Hierarchical Phasers for Scalable Synchronization and Reductions in
Dynamic Parallelism

Jun Shirako

Vivek Sarkar

Department of Computer Science
Rice University
Houston, TX, USA
{shirako, vsarkar}@rice.edu

Abstract—The phaser construct is a unification of col-
lective and point-to-point synchronization with dynamic
parallelism. This construct gives each task the option of
synchronizing on a phaser in signal-only/wait-only mode
for producer/consumer synchronization or signal-wait
mode for barrier synchronization. A phaser accumulator
is a reduction construct that works with phasers in
a phased setting. Phasers and accumulators support
dynamic parallelism i.e., they allow dynamic addition
and removal of tasks from the synchronizations and
reductions that they support.

Past implementations of phasers and phaser accumu-
lators have used a single master task to advance a phaser
to the next phase and to perform computations for lazy
reductions, while also supporting dynamic parallelism.
Though the single master approach provides an effective
solution for modest levels of parallelism, it quickly be-
comes a scalability bottleneck as the number of threads
increases. To address this limitation, we propose an
approach based on hierarchical phasers for scalable syn-
chronization and hierarchical accumulators for scalable
reduction. Our approach also includes tunable initializa-
tion parameters that specify the degree and number of
tiers for the phaser hierarchy, thereby allowing different
values to be chosen for different platforms. Our perfor-
mance results show significant scalability benefits from
our approach. To the best of our knowledge, this is the
first approach to support hierarchical synchronization
and reductions in the presence of dynamic parallelism.

Keywords-Phasers; barrier synchronization; point-to-
point synchronization; reductions; dynamic parallelism.

1. Introduction

The computer industry is at a major crossroads. In-
stead of using processors with faster clock speeds,
all computers— embedded, mainstream, and high-end
— are being built using chips with an increasing
number of processor cores, with little or no increase in
clock speed per core. This trend poses a tremendous
challenge for software enablement on future systems
as the number of cores per socket continues to grow,
and the cores become more heterogeneous. To address
this trend, multiple programming models are emerging
to address an increased need for dynamic task par-

allelism in multicore shared-memory multiprocessors.
Examples include Chapel [1], Cilk [2], Fortress [3],
Intel Threading Building Blocks [4], Java Concur-
rency Ultilities [5], Microsoft Task Parallel Library [6],
OpenMP 3.0 [7], and X10 [8]. All these models identi-
fied dynamic lightweight task parallelism as one of the
prerequisites for success. In dynamic task parallelism,
computations are dynamically created as tasks and the
runtime scheduler is responsible for scheduling and
synchronizing the tasks across the cores.

The Habanero Java (HJ) language under develop-
ment at Rice University [9] proposes an execution
model for multicore processors that builds on four
orthogonal constructs:

1) Lightweight dynamic task creation and termina-
tion using async and finish constructs [10].

2) Locality control with task and data distributions
using the place construct [11]. Places enable co-
location of async tasks and data objects.

3) Mutual exclusion and isolation among tasks us-
ing the isolated construct [12].

4) Collective and point-to-point synchronization us-
ing the phasers construct [13] along with their
accompanying accumulators [14].

The HJ language derives from initial versions of the
X10 language (up to vl.5) that used Java as the
underlying sequential language [8]. In contrast, more
recent versions of X10 starting with v1.7 have moved
to a Scala-like syntax [15]. Since HJ is based on
Java, the use of certain primitives from the Java
Concurrency Utilities [16] is also permitted in HJ
programs.

This paper focuses on enhancements and extensions
to the phaser construct, which is an extension of
the clock construct from X10 [8]. There is a serious
proposal in progress to add a subset of the phaser
capability to Java 7 libraries [17, 18], influenced by
our past work on phasers [13, 14]. The “tiering” func-
tionality in the proposed java.util.concurrent Phaser
class was also influenced in part by the work reported
in this paper [19]. Our hope is that this paper will

Al

T TN

. : Activity spawn

: Barrier

A3

2 A4

Figure 1: Barrier synchronization with dynamic par-
allelism

influence Java and other multicore software platforms
to provide scalable support for synchronization and
reduction operations with dynamic parallelism using
phasers in their full generality.

Past implementations of phasers and phaser accu-
mulators have used a single master task to advance
a phaser to the next phase and to perform computa-
tions for “lazy” reductions. While the single master
approach provides an effective solution for modest
levels of parallelism, it quickly becomes a scalability
bottleneck as the number of threads increases. To
address this limitation, we propose an approach based
on hierarchical phasers for scalable synchronization
and hierarchical accumulators for scalable reduc-
tion. For simplicity, the programming constructs used
are unchanged between flat phasers and hierarchical
phasers, except for tunable initialization parameters
that specify the degree and number of tiers for the
phaser hierarchy. As discussed later in the paper,
these parameters can have a significant impact on
performance. To the best of our knowledge, this is the
first approach to support hierarchical synchronization
and reductions in the presence of dynamic parallelism.

Figure 1 uses a simple barrier example to illustrate
some of the challenges involved in supporting hier-
archical synchronization in the presence of dynamic
parallelism. In this figure, activity A1 creates activity
A2, synchronizes with A2 on a barrier, then creates
activity A3, synchronizes with both A2 and A3 on
a barrier, and so on. Though not shown in the figure,
our model permits activities to leave a barrier (phaser)
while others continue to synchronize on it, and also
permits some activities to be registered in “signal-
only” or “wait-only” modes. There are many reasons
why this form of dynamic parallelism can be impor-
tant for multicore processors. For example, adaptive

algorithms may choose to create tasks dynamically
based on input data; further, this functionality can also
be useful in supporting speculative parallelism. Classi-
cal hierarchical approaches to barrier synchronization,
such as tournament barriers [20] follow a static syn-
chronization structure, and are unable to handle the
dynamic parallelism addressed by our approach.

