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Jarred Payne Vincent Cavé Raghavan Raman Mathias Ricken Robert Cartwright Vivek Sarkar
Department of Computer Science, Rice University

{jrp1, vcave, raghav, mgricken, cork, vsarkar}@rice.edu

1. Introduction
The Java language and runtime environment has had a profound
worldwide impact on computer software since its introduction
nearly two decades ago. It has enabled the creation of a rich ecosys-
tem of libraries, frameworks, and tools that promises to deliver sig-
nificant value for many years to come. Consequently, a wide range
of Interactive Development Environments (IDEs) have emerged to
increase the productivity of Java programmers. They vary in func-
tionality based on the expertise level assumed for their target user
base. The Eclipse Java Development Tools (JDT) project offers a
rich set of power tools for experienced programmers, but can be
harder for novice programmers to set up and use. In contrast, IDEs
such as DrJava [2] and BlueJ [16] have been developed primarily
for use in introductory programming courses.

In this tool demonstration paper, we summarize the DrHJ tool
which will be demonstrated at the conference. In anticipation of the
need for introducing parallelism earlier in the Computer Science
curriculum, DrHJ extends DrJava with support for the pedagogic
Habanero Java (HJ) parallel programming language that was de-
rived from the earlier Java-based definition of the X10 language [4].
DrHJ builds on our past experiences at Rice with developing the Dr-
Java IDE and the HJ language. DrJava is used by many universities
world-wide, and has been downloaded over 1.1 million times since
its inception in 2002.

The rest of the paper is organized as follows. Sections 2 and
3 summarize the DrJava IDE and the HJ language respectively.
Section 4 describes how DrJava was extended to support HJ. In
addition to implementing a plug-in extension for HJ in DrJava,
DrHJ also includes a data race detection tool for a subset of the HJ
language. Finally, Section 5 summarizes current status and future
work items for DrHJ.

2. Overview of DrJava
DrJava is a free, open-source lightweight IDE for Java. It is de-
signed primarily for students, providing an intuitive interface and
the ability to interactively evaluate Java code in an Interactions
Pane. It also includes powerful features for more advanced users,
enabling (for example) the DrJava team to develop DrJava com-
pletely within DrJava.
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The development of DrJava began in 2001, with the first release
in Spring 2002 [2]. It was designed to support techniques popu-
larized as “Extreme Programming” [10, 11], e.g., support for test-
driven development using JUnit is fully incorporated into the IDE.
From the beginning, DrJava supported Java programs that used
generic types, which was a novel feature at the time. Later in the
evolution of DrJava, support for Java generics was also added to
the Interactions Pane.

DrJava’s Interactions Pane integrates well with the included
source-level debugger and allows users to not only examine and
modify variables when a breakpoint is hit, but also to invoke meth-
ods and execute complex programs in the Interactions Pane’s inter-
preter. After the addition of a project facility in 2004 and improved
support for large projects in 2006, DrJava experienced a sharp in-
crease in popularity.

In 2005, DrJava introduced support for a hierarchy of Java lan-
guage levels, a pedagogic framework that helps beginners learn
Java by partitioning the language into levels of increasing syntactic
complexity [9]. The language levels are not mere subsets of Java.
The levels restrict the use of some Java constructs, such as impera-
tive loops, arrays, exceptions, but they also perform code augmen-
tation by adding necessary modifiers to fields and methods; gen-
erating code for constructors; generating code for accessor meth-
ods; and generating code for toString, equals, and hashCode
methods. Recently, the language level facility has been simplified
to provide a more flexible language level that combines the previ-
ous elementary and intermediate levels. We call this language level
Functional Java because it disallows mutation and focuses on com-
putation over immutable algebraic data types.

DrJava is a cross-platform application available for Windows,
Mac OS and Linux. The IDE supports several different Java com-
pilers, including Oracle/Sun’s JDK, OpenJDK, the Eclipse Java
Compiler, as well as research compilers such as NextGen [17], Java
Mint [20], and now HJ as well.

DrJava is still under active development by the JavaPLT group
at Rice University. Since the inception of the DrJava project, it has
been downloaded over 1.1 million times and is being used by many
universities world-wide. DrJava has also been used as a teaching
tool in books published by Pearson Education and Wiley Higher
Education.

3. Habanero Java
The Habanero Java (HJ) language [8] was developed at Rice Uni-
versity during 2007-2010 as a pedagogic extension to the original
Java-based definition of the X10 language [4]1. In addition to its use
as a research language in the Rice Habanero Multicore Software re-
search project [7], HJ is used in a new sophomore-level course on

1 See http://x10-lang.org for the latest version of X10.



“Fundamentals of Parallel Programming” (COMP 322 [1]) which
has become a required course for all Computer Science majors at
Rice.

