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Abstract

In this paper, we present the Habanero-Java (HJ) language devel-
oped at Rice University as an extension to the original Java-based
definition of the X10 language. HJ includes a powerful set of task-
parallel programming constructs that can be added as simple exten-
sions to standard Java programs to take advantage of today’s multi-
core and heterogeneous architectures. The language puts a particu-
lar emphasis on the usability and safety of parallel constructs. For
example, no HJ program using async, finish, isolated, and
phaser constructs can create a logical deadlock cycle. In addi-
tion, the future and data-driven task variants of the async
construct facilitate a functional approach to parallel programming.
Finally, any HJ program written with async, finish, and phaser
constructs that is data-race free is guaranteed to also be determin-
istic.

HJ also features two key enhancements that address well known
limitations in the use of Java in scientific computing — the inclu-
sion of complex numbers as a primitive data type, and the inclu-
sion of array-views that support multidimensional views of one-
dimensional arrays. The HJ compiler generates standard Java class-
files that can run on any JVM for Java 5 or higher. The HJ runtime is
responsible for orchestrating the creation, execution, and termina-
tion of HJ tasks, and features both work-sharing and work-stealing
schedulers. HJ is used at Rice University as an introductory paral-
lel programming language for second-year undergraduate students.
A wide variety of benchmarks have been ported to HJ, including
a full application that was originally written in Fortran 90. HJ has
arich development and runtime environment that includes integra-
tion with DrJava, the addition of a data race detection tool, and
service as a target platform for the Intel Concurrent Collections co-
ordination language
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1. Introduction

The Java language and runtime environment has had a profound
worldwide impact on computer software since its introduction
nearly two decades ago. It has enabled the creation of a rich ecosys-
tem of libraries, frameworks, and tools that promises to deliver sig-
nificant value for many years to come. The Java Virtual Machine
(JVM) has proved to be a robust platform for portable execution
of software on a wide range of hardware platforms, and also capa-
ble of executing programs written in other languages (e.g., Scala,
Groovy, Aspect]). However, this evolution of the Java ecosystem is
in danger of being out-paced by the rapid shift of computer systems
to homogeneous and heterogeneous multicore processors. Though
the java.util.concurrent library offers a rich set of function-
alities in support of multicore parallelism, its library interface is
primarily accessible to experts and provides a low-level view of
parallel programming that consists of threads, tasks, locks, and
atomic operations'. Further, the lack of closures in Java makes the
library interfaces for specifying Runnable tasks especially onerous
for mainstream programmers.

In this paper, we present the Habanero-Java (HJ) language de-
veloped at Rice University during 2007-2010 as a pedagogic exten-
sion to the original Java-based definition of the X10 language [10]>.
In addition to its use as a research language in the Rice Habanero
Multicore Software research project [19], HJ is used in a new
sophomore-level course on “Fundamentals of Parallel Program-
ming” (COMP 322 [1]) which has become a required course for
all Computer Science majors at Rice. The HJ programming lan-
guage is focused on providing safe, usable yet efficient parallel
constructs to take advantage of homogeneous and heterogeneous
multi-core heterogeneous architectures. HJ language constructs are
supported by a compiler and a runtime system. The HJ compiler
generates standard Java classfiles that can run on any JVM for
Java 5 or higher. The HJ runtime provides both work-sharing and
work-stealing scheduling implementations [17]. The work-stealing
scheduler supports both work-first and help-first scheduling poli-
cies. Since the best policy choice depends on the nature of the pro-
gram, a third “adaptive” policy is also provided that automatically
switches between the two policies to achieve better performance.

HJ offers two main advantages in its use as an introductory
parallel programming language for second-year undergraduate stu-
dents: First, students already know the Java language and are famil-
iar with the Java compiler and runtime tool-chain. They can build

I'However, these operations can play a critical role in implementing new
Java-based parallel programming languages.

2 See http:/x10-lang.org for the latest version of X10.



on this knowledge as Java is essentially a subset of the HJ language.
Second, since HJ is a high-level parallel programming language, it
makes it easier to focus on general parallel programming concepts,
algorithms and patterns without being distracted by low-level de-
tails of threads and locks. The COMP 322 course is also a great
opportunity to test the usability of HJ and get a sense of how it is
perceived by non-experts in parallel programming. The usability of
HJ was enhanced by the creation of DrHJ [28], an extension of the
DrJava IDE developed at Rice University that supports the HJ lan-
guage. DrHJ was used in laboratory assignments and programming
homeworks for the COMP 322 course at Rice.