The rest of the paper is organized as follows. Sec-
tion II provides background on phasers, accumulators,
and the single master approach to their implementa-
tion. Section III discusses possible approaches for the
programmer to build hierarchical phasers and accu-
mulators explicitly by hand, analogous to hand-coded
tournament barriers, and the limitations of the explicit
approach. Sections IV and V describe our approach
to automatic implementation of hierarchical phasers
and hierarchical accumulators respectively. Section VI
presents our experimental results, and Section VIII
contains our conclusions.

II. Background
A. Phasers

In this section, we summarize the phaser construct
introduced in [13]. Phasers integrate collective and
point-to-point synchronization by giving each activity
(task)! the option of registering with a phaser in
signal-only or wait-only mode for producer-consumer
synchronization or signal-wait mode for barrier syn-
chronization. In addition, a next statement for phasers
can optionally include a single statement which is
guaranteed to be executed exactly once during a phase
transition [21]. These properties, along with the gen-
erality of dynamic parallelism and the phase-ordering
and deadlock-freedom safety properties, distinguish
phasers from synchronization constructs in past work
including barriers [22, 23], counting semaphores [24],
and X10’s clocks [25, 26].

Before describing phasers, we briefly recapitulate
the async and finish constructs for activity creation
and termination. Though phasers as described in this
paper may appear specific to async-finish task paral-
lelism in X10 and HJ, they are a general unification
of point-to-point and collective synchronizations that
can be added to other programming models such as
OpenMP, Intel’s Thread Building Blocks, Microsoft’s
Task Parallel Library, and Java Concurrency Utilities.

The statement, async (stmt), causes the parent ac-
tivity to create a new child activity to execute (stmt).
Execution of the async statement returns immediately
i.e., the parent activity can proceed immediately to its

IThe terms “activity” and “task” are used interchangeably in this
paper.

signal-wait-next

signal-wait
signal-only wait-only

Figure 2: Capability lattice for phasers

next statement. The statement foreach (point p : R)
(stmt), which is equivalent to for (point p : R) async
(stmt), creates new child activities as iterations of a
parallel loop. As discussed in [27], these iterations can
often be chunked together for efficiency, even in cases
when they are all synchronized on the same phaser.

The statement, finish (stmt), causes the parent ac-
tivity to execute (stmt) and then wait till all sub-
activities created within (stmt) have terminated (in-
cluding transitively spawned activities). Each dynamic
instance of a finish statement can be viewed as being
bracketed by matching instances of start-finish and
end-finish instructions. Operationally, each dynamic
instruction has a unique Immediately Enclosing Finish
(IEF) dynamic statement instance. In the async-finish
computation DAG introduced in [28], a dependence
edge is introduced from the last instruction of an
activity to the end-finish node corresponding to the
activity’s IEF.

A phaser is a synchronization object that supports
the four operations listed below. At any point in time,
an activity can be registered in one of four modes
with respect to a phaser: signal-wait-next, signal-wait,
signal-only, or wait-only. The mode defines the ca-
pabilities of the activity with respect to the phaser.
There is a natural lattice ordering of the capabilities as
shown in Figure 2. The phaser operations that can be
performed by an activity, A;, are defined as follows:

1) new: When A; performs a new
phaser (MODE) operation, it results in
the creation of a new phaser, ph, such that A;
is registered with ph according to MODE. If
MODE is omitted, the default mode assumed is
signal-wait. At this point, A; is the only activity
registered on ph.

2) phased async:
async phased (phi(modei),...)A;
When activity A; creates an async child activity
Aj;, it has the option of registering A; with any
subset of phaser capabilities possessed by A;.
This subset is enumerated in the list contained
in the phased clause. We also support the
“async phased A;” syntax to indicate by
default that A; is transmitting all its capabilities
on all phasers that it is registered with to A;.

3) drop: When A; executes an end-finish instruction
for finish statement F, it completely de-registers
from each phaser ph for which F is the IEF for
ph’s creation. In addition, A; drops its registra-
tion on all phasers when it terminates.

4) next: The next operation has the effect of ad-
vancing each phaser on which A; is registered to
its next phase, thereby synchronizing all activities
registered on the same phaser. As described in
[13], the semantics of next depends on the
registration mode that A; has with each phaser
that it is registered on.

B. Accumulators

A phaser accumulator is a construct that integrates
with phasers to support reductions for dynamic par-
allelism in a phased (iterative) setting. By separating
reduction operations into the parts of sending data,
performing the computation itself, retrieving the re-
sult, and synchronizing among activities, we enable
asynchronous overlap of communication, computation
and synchronization in a manner that extends the
overlap in fuzzy [22] or split-phase [29] barriers.

1) new: When A; performs a new
accumulator (ph, op, dataType)
operation, it results in the creation of a new
accumulator, a. ph is the host phaser with
which the accumulator will be associated, op
is the reduction operation that the accumulator
will perform, and dataType is the numerical
type of the data upon which the accumulator
operates.

2) send: An a.send () operation performed by A;
sends a value for accumulation in accumulator
a in the current phase. If an activity performs
multiple send () operations on the same accu-
mulator in the same phase, they are treated as
separate contributions to the reduction.

3) result: The a.result () operation performed
by A; receives the accumulated value in accumu-
lator a from the previous phase. Thus, the barrier
synchronization provided by phasers provides
an ideal foundation for reductions and there is
no data race between send () and result ()
operations.

C. Scalability Bottleneck in Single-Level Phasers
and Accumulators

As shown in Figure 3a, a single-level phaser barrier
synchronization is divided into two operations, gather
and broadcast. In the gather operation, a master activ-
ity waits for all signals from worker activities sequen-
tially, and the waiting time can be proportional to the

(a) Single-level phaser

%

Sub-masters in the same tier receive signals in parallel

(b) Hierarchical phaser

Figure 3: Single-level phaser with single master vs. Hierarchical phaser with sub-masters

number of workers. On the other hand, the broadcast
operation is more scalable because each worker just
waits for a broadcast signal from the master. Thus,
gather operations are the major scalability bottleneck
in phaser and accumulator operations.