The current HJ implementation supports Java v1.4 as its base
language, though sequential2 code in Java 5/6/7 libraries and
classes can be called from HJ programs. The HJ runtime system
is fully compatible with the latest Java release, but the Polyglot-
based [14] HJ front-end does not currently support generics; sup-
port for Java generics and annotations in the HJ front-end is cur-
rently in progress. The code generated by the HJ compiler consists
of Java classfiles that can be executed on any standard JVM.

The HJ extensions to Java are primarily focused on task paral-
lelism. Similar extensions to C and Scala are being pursued in the
Habanero C and Habanero Scala projects at Rice. A brief summary
of the most commonly-used HJ constructs is included below. (A
notable omission due to space limitation is places [4, 21], which is
used to teach students about data locality and task affinity.) Addi-
tional details on HJ can be found in [3] and [1].
1) async: Async is a construct for creating a new asynchronous
task. The statement async 〈stmt〉 causes the parent task to create
a new child task to execute 〈stmt〉 (logically) in parallel with the
parent task. 〈stmt〉 is permitted to read/write any data in the heap
and to read (but not write) any local variable belonging to the parent
task’s lexical environment.

HJ also includes support for async tasks with return values
in the form of futures. The statement, “final future<T> f =
async<T> Expr;” creates a new child task to evaluate Expr that
is ready to execute immediately. In this case, f contains a “future
handle” to the newly created task and the operation f.get() (also
known as a force operation) can be performed to obtain the result
of the future task. If the future task has not completed as yet, the
task performing the f.get() operation blocks until the result of
Expr becomes available. Future tasks are especially well-suited for
introducing parallelism in the context of Functional Java.
2) finish: The statement finish 〈stmt〉 causes the parent task
to execute 〈stmt〉 and then wait until all sub-tasks created within
〈stmt〉 have terminated (including transitively spawned tasks). Op-
erationally, each statement executed in an HJ task has a unique Im-
mediately Enclosing Finish (IEF) statement instance [18].
3) isolated: The isolated construct isolated 〈stmt〉 enables exe-
cution of a statement 〈stmt〉 in isolation (mutual exclusion) relative
to all other instances of isolated statements. As advocated by Larus
and Rajwar [12], we use the isolated keyword instead of atomic
to make explicit the fact that the construct supports weak isolation
rather than strong atomicity. Commutative operations, such as up-
dates to histogram tables or insertions into a shared data structure,
are a natural fit for isolated blocks executed by multiple tasks in
deterministic parallel programs. Towards the end of the COMP 322
course, the students are taught how certain patterns of isolated
statements can be replaced by calls to java.util.concurrent
(j.u.c.) libraries for atomic variables and concurrent collections.
4) phasers: The phaser construct [18] integrates collective and
point-to-point synchronization by giving each task the option of
registering with a phaser in signal-only/wait-only mode for pro-
ducer/consumer synchronization or signal-wait mode for barrier
synchronization. These properties, along with the generality of dy-
namic parallelism, phase-ordering and deadlock-freedom safety
properties, distinguish phasers from synchronization constructs in
past work including barriers [6] and X10’s clocks [4]. The latest
release of j.u.c in Java 7 includes Phaser synchronizer objects,
which are derived in part [13] from the phaser construct in HJ.

2 Some concurrency constructs of Java can interfere with the HJ runtime
system; however, we allow the use of non-blocking calls to the j.u.c.
libraries, e.g., to ConcurrentHashMap and atomic variables.

finish {
phaser[] ph = new phaser[n+2];
for (int j = 0; j<=n+1; j++) ph[j] = new phaser();
for (int j = 1; j<=n; j++)
phased (ph[j-1]<WAIT>, ph[j]<SIG>, ph[j+1]<WAIT>) {

for (iter = 0; iter < NUM_ITERS; iter++) {
newA[j] = (oldA[j-1] + oldA[j+1]) / 2.0;
temp = newA; newA = oldA; oldA = temp;
next;

} } }

Figure 1. One-Dimensional Iterative Averaging using Phasers for
Point-to-Point Synchronization

(The j.u.c. Phaser class only supports a subset of the functional-
ity available in HJ phasers.)