The programmability of the HJ language and the efficiency of
its runtime performance have been asserted in various contexts.
Benchmarks suites such as JGF [20], BOTS [12] and Shootout
have been ported to HJ, as well as the full Dipole-1D [22] appli-
cation from the oil and gas industry that was originally written in
Fortran 90. HJ has been used as a target platform for the Intel Con-
current Collections [7] coordination language.

The rest of the paper is organized as follows. Section 2 sum-
marizes the HJ parallel constructs and the complex and array-view
language extensions to Java. Section 3 gives an overview of the
compiler and runtime system used to implement the HJ language.
Section 4 discusses how HJ interfaces with its host platform, as
well as some HJ runtime feedback features that aim to improve pro-
ductivity. Section 5 summarizes our experiences in using HJ as an
introductory language for parallel programming in the COMP 322
course. Section 6 summarizes experiences with benchmarks and
applications written in HJ. Finally, Sections 7 and 8 discuss related
work and our conclusions.

2. The HJ Language

The current HJ implementation supports Java v1.4 as its base lan-
guage, though sequential code in Java 5/6/7 libraries and classes
can be called from HJ programs. (The HJ runtime system is fully
compatible with the latest Java release, but the Polyglot-based [26]
HJ front-end does not currently support generics; support for
Java generics and annotations in the HJ front-end is currently in
progress.) The code generated by the HJ compiler consists of Java
classfiles that can be executed on any standard JVM.

The HJ extensions to Java are primarily focused on task paral-
lelism. Similar extensions to C and Scala are being pursued in the
Habanero C and Habanero Scala projects at Rice. Much of HJ’s
Java-based runtime system is being reused for Habanero Scala,
since Scala programs also execute on a JVM.

HJ source program --- must contain a class named Foo

Foohj with a public static void main(String[] args) method

hjc Foo.hj HJ compiler HJ compiler translates Foo.hj to Foo.class, and inserts

l calls to HJ runtime as needed

Foo.class

hj —places m:n Foo l

HJ Runtime Environment =
JRE + HJ libraries + . N _ -
HJ Multithreaded Runtime | P2ces” (default values:m =1, n =3)

HJ runtime allocates m*n worker threads across m

HJ Abstract Performance Metrics

HJ Program Output (optional, enabled by —perf=true option for hj command)

Figure 1. Habanero-Java (HJ) Compilation and Execution Envi-
ronment

Figure 1 summarizes the compilation and execution environ-
ment for HJ programs. It is similar to that for Java programs. HJ
programs are stored in files with a .hj extension, and the hjc
command is used to compile an HJ program. The hj command is
used to execute an HJ program after it has been compiled. The root

file, Foo.hj (say), must contain a class named Foo with a main ()
method. Program execution begins with a single task at the start of
main().

2.1 Sequential Extensions to Java

points: A point is an element of a k-dimensional Cartesian space
(k > 1) with integer-valued coordinates, where k is the rank of the
point. A point’s dimensions are numbered from O to £ — 1. The
following operations are defined on a point-valued expression p1:

e pl.rank — returns rank of point p1

e pl.get(i) — returns element in dimension i of point p1,
or element in dimension (¢ mod pl.rank) if ¢ < 0 ori >
pl.rank.

e pl.1t(p2), pl.le(p2), pl.gt(p2), or pl.ge(p2) returns
true if and only if p1 is lexicographically <, <, >, or > p2.
These operations are only defined when p1.rank = pl.rank.

regions: A k-dimensional region is a set of k-dimensional points,
defined as a Cartesian product of low:high contiguous subranges
in each dimension. Thus, [1 : 10] is a 1-dimensional region con-
sisting of the 10 points [1],...,[10], and [1 : 10,—5 : 5] is a
2-dimensional region consisting of 110 points since the first di-
mension has 10 values (1...10) and the second dimension has 11
values (—5...5). Likewise, the region [0:200,1:100] specifies
a collection of two-dimensional points (i,j) with i ranging from
0 to 200 and j ranging from 1 to 100. Regions are used in HJ to
define the range for sequential point-wise for and parallel forall
loops.

