references are
non-null by default, thereby ensuring that NullPointerException’s cannot
inhibit parallelism in this loop.

– Region dependent types: The use of a dependent type with a region
constraint in the declaration of variable l ensures that all uses of l as a
subscript in the second dimension (dimension 1) of array a must be in bounds
— the cast operator effectively serves as a runtime check on the return value
from function idamax.

– Exception free: Finally, an exception-free annotation on the daxpy method
declaration (not shown above) assists the compiler in establishing that no
exceptions can inhibit parallelization of the j loop.

With these extensions, it becomes entirely tractable for a compiler to automat-
ically determine that iterations of the j loop can be executed in parallel.

3.2 Euler

The Euler benchmark solves a set of equations using a fourth order Runge Kutta
method. It has many loops that can only be parallelized if the compiler knows
that certain objects being accessed are private to each loop iteration. For exam-
ple, consider the following i loop in method calculateDummyCells:

private void calculateDummyCells(double localpg[][],
double localtg[][], Statevector localug[][]) { ...

Vector2 tan = new Vector2();
...
for (i = 1; i < imax; ++i) {
tan.ihat = xnode[i][0] - xnode[i-1][0];
tan.jhat = ynode[i][0] - ynode[i-1][0];
... scrap = tan.magnitude(); ...

}
...

}

88 J. Shirako, H. Kasahara, and V. Sarkar

In the sequential version, a single instance of the tan object is allocated and
reused across all iterations of the i loop. However, a closer examination reveals
that each iteration could use a private copy of the tan object, thereby removing
one of the obstacles to parallelization of the i loop.

We now consider the following alternate sequential version written using some
of the language extensions proposed in this paper:

private disjoint void calculateDummyCells(double[.] localpg,
double[.] localtg, Statevector[.] localug) { ...

for (point i : [1:imax-1] && xnode.region.rank(1) && ...) {
retained Vector2 tan = new Vector2();
tan.ihat = xnode[i, 0] - xnode[i-1, 0];
tan.jhat = ynode[i, 0] - ynode[i-1, 0];
... scrap = tan.magnitude(); ...

}
...

}

As indicated in Table 1, the following annotations are sufficient to enable
compiler parallelization for the Euler benchmark:

– Multi-dimensional arrays, Regions and Points: As with LUFact, the
use of multidimensional arrays, regions and points enables a compiler to
ensure that distinct iterations of the i loop are guaranteed to access distinct
subarrays of xnode and ynode without ArrayIndexOutOfBoundsException.

– Disjoint: The disjoint annotation on method calculateDummyCells en-
sures that references localpg and localtg must point to distinct arrays.

– Retained: The retained annotation on the declaration of variable tan
can be used by the compiler to determine that there are no loop-carried
dependences on that variable.

– NonNull: As with LUFact, the fact that all object references are non-null
by default ensures that NullPointerException’s cannot inhibit parallelism in
this loop.

4 Experimental Results

We then compared the performance of four versions of the Java Grande Forum
(JGF) benchmarks:

1. Sequential Java: This set consists of six Section 2 benchmarks (Crypt,
FFT, LUFact, Series, SOR, SparseMatmult) and four Section 3 benchmarks
(Euler, MolDyn, MonteCarlo, RayTracer) taken from version v2.0 of the
JGF benchmark release [13]2.

2. Sequential X10: Since the sequential subset of X10 overlaps significantly
with the sequential subset of Java, this version is quite close to the Sequential

2 Section 1 was excluded because it only contains microbenchmarks for low-level op-
erations.

Language Extensions in Support of Compiler Parallelization 89

Java version in most cases. As in [2] we use a “lightweight” X10 version with
regular Java arrays to avoid the large overheads incurred on X10 arrays in
the current X10 implementation. However, all the other characteristics of
X10 (e.g., non-null used as the default type declaration, forbidden use of
non-final static fields, etc.) are preserved faithfully in the Sequential X10
versions.

3. Hand Parallelized X10: This version emulates by hand the parallel ver-
sions that can be obtained by a compiler, assuming that annotations are
added to the sequential X10 versions as outlined in Table 1.

4. Parallel Java: This is the threadv1.0 version of the JGF benchmarks [13],
which contains multithreaded versions of five of the six Section 2 benchmarks
and three of the four Section 3 benchmarks. The unimplemented benchmarks
are FFT and Euler. Further, the threaded versions of two of the Section 2
benchmarks, SOR and SparseMatmult, were implemented using a different
underlying algorithm from the sequential versions in v2.0.

All performance results were obtained using the following system settings:

– The target system is a p570 16-way Power6 4.7GHz SMP server with 186GB
main memory running AIX5.3 J. In addition, each dual-core chip can access
32MB L3 cache per chip and 4MB L2 cache per core. The size of the L1
instruction cache is 64KB and data cache is 64KB.

