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Abstract—Reduction operations are a common and impor-
tant feature in many parallel programming models. In this
paper, we present a new reduction construct for Concur-
rent Collections (CnC). CnC is a deterministic, asynchronous
parallel programming model in which data production and
reduction can overlap. While reductions are most frequently
incorporated in synchronous contexts where all data is available
before parallel reduction begins, our solution works for the
asynchronous CnC model. We retain the determinism of the
CnC parallel programming model while providing an efficient
high-level construct for specifying reductions.
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I. INTRODUCTION

With the proliferation of multicore processors, parallel
computing has gone mainstream. Unfortunately, the predom-
inant parallel programming model (serial languages with
explicit threading) is still acceptable only to a relatively
small number of expert programmers. This disparity has
spurred development of many higher-level parallel program-
ming models that aim to simplify parallelism and parallel
programming to a level that would be adequate for most of
today’s mainstream programmers.

One attractive programming model is Concurrent Col-
lections (CnC) [1]. CnC is in the family of dataflow
and stream-processing languages—a program is a graph of
kernels, communicating with one another. In CnC, these
kernels are called steps, and are related by control and
data dependences. The benefit of this approach is that CnC
allows the application domain expert to focus on specifying
the data and control dependence constraints between com-
putation steps—rather than on synchronization, messaging,
or data races—and grants them the freedom to implement
the steps in a sequential (or even parallel) language of their
choice.1 At the same time, CnC allows a tuning expert to
focus on fine-tuning the platform-dependent aspects of the
application to achieve higher performance. CnC is suited
for many applications that exploit task, data, loop, pipeline
or tree parallelism. Even though it exposes many different
kinds of parallelism, CnC is provably deterministic [1].
An excellent example of the power of CnC are the CnC
implementations of dense linear algebra algorithms that

1Currently, CnC implementations support Java, Habanero Java, C, C++,
F#, C# and Haskell as the step implementation languages, with Python and
Scala in development.

outperform the multithreaded vendor-tuned codes by a factor
of up to 2.6x [2].

However, one powerful and naturally parallel construct
that CnC does not currently support is reduction. A re-
duction refers to applying a binary operator repeatedly to a
collection of data items (for example, summing a list of num-
bers is a reduction with the binary operator “+”). Reductions
have a well-understood theory [3] and a long history in both
sequential [4] and parallel [5], [6], [7], [8] programming
languages. In addition, they are found in nearly all recent
multicore programming libraries, such as Intel’s Threading
Building Blocks [9], OpenMP [10], and Microsoft’s Parallel
Pattern Library [11], as well as distributed programming
models such as MapReduce [12]. The key difficulty in
adding reductions to a data-driven asynchronous execution
language such as CnC is determining when all inputs to
a reduction are available. This in turn makes it difficult to
know when a reduction has computed a final (as opposed to
an intermediate) value, which is ready to be passed to the
next step of execution.

In this paper, we show how reductions can be added to
CnC. This represents the first language design we are aware
of that combines reductions with a data-driven asynchronous
execution. The key is an algorithm for computing doneness
that indicates when all the inputs to a reduction have been
given. Doneness can only be computed for CnC programs
where reductions do not occur in cycles in the program graph
(i.e. when reductions are not part of any iterative loop in a
CnC program). Intuitively, this restriction is necessary in
order to prohibit erroneous programs where the output of a
reduction is fed back as in input into the same reduction.
In order to allow programs that use reductions in a cycle in
a well-defined way, we introduce a hierarchical verison of
CnC, where a single CnC step can contain an entire CnC
sub-program. Using hierarchy, a CnC program that contains
a reduction inside an iterative loop can be decomposed into
two pieces, an outer program that contains the loop and an
inner program that contains the reduction.

The rest of this paper is organized as follows. Section II-A
introduces CnC and briefly discusses the previous work on
reductions in higher-level languages. Section III presents
the CnC language extensions for specifying reductions.
Section IV introduces hierarchical decomposition of CnC
programs and describes how the hierarchy is used to deter-
mine when reductions are complete. Section V elaborates



on how reductions are implemented in CnC, followed by a
section with conclusions and directions for future work.