pointwise for: A task executes a point-wise for statement by se-
quentially enumerating the points in its region in canonical lexico-
graphic order, and binding the components of the points to the in-
dex variables defined in the for statement. A convenience relative
to the standard Java idiom, “for (int i = low; i <= high;
i++)”, in which the upper bound, high, is re-evaluated in each it-
eration of a Java loop, is that high is only evaluated once in an HJ
[low:high] region expression. Another convenience is that loops
can be easily converted from sequential to parallel (or vice versa)
by replacing for by forall (or forall by for), as we will see in
Section 2.2.

complex as a primitive type: HJ supports complex numbers
by adding two new primitive types: complex32 (32-bit single-
precision) and complex64 (64-bit double-precision). These types
can be used like any other primitive types in a Java program. The
compiler provides support for declaration, assignment, arithmetic
operations, conversions, promotions and complex arrays. Complex
variables can be declared as constants, local variables and field of
objects. A method can take complex numbers as arguments, and
also return a complex number as a return value. A complex number
is declared by specifying a pair representing the real and the imag-
inary part. HJ provides real and imag accessors to retrieve either
part from a complex expression. The syntax for arithmetic opera-
tions is identical to operations involving regular primitive types.
array-views: Array-views [21] is an abstraction built on top of
a one-dimensional array, that lets programmers “view” an array
using a custom multidimensional index space. Array-views enable
programmers to use arrays in a very flexible way compared to
standard Java arrays. For instance, a programmer can create a view
over a one-dimensional array and decide that the right way to access
elements is through the region [1:N], because it makes more sense
to them for the origin to be at index 1 e.g., when porting programs
from Fortran. If the programmer wishes, they also create a new
view over the same base array using a 2-dimensional region such
as [1:sqrtN,1:sqrtN]. An element of an array-view can be accessed
using the square bracket notation as in standard Java arrays. In the



case of multi-dimensional array views, commas separate indices of
each dimension as in Fortran arrays.

2.2 HJ Parallel Extensions

In this section, we briefly summarize the main parallel constructs
available in HJ.

async: The statement “async (stmf)” causes the parent task to
create a new child task to execute (stmr) asynchronously (i.e.,
before, after, or in parallel) with the remainder of the parent task.
Figure 2 illustrates this concept by showing a code schema in which
the parent task, 7o, uses an async construct to create a child task
Ti. Thus, STMT1 in task 7% can potentially execute in parallel with
STMT2 in task Tp.

//Task T,(Parent) T, Ty
finish { //Begin finish

asyne ,—async

STMT1; //T,(Child)

STMT1 STMT2
//Continuation ¢
STMT2 ; //T, terminate Q
T
} //Continuation //End finish _ _ _ _ _ _ _ ______ \_Nz;lg i
STMT3; /1T, STMT3

Figure 2. An example code schema with async and finish con-
structs

async is a powerful primitive because it can be used to enable
any statement to execute as a parallel task, including for-loop iter-
ations and method calls. In general, an HJ program can create an
unbounded number of tasks at runtime. The HJ runtime system is
responsible for scheduling these tasks on a fixed number of pro-
cessors. It does so by creating a fixed number of worker threads,
typically one worker per processor core or hardware context. These
workers repeatedly pull work from a logical work queue when they
are idle, and push work on the queue when they generate more
work. The work queue entries can include asyncs and continua-
tions. An async is the creation of a new task, such as 7} in Fig-
ure 2. A continuation represents a potential suspension point for a
task, which (as shown in in Figure 2) can include the point after an
async creation as well as the point following the end of a finish
scope. Continuations are also referred to as fask-switching points,
because they are program points at which a worker may switch ex-
ecution between different tasks.

As with Java threads, local variables are private to each task,
whereas static and instance fields may be shared among tasks. An
inner async is allowed to read a local variable declared in an outer
scope. This semantics is similar to that of parameters in method
calls — the value of the outer local variable is simply copied on
entry to the async. However, an inner async is not permitted to
modify a local variable declared in an outer scope. The ability to
read non-final local variables in an outer scope is more general
than the standard Java restriction that a method in an inner-class
may only read a local variable in an outer scope if its declared to be
final.