– For all runs, SMT was turned off and a large page size of 16GB was used.
The sequential Java and X10 versions used only 1 processor, where as the
parallel Java and X10 versions used all 16 processors.

– The execution environment used for all Java runs is IBM’s J9 VM (build 2.4,
J2RE 1.6.0) with the following options, -Xjit:count=0,optLevel=veryHot,
ignoreIEEE -Xms1000M -Xmx1000M.

– The execution environment used for all X10 runs was version 1.0.0. of the
X10 compiler and runtime, combined with the same JVM as above, IBM’s J9
VM (build 2.4, J2RE 1.6.0), but with additional options to skip null pointer
and array bounds checks in X10 programs in accordance with the annota-
tion in the X10 source program. The INIT THREADS PER PLACE parameter
was set to 1 and 16 for the sequential and parallel X10 runs respectively.
(MAX NUMBER OF PLACES was set to 1 in both cases.)

– The X10 runtime was also augmented with a special one-way synchroniza-
tion mechanism to enable fine-grained producer-consumer implementations
of X10’s finish and next operations.

– For all runs, the main program was extended with a three-iteration loop
within the same Java process, and the best of the three times was reported
in each case. This configuration was deliberately chosen to reduce/eliminate
the impact of JIT compilation time in the performance comparisons.

4.1 Sequential and Parallel Versions of X10

Figure 1 shows the speedup ratio of the serial and parallel X10 versions relative
to the sequential Java version (JGF v2.0) for all ten benchmarks. An interesting

90 J. Shirako, H. Kasahara, and V. Sarkar

1.0 1.0
1.5 1.1

1.6 1.9
1.0 1.0 1.0 0.9 1.2

15.9

11.9

22.8

13.8

22.8
23.5

1.3

14.9

13.2

3.2

14.3

0

5

10

15

20

25

Crypt FFT LUFact Series SOR SparseMat Euler MolDyn MonteCarlo RayTracer

Section2 Section3 Average

X10 Serial

X10 Parallel

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..................

..

..

..

..

..

..

..

..

..

..............................

..

..

..

..

..

.........

S
p

e
e
d

u
p

 w
.r

.t
.
JG

F
 s

e
ri

a
l

(v
2

.0
)

..

Fig. 1. Performance of Sequential and Parallel versions of X10 relative to Sequential
Java

observation is that the sequential X10 version often runs faster than the se-
quential Java version. This is due to the annotations in the X10 program which
enabled null checks and array bounds checks to be skipped. On average, the
sequential X10 version was 1.2× faster than the sequential Java version, and the
parallel X10 version was 11.9× faster than the sequential X10 version.

The sources of large speedups for SOR and LUFact were as follows. SOR’s
pipeline parallelism (faithful to the sequential version) was implemented using
tightly-coupled one-way synchronizations which were added to the X10 runtime.
The annotations for LUFact enabled a SPMD parallelization by following clas-
sical SPMDization techniques such as the approach outlined in [5].

The speedup was lowest for two benchmarks, Euler and Raytracer. The chal-
lenge in Euler is that it consists of a large number of small parallel loops which
could probably benefit from more aggressive loop fusion and SPMD paralleliza-
tion transformations than what was considered in our hand-parallelized experi-
ments. The challenge in Raytracer is the classic trade-off between load balance
(which prefers cyclic-style execution of the parallel loop) and locality (which
prefers a block-style execution of the parallel loop).

4.2 Comparison with Parallel Java Versions

In this section, we extend results from the previous section by including results
for Parallel Java executions as well. As mentioned earlier, Parallel Java ver-
sions (threadv1.0) are available for 8 of the 10 benchmarks. Results for these 8

Language Extensions in Support of Compiler Parallelization 91

1.0 1.5 1.1 1.6 1.9
1.0 1.0 0.9 1.2

15.9

22.8

13.8

22.8
23.5

14.9

13.2

3.2

16.315.6

12.0
12.9

29.6

54.1

10.5

13.2

15.2

20.4

0

10

20

30

40

50

60

Crypt LUFact Series SOR SparseMat MolDyn MonteCarlo RayTracer

Section2 Section3 Average

X10 Serial

X10 Parallel

JGF Parallel (threadv1.0)

.........

..

..

............

..

..

..

......

..

..
..

..

..

..................

..

..

..

........................

..

..

......

..

..

........................

..

..

..

S
p

e
e
d

u
p

 w
.r

.t
.
JG

F
 s

e
ri

a
l

(v
2

.0
)

Fig. 2. Performance of Sequential and Parallel versions of X10 and Parallel Java relative
to Sequential Java

benchmarks are shown in Figure 2. The two benchmarks for which the Parallel
Java versions significantly out-performed the Parallel X10 versions were SOR
and SparseMatmult. On closer inspection, we discovered that the underlying se-
quential algorithm was modified in both parallel versions (relative to the v2.0
sequential Java versions).