In general, a task may be registered on multiple phasers, and a
phaser may have multiple tasks registered on it. Three key phaser
operations are:
• new: When a task Ai performs a new phaser() operation, it
results in the creation of a new phaser ph such that Ai is registered
with ph in the signal-wait mode (by default).
• registration: The statement, async phased (ph1〈mode1〉,
ph2〈mode2〉, . . . ) 〈stmt〉, creates a child task that is registered
on phaser ph1 with mode1, phaser ph2 with mode2, etc. The child
task’s registrations must be subset of the parent task’s registra-
tions. • next: The next operation has the effect of advancing
each phaser on which the invoking task Ai is registered on to
its next phase, thereby synchronizing all tasks registered on the
same phaser. In addition, a next statement for phasers can option-
ally include a single statement, next 〈stmt2〉. This guarantees that
the statement 〈stmt2〉 is executed exactly once during the phase
transition [18, 22].

Figure 1 shows an iterative averaging example to illustrate the
power of using phasers for point-to-point synchronization. The for-
async pattern creates a parallel loop in which each j-iteration exe-
cutes as a separate task. Phasers are used to orchestrate interactions
among those tasks. In this example, task Tj is registered on three
phasers — ph[j] in signal-only mode and ph[j-1] & ph[j+1]
in wait-only mode. Note that phasers gracefully handle boundary
conditions that often arise in point-to-point synchronization. For
example, the wait operations on ph[0]/ph[n+1] by task Tj=1

/ Tj=n becomes a no-op, because there is no task registered on
ph[0]/ph[n+1] with signal capability.
5) forall: The statement forall (point p : R) 〈stmt〉 supports
parallel iteration over all the points in region R by launching each
iteration as a separate async, and including an implicit finish to wait
for all of the spawned asyncs to terminate. A point is an element
of an n-dimensional Cartesian space (n ≥ 1) with integer-valued
coordinates. A region is a set of points, and can be used to specify
an array allocation or an iteration range as in the case of async.

Each dynamic instance of a forall statement includes an im-
plicit phaser object (let us call it ph) that is set up so that all it-
erations in the forall are registered on ph in signal-wait mode3.
Since the scope of ph is limited to the implicit finish in the forall,
the parent task will drop its registration on ph after all the forall
iterations are created.

4. DrHJ
DrHJ is an extension of the DrJava IDE developed at Rice Uni-
versity that supports the HJ language. It was used in laboratory

3 For readers familiar with the foreach statement in X10 and HJ, one way
to relate forall to foreach is to think of forall 〈stmt〉 as syntactic sugar
for “ph=new phaser(); finish foreach phased (ph) 〈stmt〉”.
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Figure 2. Architecture of the DrHJ IDE

assignments and programming homeworks in the sophomore-level
COMP 322 course [1] at Rice. DrHJ is distributed as a single jar
file and requires no installation, assuming that a Java Runtime En-
vironment (JRE) is available.

Figure 2 shows the general architecture of DrHJ, which can be
divided into two main parts, the graphical user interface (GUI) and
a collection of compiler plug-ins. A screenshot of the GUI is shown
in Figure 3. DrHJ is composed of three elements: a Navigation
Pane that shows documents currently opened (hidden in Figure 3
to conserve space); a Definitions Pane that contains the source
code being edited; and a set of bottom panes that includes the
Interactions Pane and panes for compiler messages and program
output. The Definitions Pane allows users to edit HJ source code
and provides syntax highlighting for HJ keywords. Compilation
and execution of HJ programs can be done directly in the IDE.

DrHJ provides extension points and a plug-in mechanism that
can support multiple compilers. A compiler plug-in is responsible
for translating user actions in the DrHJ GUI into invocations of
the HJ compiler and runtime. The plug-in configuration specifies
various compiler-dependent properties, such as compiler-supported
file extensions and a list of keywords for syntax highlighting in the
editor.

When an HJ source file is selected for compilation, the HJ com-
piler plug-in receives a file name from the GUI, as well as informa-
tion about the source path, the classpath, and the destination direc-
tory for the generated class files. The HJ compiler plug-in uses this
information to build a list of arguments and then invokes the HJ
compiler entry point programmatically. The Polyglot-based front-
end [14] of the HJ compiler parses the source file, builds an abstract
syntax tree (AST), and performs syntactic and semantic analysis of
the code. The AST is then passed to the Soot-based [19] back-end,
which transforms HJ constructs into the Jimple intermediate rep-
resentations, performs code transformations to implement the HJ
parallel constructs, and finally generates standard Java bytecode.
Compiler error messages are transferred back to the IDE and dis-
played in one of the bottom panes.