III. Explicit Phaser Trees and their Lim-
itations

One approach to addressing the scalability bottleneck
in single-level phasers is to build hierarchical phasers
and accumulators explicitly by hand, analogous to
hand-coded tournament barriers. Figure 3b shows a
tree-based hierarchical barrier synchronization that
employs multiple sub-masters in the gather operation.
Tree-based barriers have the advantage that gather and
reduction operations in the same level (tier) can be
executed in parallel by sub-masters. Also, in cases
when the hierarchy of sub-masters follows the nat-
ural hierarchy in the hardware, each sub-master will
naturally leverage data locality among workers in its
sub-group.

However, explicit implementation of hierarchical
phasers and accumulators comes with a high level
of programming complexity. As an example, Fig-
ures 4 illustrates the difference between the single-
level and hierarchical versions of the JGF Barrier-
Bench microbenchmarks [30]. We have also con-
structed single-level and hierarchical versions of the
JGF ReduceBench benchmark. Another issue with the
hand-coded approach is the tree topology is hardwired
in the code, making it hard to adapt to different
architectures and to dynamic parallelism. Thus, our
goal is to retain the simplicity of the single-level
codes for phasers and accumulators, while delivering
the scalable performance of the hierarchical barrier
synchronizations. As discussed in Section VI, our

Single-level phaser example:
finish {
phaser ph = new phaser (SIG_WAIT);
foreach (point [thd] [0:nthreads-1]
phased (ph<SIG_WAIT>) {

for (int s = 0; s < sz; s++) {
delay (delaylength);
next;

}
}
}

Equivalent explicit multi-level phaser tree:

finish {
phaser ph = new phaser (SIG_WAIT);
foreach (point [p] [0:nSubPh-1]
phased (ph<SIG_WAIT>) {
phaser iph = new phaser (SIG_WAIT);
foreach (point [qg] [1l:nLeave-1]
phased (ph<WAIT>, iph<SIG>) {
for (int s = 0; s < sz; s++) {
delay (delaylength) ;
iph.signal(); ph.doWait ();
b
for (int s = 0; s < sz; s++) {
delay (delaylength);
iph.signal(); diph.doWait ();
ph.signal(); ph.doWait();
Py}

Figure 4: Single-level phaser and equivalent explicit
multi-level phaser tree for JGFBarrierBench

automatic approach in fact achieves superior perfor-
mance to the hand-coded approach.

IV. Hierarchical Phasers

This section introduces the programming interface and
implementation for hierarchical phasers. As with flat
phasers, hierarchical phasers support dynamic paral-
lelism so as to allow the set of activities synchronized
on a phaser to vary dynamically.

finish {
phaser ph = new phaser (SIG_WAIT,
numTiers, numDegree) ;
foreach (point [thd] [0O:nthreads—-1]
phased (ph<SIG_WAIT>) {

for (int s = 0; s < sz; s++) {
delay (delaylength);
next;

byl

Figure 5: Multi-level phaser tree with hierarchical
phaser extension

A. Programming Interface

In our approach, the programming constructs are un-
changed between flat phasers and hierarchical phasers,
except for tunable initialization parameters that spec-
ify the degree and number of tiers for the phaser
hierarchy. Specifically, two additional parameters,
numTiers and numDegree, can now be specified in
the phaser constructor as shown in Figure 5.

The numTiers parameter (= 7)) specifies the
number of tiers to be used by the runtime system’s
tree-based sub-phaser structure, and numDegree (=
D) is the maximum number of child sub-phasers that
can be created on a parent sub-phaser. A hierarchical
phaser with numTiers=1 is equivalent to a single-
level phaser. The leaf of a sub-phaser tree has no
child sub-phasers, and deals with the activities that
are assigned to the leaf. Although there is no limit
on the number of activities registered on a phaser,
the runtime may run into some scalability bottlenecks
if the number exceeds TP, since that implies that
the synchronizations and reductions will need to be
serialized within “sub-masters” at the leaves of the
phaser tree.

B. Runtime Implementation

Figure 6a shows pseudo codes and data structures for
the gather operation of the single-level barrier. Each
activity registered on a phaser has a Sig object cor-
responding to the phaser. Sig objects are contained
in HashMap sigMap of Activity class so that
an activity can be registered and synchronized on
multiple phasers. These Sig objects are also included
in List sigList of phaser class so that a master
activity, which is dynamically selected from activities
on a phaser and advances the phaser, can access
them. All activities registered on the phaser send
a signal to the master activity by incrementing its
Sig.phase counter, and the master activity waits for
all Sig.phase counters to be incremented by busy-
wait loop. A registered activity can also spawn another
activity, or child activity, and register the child on the
phaser. a new Sig object corresponding to the child

class Activity {

HashMap<phaser,Sig> sigMap; // signal by a worker

. Sig mySig = getMySig();
class phaser { mySig.phase++;
int mWaitPhase;
List <Sig>sigList; |// Master waits for worker signals
ee.)} for(j = 0;j < sigList.size();Jj++){
class Sig { Sig sig = sigList.get(i);
int phase; while (sig.phase <= mWaitPhase);
-} }

mWaitPhase++;

Phaser

POO®

A2
— : List access (sigList in phaser class)
........ > : Hash table access (sigMap in Activity class)

A5 A6 A7 A8

(a) Single-level phaser

class SubPhaser {
List <Sig>sigList;
int sigPhase;
int mWaitPhase;

// only leaf sub-phaser contains
// signal for the higher tier
// Wait for the lower tier

class phaser {
SubPhaser [][] subPhasers; // 2D array
--> :Array access
— : List access
........ > : Hash table access