HJ also supports a seq clause for an async statement with the
following syntax and semantics:
async seq(cond) <stmt> =
if (cond) <stmt> else async <stmt>
The seq clause simplifies programmer-controlled serialization of
task creation to deal with overhead. It is restricted to cases when no
blocking operation such as phaser next operations and future
get () operations is performed inside <stmt>. The main benefit of
the seq clause is that it removes the burden on the programmer to

specify <stmt> twice with the accompanying software engineer-
ing hazard of ensuring that the two copies remain consistent. In the
future, the HJ system will explore approaches in which the com-
piler and/or runtime system can select the serialization condition
automatically for any async statement.

finish: finish is a generalized join operation. The statement “fin-
ish (stmr)” causes the parent task to execute (stmz) and then wait
until all async tasks created within (s#mt) have completed, includ-
ing transitively spawned tasks. Each dynamic instance 7’4 of an
async task has a unique Immediately Enclosing Finish (IEF) in-
stance I of a finish statement during program execution, where
F is the innermost finish containing 74 [33]. There is an im-
plicit finish scope surrounding the body of main() so program
execution will only end after all async tasks have completed.

Like async, finish is a powerful primitive because it can
be wrapped around any statement thereby supporting modularity
in parallel programming. The scopes of async and finish can
span method boundaries in general. As an example, the finish
statement in Figure 2 is used by task T} to ensure that child task
T has completed executing STMT1 before Ty executes STMT3. If
T created a child async task, 7% (a “grandchild” of Tp), Top will
wait for both 77 and 75 to complete in the finish scope before
executing STMT3. If you want to convert a sequential program into
a parallel program, one approach is to insert async statements at
points where the parallelism is desired, and then insert finish
statements to ensure that the parallel version produces the same
result as the sequential version.

Besides termination detection, the finish statement plays an
important role with regard to exception semantics. If any async
throws an exception, then its IEF statement throws a MultiExcep-
tion [10] formed from the collection of all exceptions thrown by all
async’s in the IEF.
future: HJ also includes support for async tasks with return values
in the form of futures. The statement, “final future<T> f =
async<T> Expr;” creates a new child task to evaluate Expr that
is ready to execute immediately. In this case, £ contains a “future
handle” to the newly created task and the operation £ .get () (also
known as a force operation) can be performed to obtain the result
of the future task. If the future task has not completed as yet,
the task performing the f.get () operation blocks until the result
of Expr becomes available. An important constraint in HJ is that
all variables of type future<T> must be declared with a final
modifier, thereby ensuring that the value of the reference cannot
change after initialization. This rule ensures that no deadlock cycle
can be created with future tasks. Finally, HJ also permits the
creation of future tasks with void return type; in that case, the
get () operation simply serves as a join on the future task.
phasers: The phaser construct [33] integrates collective and
point-to-point synchronization by giving each task the option of
registering with a phaser in signal-only/wait-only mode for pro-
ducer/consumer synchronization or signal-wait mode for barrier
synchronization. These properties, along with the generality of dy-
namic parallelism, phase-ordering and deadlock-freedom safety
properties, distinguish phasers from synchronization constructs
in past work including barriers [18] and X10’s clocks [10]. The
latest release of j.u.c in Java 7 includes Phaser synchronizer
objects, which are derived in part [25] from the phaser construct
in HJ. (The j.u.c. Phaser class only supports a subset of the
functionality available in HJ phasers.)

In general, a task may be registered on multiple phasers, and a
phaser may have multiple tasks registered on it. Three key phaser
operations are:

e new: When a task A; performs a new phaser () operation, it re-
sults in the creation of a new phaser ph such that A; is registered
with ph in the signal-wait mode (by default).



e registration: The statement, async phased (phl{model),
ph2{mode2), ...) (stmt), creates a child task that is registered on
phaser phl with model, phaser ph2 with mode2, etc. The child
tasks registrations must be subset of the parent task’s registrations.
async phased (stmf) simply propagates all of the parents phaser
registrations to the child.

e next: The next operation has the effect of advancing each
phaser on which the invoking task A; is registered to its next
phase, thereby synchronizing all tasks registered on the same
phaser. In addition, a next statement for phasers can option-
ally include a single statement, next {S}. This guarantees that
the statement S is executed exactly once during the phase transi-
tion [33, 41].