II. BACKGROUND

A. The CnC Programming Model
The three main constructs in CnC are step collections,

data collections, and control collections. While these col-
lections and their relationships are defined statically, a set
of dynamic instances is generated at runtime for each
collection.

A step collection is analogous to a specific computation
(a procedure), and its instances are analogous to invocations
of that procedure with different inputs. A control collection
is said to prescribe a step collection—adding an instance
to the control collection causes corresponding step instance
to eventually execute. The invoked step may add instances
to other control collections, causing other step instances to
execute, and so on.

Steps dynamically read and write data. All the data,
control and step instances in CnC can only be assigned
once in the execution of the program. This dynamic single
assignment rule is essential in enabling some key features
of CnC such as determinism, race-freedom, and exposure
of many types of parallelism. If a step might touch data
within a data collection, then a (static) dependence exists
between those step and data collections. The execution order
of step instances is constrained only by their data and control
dependencies.

Thus a complete CnC specification is a graph where the
nodes can be step, data, or control collections, and the edges
represent producer, consumer and prescription dependen-
cies. Programs using CnC also have another component,
the environment, which is the user code outside of CnC.
This code processes the inputs, initializes the CnC program,
produces initial data and control instances and consumes
data instances produced by the execution of the CnC graph.
The following is an example snippet of the textual form of
CnC specification (where bracket types distinguish the three
types of collections):

env → <myCtrl>;
<myCtrl> :: (myStep);
[myData] → (myStep) → <myCtrl>, [myData];
[myData] → env;

Below is the graphical form of the code above. By conven-
tion, in the graphical notation specific shapes correspond to
control, data, and step collections. Dotted edges represent
prescription (control/step relations), and arrows represent
production and consumption of instances. Squiggly edges
represent communication with the environment. We will use
the graphical notation for CnC code in the rest of the paper.

(myStep) [myData]<myCtrl>env env

T1 T2 T3

Input item
Reduction operation

Figure 1. Reductions are defined by their inputs (leaves) and can take
on any binary tree structure. Many systems construct balanced binary trees
(left). The reduction mechanism proposed in this paper instead produces
deep trees (right) with width equal to the number of system threads (T1,
T2, T3). That is, each thread maintains a reduction state and reduces a
stream of inputs. This same strategy is used by Cilk Hyperobjects.

For each step, such as myStep above, the programmer
provides an implementation in a separate programming
language. A compiler generates code from the CnC specifi-
cation and links it with the user code and runtime system. A
complete CnC program includes the specification, the step
code, and the environment code.

Inside each type of collection the control, data, and step
instances are all identified by a unique tag. Tags can serve
simply as unique identifiers, but they are not opaque and
generally have some meaning within the application. They
may be tuples of integers modeling an iteration space, points
in non-grid spaces, or any other values that are useful for
the application.

The CnC specification can also specify the relationship
between the tags of the specific data and step instances. For
example:
[myData: i] → (myStep: i) → [myData: i+1];

This line of the code specifies that the step instance of
step collection myStep with the tag i reads the data instance
from the data collection myData with the tag i, and produces
a data instance in the same data collection myData with the
tag i+1.

B. Reductions

A reduction (or fold) applies a binary operator repeatedly
to reduce a collection of data to a single value. Operationally,
we view a reduction as a tree of applications of its binary
operator (Figure 1). Independent branches of the tree can
be processed separately, yielding a natural opportunity for
parallelism. Given an associative and commutative binary
operator, a reduction is defined only by its leaves (input
values)—any binary tree with that leaf set is a valid im-
plementation of the reduction. As a result, implementations
vary in whether the structure of reduction trees is known



statically2, dynamically, or varies non-deterministically.
In implementing parallel reduction, it is critical to know

when all inputs are available and have been incorporated
– i.e. when the reduction is done. Many formulations of
reduction require that the input domain for a reduction
be known in advance of its invocation. For example, in
TBB[9] the reduction domain can be specified as the ele-
ments of an array. When the domain is known in advance,
detecting that a reduction is done becomes trivial, but the
production of inputs cannot overlap with their reduction—
an unnecessary constraint on the parallel schedule. The
Cilk language [13] does better, allowing production and
reduction to overlap using a construct called hyperobjects
which resemble accumulation variables that can be used
in parallel. Still, the strictly nested parallel model in Cilk
requires that the production of all inputs for a reducer
reside within a subcomputation forked from a single point
in the program. A barrier synchronization ensures that the
subcomputation (and therefore the reduction) is complete
before the reduced value can be used.