Al A2 A3 A4 AS A6 A7 A8
(b) Tree-based phaser

Figure 6: Data structure for phaser synchronization

activity is added to sigList, and the child activity
attends to synchronizations on the phaser. Busy-wait
loops in phaser runtime have timeout periods that can
be specified as a runtime parameter. When a busy-wait
loop times out, the activity sleeps and the hardware
thread switches to another activity with Java runtime
support (java.lang.Object .wait/notify).
Figure 6b shows data structures for the gather
operation of the tree-based barrier. SubPhaser
class contains List sigList, sigPhase and
mWaitPhase counters. The sigList of a leaf sub-
phaser includes Sig objects for activities that are
assigned to the leaf sub-phaser. phaser class has a
two dimensional SubPhaser array and all activities
can access the hierarchical sub-phasers so that any
eligible activity can be a master activity to advance
the sub-phaser. In the gather operation, all sub-masters
on leaf sub-phasers check their sigList and wait

finish {
phaser ph = new phaser (SINGLE,
numTiers, numDegree) ;
accumulator a = new accumulator (SUM,
int.class, ph);
foreach (point [thd] [0O:nthreads-1])
phased (ph<SINGLE>) {

for (int s = 0; s < sz; s++) {
delay (delaylength);
a.send (1) ;

next single {
// Barrier w/ Single stmt
// Master gets reduction result
sum = a.result();

Frorod

Figure 7: Multi-level phaser tree with hierarchical
phaser accumulator extension

for the signals from other activities in parallel, and
increment their sigPhase counters after waiting the
signals. A sub-master on non-leaf sub-phaser waits
for the sigPhase increments of its child sub-phasers
and also increments its sigPhase. Finally, the global
master receives the signal from the top level sub-
phasers and finishes the hierarchical gather operation.

When an activity spawns a child activity, the child
is registered on the same leaf sub-phaser as its parent
activity until the number of activities on the leaf
reaches numDegree. If the leaf is full, the child
activity is registered on another leaf sub-phaser. This
process continues so long as the total number of levels
does not exceed numTiers. Since this process needs
additional atomic accesses, the initialization (regis-
tration) overhead of hierarchical phasers is generally
larger than flat phasers.

V. Hierarchical Accumulators
A. Programming Interface

Accumulator objects are associated with a phaser ob-
ject when they are allocated. If the phaser has a hierar-
chical structure, the accumulators inherit the same tree
structure with the same numTiers and numDegree
parameters. Therefore, there is no change in the ac-
cumulator interface as shown in Figure 7.

B. Runtime Implementation

Figure 8 shows data structures for the tree-based
gather operation with accumulator extensions. A
phaser object can support multiple accumulators (as
shown in the List accums field); the figure shows
two accumulators (Accuml and Accum?2) associated
with a single phaser (Phaser1). The accumulator im-
plementation in phasers employs java.util.concurrent
atomic objects like Atomiclnteger — both the
accumulator and SubAccumulator classes in-
clude an atomic variable. Sub-accumulators and sub-

class accumulator {
AtomicInteger atomI;
SubAccumulator [][] subAccum;

class phaser {
List <accumulator>accums;

} }
class SubAccumulator {
AtomicInteger atomI;

e
b Accuml Accum2
® ® ® @®

Q @ Q ®
QQQQQQQQQQQ

A2 A3 A4 Al A2 A3 A4 Al A2 A3 A4

Figure 8: Data structure for tree-based phaser accu-
mulator

phasers use isomorphic tree structures. Each activity
sends a value to the leaf sub-accumulator, and local
accumulations on the leaves are performed individu-
ally. Also, a sub-master sends the local accumulation
result to its parent sub-accumulator. Finally, all values
are integrated into the global atomic variable on the
accumulator object.

VI. Experimental Results

In this section, we present experimental results for the
hierarchical phaser and accumulator implementations
developed at Rice University for the Habanero Java
language [9].

A. Experimental Setup

We obtained results for the EPCC Syncbench mi-
crobenchmark measuring barrier and reduction over-
heads with the following implementation variants.

1) OpenMP is the OpenMP implementation for bar-
rier synchronization and reduction. Figures 9a,
9b, and 9c show code fragments for the
OpenMP SyncBench microbenchmarks devel-
oped at EPCC [31] for barrier, for, and reduce
computations respectively. For the OpenMP im-
plementation studied in this paper, the barrier
and for variants in Figures 9a and 9b showed
comparable performance so we only report re-
sults for Figures 9a and 9c in this section. We
also created equivalent HJ versions of Figures
9a and 9c for the phaser measurements outlined
below. We set innerreps=10, 000 for both
the OpenMP and HJ versions so as to focus on
the barrier overhead, and minimize the impact of

a) OpenMP barrier directive
#pragma omp parallel private(j)
{
for (j=0; Jj<innerreps; J++){
delay (delaylength);
#pragma omp barrier

#pragma omp parallel private (J)
{
for (j=0; Jj<innerreps; J++){
#pragma omp for
for (i=0; i<nthreads; i++)
delay (delaylength);

#pragma omp parallel private(J)
{
for (j=0; Jj<innerreps; J++){
#pragma omp for reduction(+:a)
for (i=0; i<nthreads; i++){
delay (delaylength);
a += 1;

Figure 9: EPCC Syncbench codes for the experiments

threads (numTiers, numDegree)
2 1, 1
4 2,2)
8 (2, 4)
16 (2, 8)
32, 64, 128 (2, 16)

Table I: numTiers and numDegree for experi-
ments

task creation overhead on the results reported in
Sections VI-B — VI-D.

2) Phaser normal is the single-level phaser and
accumulator implementation.

3) Phaser tree hand is the explicit tree-based
phaser and accumulator version implemented by
hand.

4) Phaser tree auto is the hierarchical phaser and
accumulator version with the Habanero runtime
support introduced in this paper.

For Sections VI-B, VI-C and VI-E, we used the tree
parameters shown in Table I. Parameter (numTiers
= 1, numDegree = 1) is equivalent to flat-level
phaser, although it has additional overhead due to tree-
based implementations. Section VI-D studies the im-
pact of selecting alternate values for these parameters.