foreach: The statement foreach (point p : R) S supports
parallel iteration over all the points in region R by launching each
iteration as a separate async. A foreach statement does not have
an implicit finish (join) operation, but its termination can be en-
sured by enclosing it within a finish statement at an appropriate
outer level. Further, any exceptions thrown by the spawned itera-
tions are propagated to its IEF instance. Thus, we see that foreach
(point p : R) S(p) is equivalent to a combination of a sequen-
tial for loop with a local async construct for each iteration, which
can be written as follows: for (point p : R) async {S(p)}.
forall: The forall construct is an enhancement of the foreach
construct. The statement forall (point p : R) S supports
parallel iteration over all the points in region R by launching each
iteration as a separate async, and including an implicit finish to
wait for all of the spawned asyncs to terminate.

Each dynamic instance of a forall statement also includes an
implicit phaser object (let us call it ph) that is set up so that all iter-
ations in the forall are registered on ph in signal-wait mode. One
way to relate forall to foreach is to think of forall (stmr)
as syntactic sugar for “ph=new phaser(); finish foreach
phased (ph) (smr)”. Since the scope of ph is limited to the im-
plicit £inish in the forall, the parent task will drop its registra-
tion on ph after all the forall iterations are created. The forall
statement was designed for use as the common way to express
parallel loops. However, programmers who need to perform finer-
grained control over phaser registration for parallel loop iterations
will find it more convenient to use foreach instead.
isolated: The HJ construct, isolated (szmtl), guarantees that
each instance of (stmtl) will be performed in mutual exclusion
with all other potentially parallel interfering instances of isolated
statements (szmt2). Two instances of isolated statements, (stmtl)
and (stm#2), are said to interfere with each other if both access the
same shared location, such that at least one of the accesses is a
write. As advocated in [23], we use the isolated keyword instead
of atomic to make explicit the fact that the construct supports weak
isolation rather than strong atomicity. Commutative operations,
such as updates to histogram tables or insertions into a shared
data structure, are a natural fit for isolated blocks executed by
multiple tasks in deterministic parallel programs.

The current HJ implementation takes a simple single-lock ap-
proach to implementing isolated statements, by treating each en-
try of an isolated statement as an acquire() operation on the lock,
and each exit of an isolated statement as a release() operation
on the lock. Though correct, this approach essentially implements
isolated statements as critical sections, thereby serializing inter-
fering and non-interfering isolated statement instances.

An alternate approach for implementing isolated statements
being explored by the research community is Transactional Mem-
ory (TM) [23]. However, there is as yet no currently available prac-
tical TM approach in widespread use. Instead, we encourage stu-
dents in COMP 322 to explore the use of Java atomic variables to
replace isolated statements with common access patterns by li-

brary calls to Java atomic utilities. Thus, atomic variables provided
a restricted solution to scalable implementations of isolated. If
an isolated statement matches an available pattern, then it can
be implemented by using an atomic variable; otherwise, the de-
fault single-lock implementation of isolated has to be used in-
stead. Recently, a new implementation technique called delegated
isolation [24] has been designed and prototyped for HJ isolated
statements, and shown to be superior to both single-lock and TM
approaches in many cases. We expect to include this technique in
an HJ release in the near future.

When comparing implementations of isolated statements, the
three cases to consider in practice can be qualitatively described as
follows:

1. Low contention: In this case, isolated statements are executed
infrequently, and a single-lock approach as in HJ is often the
best solution. Other solutions, such as TM and atomic variables,
incur additional overhead compared to the single-lock approach
because of their book-keeping and checks necessary but there is
no visible benefit from that overhead because contention is low.

2. Moderate contention: In this case, the serialization of all
isolated statements in a single-lock approach limits the
performance of the parallel program due to Amdahl’s Law,
but a finer-grained approach that only serializes interfering
isolated statements results in good scalability. Atomic vari-
ables usually shine in this scenario since the benefit obtained
from reduced serialization far outweighs any extra overhead
incurred.