III. ADDING REDUCTIONS TO CnC

In contrast to Cilk, CnC is a much more asynchronous
parallel programming model and provides a uniquely chal-
lenging (but rewarding!) context for reductions. The chal-
lenge, addressed later in this section, is how to determine
when reductions are done.

But, first, we present the API for reductions in CnC. A
CnC reduction object is initialized with a binary operator
and an initial value (identity element) at construction. It
exposes three methods:

• put(v) a value as input to the reduction,
• done() to signal that no further puts will occur, and
• get() to retrieve the result of reduction.
Thus a regular expression that describes the allowable

sequence of operations on a reduction object is:

((put)+ done (get)*) | ((put)* (done)?)

In this design a reduction has a similar interface to a CnC
item collection (put and get). Consumers must block on
a get until the value is available. The differences is that
multiple puts are allowed for a reduction.

To follow the analogy further, items in CnC exist within
item collections indexed by tags while reductions exist
within reduction collections indexed by tags. A single re-
duction collection represents a dynamic set of ongoing and
completed reductions. This is similar to handling reductions
in the MapReduce framework. MapReduce includes a shuffle
phase between the map and reduce phases, where a key

2Before the incorporation of the features described in this paper the CnC
user could still program reductions with fixed trees by constructing those
trees of tasks manually.

produced by the mapper indicates to which reduction the
value should be sent.

But when and how should done() be called for a reduc-
tion? It turns out that there are very few CnC programs in
which the user could easily signal done() manually. In any
program that produces reduction inputs in parallel it would
be necessary to establish a barrier that ensures completion
of all relevant parallel computations. In principle, the user
could have each parallel producer also output an additional
dummy item (providing synchronization via the blocking
get), but this would be both tedious and inefficient. CnC
(unlike Cilk) is not natively suited to synchronizing on the
completion of parallel subcomputations. The solution is to
signal done() for reductions automatically.

Signaling Completion of Reductions in CnC

First, note that an alternative to the above synchronous
approach to the producer-reducer relationship is for reduc-
tion inputs to be provided in a stream (partially or totally
ordered). An end-of-stream token is then required to signal
that reductions are done. This formulation is a good fit with
stream programming models. Alas, CnC is not a stream
programming model! Values produced by CnC steps are not
ordered and whether or not more values will be produced
for a reduction is a non-local property.

Thus the key challenge to overcome in equipping CnC
with reductions is to determine when end-of-stream tokens
can be issued for a particular reduction. The essence of
our approach is to automatically track in-flight instances of
all step collections in the CnC graph. When all upstream
computations that might produce values for a reduction (i.e.
share an edge in the CnC specification) are done, then the
reduction itself is done and downstream computations may
access the reduced value.

Our approach is similar to Cilk’s (a coarse grained syn-
chronization on upstream producer computations), except
that inputs to a reduction can come from arbitrarily disparate
parts of the program rather than a specific nested sub-
computation. This distinction makes a significant software
engineering difference, removing strict nesting requirements.

The algorithm works as follows. Each collection is
mapped onto a partition; if there are cycles in the graph, all
nodes within a cycle are mapped onto the same partition,
otherwise each collection receives its own partition. An
atomic counter is allocated for each partition to represent
outstanding obligations, including both upstream step col-
lections (which may push more instances into the collection)
as well as steps which have been enqueued for execution but
not yet executed. Each counter is initialized to the (statically
known) number of upstream partitions and incremented only
when new steps are prescribed. When a counter reaches zero,
the corresponding collection(s) are done. For a step collec-
tion, this means that downstream counters are decremented;



for reduction collections, this means done() can be signaled
for all contained reduction objects.