For all runs, the main program was extended with
a 30-iteration loop within the same Java process,
and the best of the 30 times was reported in each
case. This configuration was deliberately chosen to
reduce/eliminate the impact of JIT compilation time
in the performance comparisons [32].

63.3 151.3 444 3286 742 690.1 1440 141233039

‘o 40
(o]
o}
2]
o
§ 30
£
> 19.1
£ 20 Pige
I
el
3 10
Q
[0}
€
= 0
2 4 8 16 32 64
threads

JUC CyclicBarrier M Phasers normal

Phasers tree hand

I OpenMP barrier
B Phasers tree auto

Figure 10: Barrier performance with Syncbench (64-
thread Niagara 2)

88.8 193.6 42271125 91962072 1931.4443.2 4551211214

@
o

68.9

Time per barrier [micro secs]
N
o

threads

[OpenMP barrier
B Phasers tree auto

JUC CyclicBarrier B Phasers normal

Phasers tree hand

Figure 11: Barrier performance with Syncbench (128-
thread Niagara 2)

We wuse the Habanero-Java (HJ) compiler
and runtime [9] which are based on IBM
X10 version 1.5 [33] for the performance

experiments. All HJ runs were performed with
the following options: -NUMBER_OF_LOCAL_PLACES=1
-PRELOAD_CLASSES=true -BIND_THREADS=true
~INIT_THREADS_PER_PLACE=$nthreads. Here,
nthreads is the number of threads for which
the measurement was being performed.

All results in this paper were obtained on two
platforms. The first is a 64-thread (8 cores x 8
threads/core) 1.2 GHz UltraSPARC T2 (Niagara 2)
with 32 GB main memory running Solaris 10. We con-
ducted all HJ tests in the Java 2 Runtime Environment
(build 1.5.0_12-b04) with Java HotSpot Server VM
(build 1.5.0_12-b04, mixed mode). Sun’s C compiler
v5.9 with the compile options “-fast -xopenmp -lm”
was used for the OpenMP evaluations®>. The second
is a 128-thread (16 cores x 8 threads/core) dual-
chip UltraSPARC T2 SMP with 32 GB main memory

2_fast represents the highest optimization level option for the
compiler.

48.0 84.4 170.1 335.0

N
o

31.0

(]
o

Time per barrier [micro secs]
- N
o o

o

threads

OpenMP for + red [l Phasers normal

Phasers tree hand [l Phasers tree auto
Figure 12: Barrier and reduction performance with
Syncbench (64-thread Niagara 2)

running Solaris 10 and the same environments as the
64-thread Niagara 2.

B. Barrier Microbenchmark

This section presents barrier synchronization per-
formance using the EPCC Syncbench barrier mi-
crobenchmark outlined in Figure 9a.

Figure 10 compares the barrier performance of the
three variants of phasers summarized in Section VI-A
with Java’s CyclicBarrier and OpenMP’s barrier oper-
ation (Figure 9a) on 64-thread UltraSPARC T2 SMP.
Although the barrier overhead for OpenMP barrier
and CyclicBarrier is quite large on this platform, all
phaser constructs show much better performance with
any number of threads. While single-level phaser im-
plementation shows the best barrier performance up to
16 threads, the tree-based phaser is faster when 32 and
64 threads are used. Hierarchical phasers supported
by the HJ runtime always perform better than explicit
phaser trees. This is partly because the hierarchical
sub-phaser structures the HJ runtime are implemented
using dynamically sized 2D arrays, while hand-coded
phaser trees need to use more complicated list struc-
tures due to API constraints. The 64-thread barrier
overhead for hierarchical phasers with runtime support
is 126.6x smaller than CyclicBarrier, 27.2x smaller
than OpenMP barrier, 1.58x smaller than single-
level phasers and 1.25x smaller than hand-coded
phaser trees.

Figure 11 shows the barrier overhead on 128-thread
UltraSPARC T2 SMP. Hierarchical phaser’s barrier
overhead using all 128 threads is 335.1x smaller
than CyclicBarrier, 89.2x smaller than OpenMP
barrier, 3.94x smaller than single-level and 1.57x
smaller than hand-coded phaser trees.

513.2 80.7 1479.4 313.0

122.0 225.9

@
o

(2]
=]

Time per barrier [micro secs]
N B
o o

threads
OpenMP for + red [l Phasers normal

Phasers tree hand [l Phasers tree auto
Figure 13: Barrier and reduction performance with
Syncbench (128-thread Niagara 2)

C. Reduction Microbenchmark

This section presents barrier synchronization and re-
duction performance using the EPCC Syncbench re-
duction microbenchmark outlined in Figure 9c.

Figure 12 shows the barrier and reduction over-
head on a 64-thread UltraSPARC T2 for an OpenMP
reduction, and for a phaser with an accumulator as
described in Section V. The single-level phaser is the
fastest implementation when the number of threads is
two and four. However, the hierarchical phaser with
runtime support shows better performance than the
single-level phaser with more than four threads. As
before, the hierarchical phaser with runtime support
always performed better than explicit phaser trees.
The barrier and reduction overhead of a hierarchical
phaser with runtime support is 25.2x smaller than an
OpenMP reduction, 1.92x smaller than a single-
level phaser and 1.74x smaller than a hand-coded
phaser tree when all 64 threads are used.

Figure 13 shows the barrier and reduction overhead
on a 128-thread UltraSPARC T2. The single-level
phaser with 64 and 128 threads exhibits significant
overhead due to contention on a single atomic vari-
able. On the other hand, the overhead of a tree-
based phaser is comparable to the barrier overhead
shown in Figure 11 because the hierarchical accumu-
lations on sub-accumulators distribute the contention
and reduce hot spots. The 128-thread barrier and
reduction overhead for a hierarchical phaser with
runtime support is 77.2 x smaller than OpenMP, 16.3 x
smaller than single-level phaser and 1.69x smaller
than hand-coded phaser trees. Thus, the benefit of
using hierarchical phasers increases as we move from
64 to 128 threads.