If compilation is successful, the user can invoke the program
by pressing the Run toolbar button, or by using the run keyword
in the Interactions Pane, followed by the name of the program’s
main class, and an optional list of arguments for the program
(for example: run Fib 10). As during the compile operation, the
IDE passes information about the request to run a program to the
currently selected compiler plug-in. The HJ compiler plug-in then
builds a list of arguments and invokes the HJ runtime entry point
programmatically.

In DrHJ, we distinguish between the main JVM that executes
the DrHJ IDE, and the “Interpreter JVM” that executes HJ appli-
cations. DrHJ’s main JVM communicates with the Interpreter JVM
using Java’s Remote Method Invocation (RMI) API. When the user
instructs DrHJ to run a program, an RMI invocation triggers the
execution of the program in the Interpreter JVM. Any output pro-
duced by the Interpreter JVM is forwarded back to DrHJ to be
displayed in the Interactions Pane. Decoupling program execution
from DrHJ provides a better user experience by preventing critical
errors such as out of memory conditions from impacting the IDE.

DrHJ also includes a tool to detect data races in HJ programs,
based on the ESP-bags algorithm developed for HJ [15]. The ESP-
bags algorithm is a generalization of the SP-bags algorithm devel-
oped for Cilk’s spawn and sync constructs [5]. Like SP-bags, ESP-
bags works by following a depth-first execution of a sequential-
ized version of the parallel program. (The extensions in ESP-bags
were necessary because the set of computation graphs generated
by async-finish constructs in HJ is more general than the graphs
generated by spawn-sync constructs in Cilk.) As a result, the DrHJ
data race detector currently supports HJ programs that contain only
finish, async and isolated constructs, since those programs
can be easily sequentialized. An important property of the DrHJ
data race detector is that it uses the depth-first execution to report
all potential races that may be encountered across all task schedules
for a given input.

Figure 3 shows a screenshot of the DrHJ GUI for a simple pro-
gram ArraySum.hj, that attempts to use two tasks to sum the ele-
ments of an array. The child async task in lines 50–54 computes
the sum of elements X[0 . . .mid] in X[0]. The parent task com-
putes the sum of elements X[mid . . . n− 1] in X[mid] in parallel
with the child task, and then adds X[0] and X[mid] in line 60 after
the finish statement which ensures the completion of the child
task. However, this code contains an error because X[mid] is read
by the child task, and is also read and written by the parent task.
This error is detected as a data race by DrHJ, as shown in the In-
teractions Pane in Figure 3. The error report includes the source
coordinates4 for the two conflicting accesses as well as the index of
the array location on which the race occurs.

5. Current Status and Future Work
The DrHJ IDE currently supports the following features as exten-
sions to DrJava:

• Selection of the HJ compiler, which can be either bundled in
the same jar file or specified using the HJ HOME environment
variable.
• Editing of HJ source files with syntax highlighting for HJ con-

structs.
• Compilation of HJ source files.
• Execution of HJ programs in the Interactions Pane.
• Race detection option: when enabled, DrHJ compiles and runs

HJ programs with data race detection turned on.

Topics for future work include:

• Supporting interpreted HJ constructs in the Interactions Pane.
Currently, the Interactions Pane can invoke code (e.g., a method
call) containing HJ constructs, but the HJ constructs cannot be
interpreted directly in the Interactions Pane.
• Transferring HJ compilation error messages from the console

pane to the error pane. DrJava typically displays compiler errors

4 Support for implementing hyperlinks from the source coordinates in this
error message to the source locations in the Definitions Pane is in progress.



Figure 3. DrHJ GUI screenshot featuring the HJ data race detector

in an error pane, but HJ compilation errors are currently only
printed in the console.
• Creating a dedicated Race Detection Pane to display data race

errors in HJ programs.

In summary, the combination of the popular DrJava IDE and the
high-level HJ parallel programming language enabled us to create
a tool suitable for use by undergraduate sophomores in a new in-
troductory parallel programming course at Rice University. The in-
tegration of a data-race detection tool with DrHJ provides students
with a powerful tool to create, edit, test, and debug parallel pro-
grams for laboratory and programming assignments in the course.

References
[1] COMP 322: Fundamentals of Parallel Programming. URL

https://wiki.rice.edu/confluence/display/PARPROG/COMP322.

[2] Eric Allen, Robert Cartwright, and Brian Stoler. DrJava: a lightweight
pedagogic environment for Java. In Proceedings of the 33rd SIGCSE
technical symposium on Computer science education, SIGCSE ’02,
pages 137–141, New York, NY, USA, 2002. ACM. ISBN 1-
58113-473-8. doi: http://doi.acm.org/10.1145/563340.563395. URL
http://doi.acm.org/10.1145/563340.563395.
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