3. High contention: In this case, there are phases in the program
when interfering isolated statements dominate the program
execution time. In such situations, approaches such as TM and
atomic variables are of little help since they cannot eliminate
the interference inherent in the program. The best alternative to
isolated in such cases is to use reduction primitives such as
accumulators [32] instead.

data-driven tasks: Data-Driven Tasks [36] are an extension of
future tasks in HJ that support the dataflow model. This extension
is enabled by adding an await clause to the async statement as
follows:

async await (DDFq,DDFy,---) ( statement )

Each of DDF,, DDF,--- is an instance of the HJ standard
class DataDrivenFuture. A DDF acts as a container for a single-
assignment value, like regular future objects. However, unlike
future objects, DDF’s can be used in an await clause, and any
async task can be a potential producer for a DDF (though only one
task can be the actual producer at runtime because of the single-
assignment property).

Specifically, the following rules apply to DataDrivenFuture
objects:

e A variable of type DataDrivenFuture is a reference to a DDF
object. Unlike regular future objects, there is no requirement
that variables of type DataDrivenFuture be declared with a
final modifier.

¢ The following four operations can be performed on variables of
type DataDrivenFuture:

1. Create — an instance of a DDF container can be created us-
ing the standard Java statement, new DataDrivenFuture().

2. Produce — any task can provide a value, V, for a DDF con-
tainer by performing the operation, DDF.put (V). After the
put operation, the DDF’s value is said to become available.
If another put operation is attempted on the same DDF, the



second put will throw an exception because of its violation
of the single-assignment rule.

3. Await — a new async task can be created with an await
clause, await (DDFo, DDFY4,---). The task will only
start execution after all the DDFs in the await clause be-
come available.

4. Consume — any task that contains a DDF in its await
clause is permitted to perform a get() operation on the
DDF. A cast operation will be required to cast the result
of get () to the expected object type. If a get () operation
is attempted by a task that has no await clause or does not
contain the DDF in its await clause, then the get () will
throw an exception. Thus, a get() on a DDF will never
lead to a blocking operation (unlike a get () on a regular
future object).

e [t is possible for an instance of an async with an await clause
to never be enabled, if one of its input DDF never becomes
available. This can be viewed as a special case of deadlock.
However, this deadlock case is resolved by ensuring that each
finish construct moves past the end-finish when all enabled
async tasks in its scope have terminated, thereby ignoring any
remaining non-enabled async tasks.

places: The place construct in HJ provides a way for the program-
mer to specify affinity among async tasks. A place is an abstraction
for a set of worker threads. When an HJ program is launched with
the command, “hj -places p:w”, atotal of p x w worker threads
are created with w workers per place. The places are numbered in
the range 0...p — 1 and can be referenced in an HJ program, as
described below. The number of places remains fixed during pro-
gram execution; there is no construct to create a new place after
the program is launched. This is consistent with other runtime sys-
tems, such as OpenMP, CUDA and MPI, that require the number of
threads/processes to be specified when an application is launched.
However, the management of individual worker threads within a
place is not visible to an HJ program, giving the runtime system the
freedom to create additional worker threads in a place, if needed,
after starting with w workers per place.

The main benefit of use p > 1 places is that an optional at
clause can be specified on an async statement or expression of the
form, “async at(place-expr) ...”, where place-expr is a place-
valued expression. This clause dictates that the child async task
can only be executed by a worker thread at the specified place. Data
locality can be controlled by assigning two tasks with the same data
affinity to execute in the same place. If the at clause is omitted,
then the child task is scheduled by default to execute at the same
place as its parent task. The main program task is assumed to start
in place 0.

Thus, each task has a designated place. The value of a task’s
place can be retrieved by using the keyword, here. If a program
only uses a single place, all async tasks just run at place O by
default and there is no need to specify an at clause for any of
them. The current release of HJ supports a flat partition of tasks into
places. Support for hierarchical places [40] will be incorporated in
a future release.

2.3 HJ Code Examples

In this section, we briefly discuss two HJ code examples to illustrate
some of the constructs described in this section.