D. Impact of Number of Tiers and Degree

This section studies the performance impact of chang-
ing the numTiers and numDegree parameters in-

g 40 50 152
a 319,

2 30

E 30 255

)

(0]

'g 20 16.3

a 10 6 94 12.713.3
~ 10

(0]

£

E o

LGM&AHQJQ Z&(&M
(@) barrier

(1,64)(2, 32)(2, 16)* (2, 8) (3,4)
(b) barrier + reduction

Figure 14: Performance with different # degree and
tiers on 64-thread Niagara T2

@ 120 1125 400
O

D

) 313.0

O 90 300

Q

£

5 60 585 200

E

© 30.9

2 30 100 20.7

~ 17.8

o 13 6 31.4

€ 19 2
= o 0

, 12812 64) (2 3212, 16)*(3, 8)
(@) barrier

(1 128)2, 64) (2, 32)2 16)* (3, 8)
(b) barrier + reduction

Figure 15: Performance with different # degree and
tiers on 128-thread Niagara T2

troduced in Section IV. Figures 14 and 15 show the
barrier and barrier+reduction overhead of hierarchical
phasers and accumulators with runtime support on a
64-thread and 128-thread UltraSPARC T2 SMPs.

Figure 14a shows that the combination of
(numTiers = 2, numDegree = 32) gives the
best barrier performance on 64-thread UltraSPARC
T2, while (numTiers = 2, numDegree =
16) is close behind. However, (numTiers = 2,
numbDegree = 16) gives the best performance in
Figures 14b (64 threads), 15a (128 threads) and 15b
(128 threads). This was the reason why (numTiers
= 2, numDegree = 16) was selected as the
default value for the results reported in Sections VI-B,
VI-C and VI-E. The results for numTiers = 3
suggest that it is too large a value to use for platforms
with 64 or 128 threads. Finally, we observe that it
may have been natural to expect numDegree
8 to yield better performance than numDegree =
16 since the UltraSPARC T2 processor contains 8
cores with 8-way multithreading per core. The fact
that numDegree = 16 always delivered better
performance reinforces the importance of empirically
tuning these parameters.

a) OpenMP barrier increasing # threads

for (nth = 2; nth <= 64; nth++) {
#pragma omp parallel for num_threads (nth)
for (i=0; i<nth; 1i++){
delay (delaylength);
}
}

b) Phaser barrier increasing # threads

finish {
final phaser ph = new phaser (SIG_WAIT) ;
for (int nth = 2; nth <= 64; nth++) {
async phased (ph<SIG_WAIT>) ({
for (int n = nth; n <= 64; n++) {
next;
delay (delaylength);

}

next;
delay (delaylength);

Figure 16: EPCC Syncbench extended for barrier with
dynamic parallelism

E. Barrier with Dynamic Parallelism

This section presents barrier synchronization perfor-
mance in the presence of dynamic parallelism. To fo-
cus on the barrier and dynamic task creation overhead,
we extend the EPCC Syncbench microbenchmark to
support dynamic parallelism as shown in Figure 16.
These code examples mirror the dynamic parallelism
structure shown earlier in Figure 1 (Section I.). As
shown in Figure 16a, the number of threads can-
not be changed within a OpenMP parallel region.
The outermost loop index nth represents the num-
ber of parallel threads, and parallel for with
num_threads clause forks threads, executes tasks
in parallel, processes a barrier synchronization and
join the threads at each iteration. Figure 16b shows
the Habanero-Java version of the extended Syncbench
code. The outermost loop also iterates from 2 to
64, and the parent activity that performs the new
phaser (SIG_WAIT) operation executes the outer-
most loop. Since Habanero-Java supports barrier op-
erations with dynamic parallelism, the parent activity
spawns only one child activity and then synchronizes
with its children on a barrier. The number of barriers
performed by each child activity varies from 63 to
1, and supports the same shape of parallelism as
OpenMP but with lower thread fork/join overhead.

Table II summarizes the results obtained for the
OpenMP and HJ versions of this microbenchmark
for dynamic parallelism on the 64-thread Niagara-
2 system. A key point to note in this test case is
that there is no innerreps parameter that amortizes

Time / Barrier
220.2 us
23.8 us

Benchmark version

OpenMP version (Figure 16a)
HJ version, Phaser tree auto
(Figure 16b)

Table II: Barrier performance for Dynamic parallelism
(64-thread Niagara-2)

the overhead of task creation over multiple barrier
operations. As a result, task creation overhead will
be a non-trivial contributor to the average time for a
barrier operation measured for this test case. However,
this will usually be the case when dynamic parallelism
is used in conjunction with barriers/phasers. The re-
sults obtained in Table II show that the hierarchical
implementation of phasers introduced in this paper
again performs significantly better than the OpenMP
version.

F. Application Benchmarks

In this section, we present performance results for
three Java Grande Forum Benchmarks (LUFact, SOR
and MolDyn) [30], and two NAS Parallel Benchmarks
(CG and MG) [34]. Figure 17 shows speedup for
CyclicBarrier, single-level phasers and hierarchical
phasers with the largest data size on the 128-thread
Niagara-2. The impact of hierarchical phasers will of
course depend on the extent to which synchronization
poses a significant overhead for this combination of
benchmark and hardware. The improvement due to
the hierarchical implementation is 1.13x for LUFact,
1.16x for SOR and 1.05x for CG. MolDyn and
MG have enough large granularity of parallelism
for synchronization overhead to not be a significant
contributor to performance. On average (geometric
mean), the hierarchical phaser is 4.0x faster than
the CyclicBarrier and 1.06x faster than a single-level
phaser.