Notice that step and item/reduction collections play differ-
ent roles with respect to done propagation. Step collections
may generate new instances downstream, but item/reduction
collections do not. The result is that upstream collections
other than step collections need not be counted as “obli-
gations” and conversely, because these passive collections
are not tracked, when they become done they need not
decrement their own downstream counters. This is true for
reduction collections as well as item collections in spite of
the fact that reductions execute code in their binary opera-
tors. These reduction operators are not allowed to perform
puts or gets into the rest of the graph. The restriction exists
to maintain determinism in CnC programs; the intermediate
values observed by the binary operator are non-deterministic,
and must not “leak” into the larger program.

The above treatment of cycles is insufficient for cycles
that contain reductions—for example, an iterative program
that tests the result of a reduction to determine whether
another iteration is required. A cycle becomes done all
at once, whereas a reduction requires that upstream step
collections become done before it. We do not believe it
is possible to directly solve this problem. However, it is
possible to refactor many such programs to allow automatic
done propagation. Our approach to refactoring is to employ
hierarchy in CnC graphs, as described in the next section.

IV. HIERARCHICAL CNC WITH REDUCTIONS

In this section we introduce hierarchical CnC and show
how to propagate done status through hierarchical programs
in general. Hierarchy provides a mechanism for isolating
reductions from cycles. This isolation allows us to rely on
the propagation techniques shown earlier for propagating
doneness through DAGs and reduction-free cycles. Hierar-
chy therefore increases the set of CnC programs that can
use reductions.

The key idea in hierarchical CnC is that a step may
internally contain another CnC graph, called a subprogram.
There are many design choices that determine how the
inner graph interacts with the outer one. In our design a
hierarchical CnC program has the following characteristics:

• The subprogram corresponds to a logical step. Inter-
nally, the subprogram can get and put data from the
outer program, just as a step would.

• The subprogram is invoked when a control tag pre-
scribes the logical step. A subset of steps in the
subprogram are wired to the parent graph in such a
way so that this control tag creates a single instance of
those steps (with the control tag as argument). These
steps initiate subprogram execution.

• References to the collections themselves inside the
subprogram may not escape to the outer program. They
are strictly scoped.

(foo) (bar)

<tags>
cycle!

[reduction(+)]

Subprogram 
containing 
reduction

(foo)

<tags>

[reduction(+)]

cycle!

VALID

INVALID

Figure 2. Reductions inside subprograms will complete with the sub-
program, thus posing no problem to detecting the completion of enclosing
cycles.

The final restriction enables us to ensure that subprograms
appear atomic from the outside. When the subprogram is
done according to the normal rules for DAGs, so is the
logical step instance to which it corresponds. Doneness of
that step can now propagate normally within the higher level
graph.

Consider the case in which the higher level contains a
cycle. In Figure 2 there is a cycle that starts and ends with the
<tags> control collection. Because (foo) may (indirectly)
call itself through the control collection, there is never a
point in time that the [reduction(+)] node can be sure
that it will not receive further inputs. In contrast, the lower
portion of the figure shows a modification of the program to
push the reduction down inside a subprogram (bar), which
makes the graph amenable to done-propagation—because
the reduction is signaled as done when the subprogram com-
pletes, irrespective of whether the outer cycle has iterations
remaining.

Thus we have shown a graph containing a reduction
within a cycle that we can now handle by isolating the
reduction from the cycles using hierarchy.

A. Determinism

An important property of CnC is its determinism [1]. This
both helps the programmer—who need not reason about a
combinatorial explosion in potential program interleavings—
and it also frees up the CnC implementation to execute
parallel tasks in whatever schedule it deems most efficient.
A complete proof of determinism is beyond the scope of this



document, but we give a brief intuition here of why adding
hierarchy and reductions to CnC preserves determinism.