For SOR, the threadv1.0 parallel Java version uses a “red-black” scheduling
of loop iteration to expose doall parallelism, even though this transformation
results in different outputs compared to the sequential Java version. In contrast,
the parallel X10 version contains pipeline parallelism that we expect can be
automatically extracted from the sequential X10 version, and in fact returns the
same output as the sequential X10 version.

For SparseMatmult, the thread v1.0 parallel Java version inserts an algorith-
mic step to sort non zero elements by their row value, so that the kernel compu-
tation can be executed as simple doall loop. Unfortunately, this additional step
isn’t included in the execution time measurement for the Parallel Java case.

To take into account the algorithmic changes in the Parallel Java versions,
Figure 3 show an alternate version of Figure 2 in which the algorithms used for
the sequential and parallel X10 versions are modified to match the algorithm
used in the parallel Java versions. With the algorithmic changes, we see that the
performance of the parallel Java and X10 versions are now evenly matched in
the average case.

92 J. Shirako, H. Kasahara, and V. Sarkar

29.8

54.8

SOR * SparseMat *

1.0 1.5 1.1 1.6 1.9
1.0 1.0 0.9 1.2

15.9

22.8

13.8
14.9

13.2

3.2

16.315.6

12.0
12.9

29.6

54.1

10.5

13.2

15.2

20.4

0

10

20

30

40

50

60

Crypt LUFact Series MolDyn MonteCarlo RayTracer

Section2 Section3 Average

X10 Serial

X10 Parallel

JGF Parallel (threadv1.0)

.........

..

..

............

..

..

..

......

..

..
..

..

......

..

..

........................

..

..

..

S
p

e
e
d

u
p

 w
.r

.t
.
JG

F
 s

e
ri

a
l

(v
2

.0
)

..

..

..

..

..

..

..

......

..

..

..

..

..

......

Fig. 3. Performance of Sequential and Parallel versions of X10 and Parallel Java relative
to Sequential Java, with alternate Parallel X10 versions for SOR and SparseMatmult

5 Conclusions and Future Work

In this paper, we proposed a set of language extensions (enforced annotations and
declarations) designed with a view to making modern object oriented languages
more amenable to compiler parallelization. Many of the proposed extensions
are motivated by best practices in software engineering for sequential programs.
This is in contrast to the OpenMP approach where the annotations are geared
towards explicit parallel programming and the correctness of user pragmas is
not enforced by the language system.

We also performed a detailed case study of the Java Grande Forum bench-
marks to confirm that the extensions proposed in this paper are effective in
enabling compiler parallelization. Experimental results obtained on a 16-way
Power6 SMP showed that the use of these language extensions can improve
sequential execution time by 20% on average, and that a hand-simulation of
automatically parallelized X10 programs can deliver speedup by matching the
performance of the multithreaded Java versions of the JGF benchmarks.

The main topic for future work is to build an automatically parallelizing
compiler which exploits the language extensions proposed in this paper. Another
topic is to extend the definition of the language extensions to apply to explicitly
parallel code e.g., defining array views in the presence of distributions, and
defining the semantics of in/out/inout intents for array views in the presence of
concurrent array operations.

Language Extensions in Support of Compiler Parallelization 93

Acknowledgments

We are grateful to all X10 team members for their contributions to the X10
software used in this paper. We would like to especially acknowledge Vijay
Saraswat’s work on the design and implementation of dependent types in the
current X10 implementation, and Chris Donawa and Allan Kielstra’s implemen-
tation of experimental options for X10 in IBM’s J9 virtual machine. While at
IBM, Vivek Sarkar’s work on X10 was supported in part by the Defense Ad-
vanced Research Projects Agency (DARPA) under its Agreement No. HR0011-
07-9-0002. Finally we would like to thank Doug Lea, John Mellor-Crummey and
Igor Peshansky for their feedback on this paper.

References

1. Allen, R., Kennedy, K.: Optimizaing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, San Francisco (2001)

2. Barik, R., Cave, V., Donawa, C., Kielstra, A., Peshansky, I., Sarkar, V.: Experiences
with an smp implementation for x10 based on the java concurrency utilities. In:
Workshop on Programming Models for Ubiquitous Parallelism (PMUP), held in
conjunction with PACT 2006 (September 2006)

3. Charles, P., Donawa, C., Ebcioglu, K., Grothoff, C., Kielstra, A., von Praun, C.,
Saraswat, V., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of OOPSLA 2005, pp. 519–538. ACM Press, New York
(2005)

4. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack alloca-
tion and synchronization optimizations for java using escape analysis. ACM Trans.
Program. Lang. Syst. 25(6), 876–910 (2003)