Table III shows the geometric mean speedup (rela-
tive to serial execution) for all five benchmarks on
the 64 and 128 thread Niagara-2 systems, for the
three data sizes listed in Table IV. On the 64-thread
Niagara-2, the benefit of hierarchical phasers relative
to flat phasers is 1.08x for small data size, 1.02x
for middle data size and 1.01x for large data size.
Also, the benefit on 128-thread Niagara-2 is 1.23x
for small, 1.08x for middle and 1.06x for large data
size. As can be expected, the relative improvement
for hierarchical phasers is more for smaller data
sizes, where the relative impact of synchronization
overhead is larger. We can expect larger improvements
in the future as the number of threads in an SMP
node increases from hundreds to thousands. Both

Speedup vs. serial

LUFact.C SOR.C MolDyn.B CG.A
JUC CyclicBarrier

MG.A Geo. Mean

Phasers normal [l Phasers tree auto

Figure 17: Application Benchmark Performance (128-
thread Niagara 2)

HW Data Geometric mean of speedups
threads Size cyclicBarr | phaser normal | phaser tree
64 small 1.6x 18.7x 20.1x
64 middle 5.8 27.6x 28.3%
64 large 19.1x 34.0x 34.4x
128 small 0.7x 15.6x 19.2x
128 middle 3.0x 33.7x 36.5%
128 large 12.0x 45.0x 47.9x

Table III: Average Speedup for Benchmark Applica-
tions on 64-threads/128-threads Niagara-2 system

flat and hierarchical phasers show dramatically larger
speedups than CyclicBarrier.

VII. Related Work

There is an extensive literature on barrier synchroniza-
tion and reduction. In this section, we focus on a few
past contributions that are most closely related to this
paper.

The tournament barrier [20] is a binary-tree style
hierarchical barrier, which is based on the butterfly
barrier [35]. The barrier requirement can be viewed
as a tournament. Only one process from each two-
process game will continue to the next round, and
the overall winner announces the end of the contest
to all other processes. Unlike tree-based phasers, the
winners and total number of processes are fixed, and
cannot be changed dynamically.

Gupta et al. introduced an adaptive combining tree
approach to reduce the latency in recognition of tree-
based barrier synchronization [36]. The processes that
arrive early at the barrier adapt the combining tree
so that it has a structure appropriate for reducing the
latency for the processes that arrive later. Also, Scott
et al. extended this work to improve memory and
interconnect contention issues [37].

Collective operations are critical for high perfor-
mance computing, and much of research on collective

Data JGF JGF JGF NPB NPB

Size LUFact SOR MolDyn MG CG
small size-A size-A size-A class-S class-S
middle size-B size-B size-B class-W | class-W
large size-C size-C size-B class-A | class-A

Table IV: Data size for each benchmark

and reducing operations has been guided by MPI and
MPI-like libraries [38].

For all busy-wait barrier implementations, thread
switching overhead to handle more software threads
than hardware threads is a common problem. Parallel
loop chunking [27] is a useful compiler optimization
to limit the impact of this thread switching overhead.

VIII. Conclusions and Future Work

Our performance results show significant benefits
from the hierarchical approach compared with flat
phasers and even with hand-coded trees of phasers.
For a barrier microbenchmark, hierarchical phasers
performed better than flat phasers for 16+ threads
on a 64-thread Niagara-2 SMP with a best case
improvement factor of 1.58x for 64 threads; on a 128-
thread Niagara-2 SMP, hierarchical phasers performed
better than flat phasers for 4+ threads with a best case
improvement factor of 3.94x for 128 threads. These
benefits become even more significant for reductions.
For a reduction microbenchmark, hierarchical accu-
mulators performed better than flat accumulators for
4+ threads on a 64-thread Niagara-2 SMP with a best
case improvement factor of 1.92x for 64 threads; on a
128-thread Niagara-2 SMP, hierarchical accumulators
performed better than flat accumulators for 4+ threads
with a best case improvement factor of 16.3x for 128
threads. Our results show that the choice of (numTiers,
numDegree) parameters for a given architecture can
also have a significant impact on performance, thereby
offering opportunities for future work on auto-tuned
selection of these parameters. Other opportunities for
future research related to hierarchical phasers include
extensions for a hybrid solution that adaptively selects
between tree-based or single-level phasers depending
on the machine and number of threads used, and dy-
namic re-balancing of the phaser tree when activities
are dropped from the tree.

Acknowledgments

This work was supported in part by the National
Science Foundation under the HECURA program,
award number CCF-0833166. Any opinions, findings
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily

reflect those of the National Science Foundation. We
also gratefully acknowledge support from Microsoft
fund R62710-792. We would like to thank all Ha-
banero team members for their contributions to the HJ
software that served as the foundational infrastructure
for this research. Finally, we would like to thank Doug
Lea for access to the UltraSPARC T2 SMP system
used to obtain the experimental results reported in this
paper, and for his feedback on an early draft of this

paper.
References

[1] B. Chamberlain, D. Callahan, and H. Zima, “Parallel
programmability and the chapel language,” Int. J. High
Perform. Comput. Appl., vol. 21, no. 3, pp. 291-312,
2007.

[2] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multithreaded language,”
in PLDI ’98: Proceedings of the ACM SIGPLAN
1998 conference on Programming language design
and implementation. New York, NY, USA: ACM,
1998, pp. 212-223.

[3] E. Allan, D. Chase, J. Hallett, V. Luchangco, J.-W.
Maessen, S. Ryu, G. L. S. Jr,, and S. Tobin-Hochstadt,
“The Fortress language specification version 1.0,” Sun
Microsystems, Tech. Rep., Apr. 2005.

[4] J. Reinders, Intel threading building blocks. Se-
bastopol, CA, USA: O’Reilly & Associates, Inc., 2007.

[S] T. Peierls, J. Bloch, J. Bowbeer, D. Lea, and
D. Holmes, Java Concurrency in Practice. Addison-
Wesley Professional, 2006.

[6] J. Dufty, Concurrent Programming on Windows.
Addison-Wesley, 2008.