Essentially, the reason standard CnC is deterministic is
because the item collections are single assignment and be-
cause step functions are sequential, deterministic programs.
Thus we can see that execution of any two step functions
commutes, meaning the result of running both of them is the
same no matter which happens first: the only way they could
not commute would be by having the two step functions
write different values for the same tag in the same item
collection, which is not allowed in CnC. By the well-known
diamond lemma, we thus have confluence, implying that all
quiescent states reachable from an initial state are identical.

By an inductive argument, we can see that adding hier-
archy cannot destroy determinism, since each hierarchical
step is guaranteed to be deterministic by the inductive
hypothesis. When we add reductions, we must additionally
consider reductions and marking doneness, and whether
these commute with each other and with steps. The only
issue for commutativity would be that marking a reduction
as done does not commute with performing a step of that
reduction, but again, this is not allowed in CnC. Thus by
the diamond lemma we have determinism of CnC with
hierarchy and reductions.

V. IMPLEMENTATION USING INTEL
THREAD-BUILDING-BLOCKS

There are two major parallel reduction implementation
alternatives that we describe as eager and lazy.

• Eager: in an eager reduction calling put on a reduction
object immediately invokes the reduction operator on
the current thread. This means that producers of in-
put data must be parallel in order to achieve parallel
reduction. There is no additional parallelism added
by reduction, but neither is their additional overhead
introduced by task creation upon input to a reduction.

• Lazy: Alternatively, a put may store its input into a
data structure. One or more reduction tasks may concur-
rently draw inputs from the data structure and perform
reduction in parallel. Mechanisms for regulating the
number of reduction workers can grow complex. But if
a reduction operation is heavyweight, and the upstream
data producer is serial, then the lazy strategy will be
beneficial.

We believe that most programs work well with eager
reduction. Further, the eager strategy can also result in
significantly better space usage by bounding the number
of stored reduction states. Thus we have created a proto-
type eager reduction implementation for Intel CnC using
Threading-Building-Blocks (TBB).

In our implementation, we use thread-local storage to
store a maximum of one reduction state per thread. The key
reduction operations are implemented as follows:

• put(v): Check for existing thread local storage (TLS)
on the current thread using a key unique to the reduc-
tion object. If absent, allocate TLS and initialize with
v. If present, apply the binary reduction operator to the
TLS value and v, writing the result back to TLS. No
data races are possible because TLS is, by definition,
per-thread. Newly allocated TLS values are added to a
list kept by the reduction object.

• done(): Because it is guaranteed at the start of done()
that all puts have completed—and puts eagerly eval-
uate the reduction operation—we know that all values
in TLS are final. Thus, done() iterates over the list of
per-thread TLS values, performing one final round of
reduction to yield a single value3. Finally, the reduction
reuses CnC’s existing item collection data-type to store
the final values.

• get(): Because item collections have built in synchro-
nization for readers, a reduction’s get() is nothing
more than a get() on the internal item collection which
stores the final reduced values.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that adding reductions to
a deterministic, asynchronous parallel language is not only
possible, but also results in an elegant high level construct
that can be used in many parallel programming patterns.

In order to overlap the production of data with its reduc-
tion, we have shown an algorithm for computing doneness
for step and data instances in a restricted form of CnC
programs, where reductions do not appear on cycles. This
doneness information allows the runtime system to know
when a reduction is complete and its output can be consumed
by other steps.

Using hierarchical CnC, we have extended this algorithm
to handle a wider set of CnC programs, allowing reductions
to appear in CnC subprograms, which can in turn appear on
cycles in the enclosing CnC program. We have described a
preliminary implementation of CnC with reductions based
on the Intel’s Thread Building Blocks.

In the future, we plan to apply a more flexible partitioning
discipline to CnC collections for the purpose of refining
done detection. Rather than tracking each collection with
an atomic counter, subsets of a collection could be tracked
independently provided that the CnC specification contains
enough metadata to determine how one collection’s parti-
tions relate to the other partitions. This refined approach will
improve performance in some cases and enable continuously
running programs that use reduction.

3In our current implementation this final reduction is done serially to
optimize for lightweight reduction operations (e.g. +) and modest numbers
of threads. At a certain scale it would be profitable to exploit extra
parallelism in this final phase.
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