5. Cytron, R., Lipkis, J., Schonberg, E.: A compiler-assisted approach to spmd exe-
cution. In: Supercomputing 1990: Proceedings of the 1990 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, pp. 398–406. IEEE Computer Society,
Los Alamitos (1990)

6. Dagum, L., Menon, R.: OpenMP: An industry standard API for shared memory
programming. IEEE Computational Science & Engineering (1998)

7. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the
perfect benchmarks. IEEE Trans. on parallel and distributed systems 9(1) (January
1998)

8. Gerlek, M.P., Stoltz, E., Wolfe, M.: Beyond induction variables: detecting and
classifying sequences using a demand-driven ssa form. ACM Trans. Program. Lang.
Syst. 17(1), 85–122 (1995)

9. Haghighat, M.R., Polychronopoulos, C.D.: Symbolic analysis for parallelizing com-
pilers. Kluwer Academic Publishers, Dordrecht (1995)

10. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S., Bugnion,
E., Lam, M.S.: Maximizing multiprocessor performance with the SUIF compiler.
IEEE Computer (1996)

11. Harper, R., Mitchell, J.C., Moggi, E.: Higher-order modules and the phase distinc-
tion. In: POPL 1990: Proceedings of the 17th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 341–354. ACM Press, New York
(1990)

94 J. Shirako, H. Kasahara, and V. Sarkar

12. Hiranandani, S., Kennedy, K., Tseng, C.-W.: Preliminary experiences with the
fortran d compiler. In: Proc. of Supercomputing 1993 (1993)

13. The Java Grande Forum benchmark suite,
http://www.epcc.ed.ac.uk/javagrande

14. Jouvelot, P., Dehbonei, B.: A unified semantic approach for the vectorization and
parallelization of generalized reductions. In: ICS 1989: Proceedings of the 3rd in-
ternational conference on Supercomputing, pp. 186–194. ACM Press, New York
(1989)

15. Jsr 305: Annotations for software defect detection,
http://jcp.org/en/jsr/detail?id=305

16. Moreira, J.E., Midkiff, S.P., Gupta, M.: Supporting multidimensional arrays in
java. Concurrency and Computation Practice & Experience (CCPE) 15(3:5), 317–
340 (2003)

17. Pechtchanski, I., Sarkar, V.: Immutability Specification and its Applications. Con-
currency and Computation Practice & Experience (CCPE) 17(5:6) (April 2005)

18. Pugh, W.: The omega test: A fast and practical integer programming algorithm
for dependence analysis. In: Proc. of Super Computing 1991 (1991)

19. Rauchwerger, L., Amato, N.M., Padua, D.A.: Run-time methods for parallelizing
partially parallel loops. In: Proceedings of the 9th ACM International Conference
on Supercomputing, Barcelona, Spain, pp. 137–146 (July 1995)

20. Saraswat, V.: Report on the experimental language x10 version 1.01,
http://x10.sourceforge.net/docs/x10-101.pdf

21. Sarkar, V.: The PTRAN Parallel Programming System. In: Szymanski, B. (ed.)
Parallel Functional Programming Languages and Compilers. ACM Press Frontier
Series, pp. 309–391. ACM Press, New York (1991)

22. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Supercomputing 2001: Proceedings of the 2001 ACM/IEEE conference on Super-
computing (CDROM), p. 8. ACM Press, New York (2001)

23. Snyder, L.: The design and development of zpl. In: HOPL III: Proceedings of the
third ACM SIGPLAN conference on History of programming languages, pp. 8–1–
8–37. ACM Press, New York (2007)

24. MIT laboratory for computer science Supercomputing technologies group. Cilk
5.3.2 reference manual,
http://supertech.csail.mit.edu/cilk/manual-5.3.2.pdf

25. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley
Publishing Company, Reading (1996)

26. Xu, H., Pickett, C.J.F., Verbrugge, C.: Dynamic purity analysis for java programs.
In: PASTE 2007: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pp. 75–82. ACM Press, New
York (2007)

http://www.epcc.ed.ac.uk/javagrande
http://jcp.org/en/jsr/detail?id=305
http://x10.sourceforge.net/docs/x10-101.pdf
http://supertech.csail.mit.edu/cilk/manual-5.3.2.pdf

	Introduction
	Language Extensions
	Multidimensional Arrays, Regions, Points
	Array Views
	Annotations on Method Parameters
	Array and Object Privatization
	Pure Annotation for Side-Effect-Free Methods
	Annotations Related to Exceptions
	Gather Computations and Reductions in Loops

	Case Study: Java Grande Forum Benchmarks
	LUFact
	Euler

	Experimental Results
	Sequential and Parallel Versions of X10
	Comparison with Parallel Java Versions

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