[7] A. R. Board, OpenMP Fortran Application Program
Interface v 3.0, 2008.

[8] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff,
A. Kielstra, C. von Praun, V. Saraswat, and V. Sarkar,
“X10: an object-oriented approach to non-uniform
cluster computing,” in Proceedings of OOPSLA ’05.
New York, NY, USA: ACM Press, 2005, pp. 519-538.

[9] “The Habanero Java (HJ) Programming Language.”
[Online]. Available: http://habanero.rice.edu/hj

[10] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-
First and Help-First Scheduling Policies for Async-
Finish Task Parallelism,” in IPDPS ’09: International
Parallel and Distributed Processing Symposium, 2009.

[11] S. Chandra, V. Saraswat, V. Sarkar, and R. Bodik,
“Type inference for locality analysis of distributed data
structures,” in PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice
of parallel programming. New York, NY, USA: ACM,
2008, pp. 11-22.

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

R. Barik and V. Sarkar, “Interprocedural load elimina-
tion for dynamic optimization of parallel programs,”
in The Eighteenth International Conference on Paral-
lel Architectures and Compilation Techniques (PACT),
September 2009.

J. Shirako et al., “Phasers: a unified deadlock-free
construct for collective and point-to-point synchroniza-
tion,” in ICS ’'08: Proceedings of the 22nd annual
international conference on Supercomputing. New
York, NY, USA: ACM, 2008, pp. 277-288.

J. Shirako, D. M. Peixotto, V. Sarkar, and W. N.
Scherer, “Phaser Accumulators: a New Reduction Con-
struct for Dynamic Parallelism,” in 23rd IEEE IPDPS,
2009.

“X10 v1.7 language specification,”
http://x10.sourceforge.net/docs/x10-170.pdf.
B. Goetz, Java Concurrency In Practice. Addison-
Wesley, 2007.

D. Lea, “Proposed phaser class in
java.util.concurrent library for java 7 release,”
http://g.oswego.edu/dl/concurrent/dist/docs/java/util/
concurrent/Phaser.html.

A. Miller, “Set your java 7 phasers to stun,”
http://tech.puredanger.com/2008/07/08/java7-phasers/,
2008.

“Personal communication with Doug Lea regarding an
earlier unpublished version of this paper.”

D. Hengsen, R. Finkel, and U. Manber, “Two al-
gorithms for barrier synchronization,” International
Journal of Parallel Programming, vol. 17, no. 1, 1988.

K. Yelick et al., “Productivity and performance using
partitioned global address space languages,” in Pro-
ceedings of the international workshop on Parallel
symbolic computation. New York, NY, USA: ACM,
2007, pp. 24-32.

R. Gupta, “The fuzzy barrier: a mechanism for high
speed synchronization of processors,” in Proceedings
of the third international conference on Architectural
support for programming languages and operating
systems. New York, USA: ACM, 1989, pp. 54-63.

“OpenMP Application Program Interface, version

3.0, May 2008, http://www.openmp.org/mp-
documents/spec30.pdf.
V. Sarkar, “Synchronization Using Counting

Semaphores,” in Proceedings of the International
Conference on Supercomputing, July 1988, pp.
627-6317.

P. Charles et al., “X10: an object-oriented approach
to non-uniform cluster computing,” in Proceedings of
the ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications,
New York, NY, USA, 2005, pp. 519-538.

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

N. Vasudevan, O. Tardieu, J. Dolby, and S. A. Ed-
wards, “Compile-time analysis and specialization of
clocks in concurrent programs,” in Proceedings of the
2009 International Conference on Compiler Construc-
tion (CC 2009).

J. Shirako et al., “Chunking parallel loops in the
presence of synchronization,” in ICS '09: Proceedings
of the 23rd annual international conference on Super-

computing. New York, NY, USA: ACM, 2009, pp.
181-192.
S. Agarwal, R. Barik, D. Bonachea, V. Sarkar, R. K.

Shyamasundar, and K. Yelick, “Deadlock-free schedul-
ing of x10 computations with bounded resources,” in
SPAA '07: Proceedings of the nineteenth annual ACM
symposium on parallelism algorithms and architec-
tures. New York, NY, USA: ACM, 2007, pp. 229-240.

A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C.
Goldstein, S. Lumetta, T. von Eicken, and K. Yelick,
“Parallel programming in Split-C,” in Proceedings of
the 1993 ACM/IEEE Conference on Supercomputing,
1993, pp. 262 — 273.

“The Java Grande Forum benchmark
http://www.epcc.ed.ac.uk/javagrande/javag.html.

suite,”

“EPCC OpenMP Microbenchmarks,”
http://www?2.epcc.ed.ac.uk/computing/
research_activities/openmpbench/openmp_index.html.

A. Georges, D. Buytaert, and L. Eeckhout, “Sta-
tistically rigorous java performance evaluation,” in
OOPSLA °07: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming
systems and applications, 2007.

“Release 1.5 of X10 system
dated 2007-06-29.” 2007. [Online].
Available: http://sourceforge.net/project/showfiles-
.php?group_id=181722 &pack-
age_id=210532&release_id=519811

“Nas parallel benchmarks,”

http://www.nas.nasa.gov/Resources/Software/npb.html.

E. D. Brooks III, “The butterfly barrier,” International
Journal of Parallel Programming, vol. 15, no. 4, 1986.

R. Gupta and C. R. Hill, “A scalable implementation
of barrier synchronization using an adaptive combining
tree,” International Journal of Parallel Programming,
vol. 18, no. 3, 1989.

M. Scott and J. Mellor-Crummey, “Fast, Contention-
Free Combining Tree Barriers for Shared-Memory
Multiprocessors,” International Journal of Parallel
Programming, vol. 22, no. 4, pp. 449-481, 1994.

J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E.
Fagg, E. Gabriel, and J. J. Dongarra, “Performance
analysis of mpi collective operations,” Cluster Com-
puting, vol. 10, no. 2, 2007.