Figure 3 shows a code fragment from the BOTS Health bench-
mark [12] rewritten in HJ. The async seq construct in line 5-7 ex-
ecutes the function, sim_village_par (v), sequentially if condi-
tion (sim_level - village.level >= bots_cutoff_value)

is true, otherwise it creates a child task to invoke sim_village_par (v).

void sim_village_par(Village village) {
// Traverse village hierarchy
1: finish {

2: Iterator it=village.forward.iterator();
3: while (it.hasNext()) {
4: Village v = (Village)it.next();
5: async seq ((sim_level - village.level)
6: >= bots_cutoff_value)
7: sim_village_par(v) ;
} // while
8: e e
9: } // finish:
10: R

Figure 3. Code fragment from BOTS Health benchmark written in
HJ

finish {
delta.f = epsilont+l; iters.i = 0;
phaser ph = new phaser();
accumulator ac = new accumulator(ph, ph.SUM,
int.class);
foreach phased ( point[j] [1:n]) {
// Each iteration will be registered on ph
while ( delta.f > epsilon ) {
newA[j] = (oldA[j-1]+oldA[j+1]1)/2.0f;
diff[j] = Math.abs(newA[j]-0ldA[j]);
ac.send(diff[j1);
// Local work can be overlapped with
// accumulator operations
next {
// barrier w/ single statement
delta.f = ac.result(); iters.i++;

}
temp = newA; newA = oldA; oldA = temp;
} // while
} // foreach
} // finish
System.out.println("Iterations: " + iters.i);

Figure 4. One-Dimensional Iterative Averaging using HJ Phasers
and Accumulators

As a result, multiple child tasks created in multiple iterations can
execute in parallel with the parent task. The parent task waits at the
end of line 9 for all these child tasks to complete since the scope of
the finish construct in this code fragment ends at line 9.

Figure 4 contains a one-dimensional iterative averaging exam-
ple program that uses HJ phasers and accumulators [32]. The
ac.send() call enables each foreach iteration to send a local
value as input to an asynchronous sum reduction operation. The re-
sult of the sum is accessed in the call to ac.result () in the next-
with-single statement. This approach gives the HJ system flexibility
on how best to implement the send () and result() operations.
Note that ac.result () is only computed once per loop iteration
since it is included in a single statement [33]. Also, if available, lo-
cal work can be overlapped with the ac.send() accumulator op-
erations as indicated by the . . . code region in Figure 4.

3. HJ Compiler and Runtime Implementation

As with Java, the HJ tool-chain consists of a compilation command
and an execution command. The HJ compiler (hjc) processes .hj
files as input and produces standard Java classfiles as output. The
HJ runtime command (hj) starts a Java virtual machine and exe-
cutes the main() method of the HJ runtime system, which in turn



initializes the HJ runtime and instantiates the application to be run
by using reflection.

3.1 The Habanero-Java compiler

The Habanero-Java compiler (hjc), presented in Figure 5, is written
in Java and is composed of two major components. The Polyglot-
based front-end parses HJ source code to create an abstract syntax
tree (AST). The Soot-based back-end operates on a three-address
intermediate representation and generates classfiles as output.

Polyglot [26] is a highly extensible source-to-source translator
framework for the Java programming language. It aims at facili-
tating the creation of language extensions for Java by providing a
framework that allows parsing and creation of an AST representa-
tion of a Java program. The Soot optimization framework [37] pro-
vides several intermediate representations for analyzing and trans-
forming Java bytecode. All the HJ compiler analyses and transfor-
mations are performed on the Jimple intermediate representation
(IR), which is a typed 3-address IR. One advantage of operating at
the IR-level, as opposed to source code, is that it offers the possi-
bility of generating low-level control flow with goto’s and labels
(a capability that is required to support code generation for work-
stealing task schedulers).

The HJ compiler uses the LPG parser to parse the HJ gram-
mar (which extends the Java 1.4 grammar) and extends Polyglot
to handle HJ constructs by creating new AST nodes to represent
them. The front-end performs semantic checks for the program-
ming constructs introduced in Section 2. For instance, it checks
that a task does not write into local variables belonging to a par-
ent/ancestor task. Once a program has successfully passed both the
syntactic and semantic analyses, the Polyglot AST is transformed
into the Jimple IR and handed to the Soot back-end. The Jimple
IR is extended to a parallel intermediate representation (PIR) [42]
which features new Jimple IR nodes to represent HJ constructs.
The back-end then gradually applies a series of transformations to
go from the high-level PIR to lower-level representations. We can
roughly classify them as high-level, mid-level and low-level vari-
ants of the PIR. The high-level PIR is hierarchical in structure and
useful for performing compiler analyses such as May-Happen-in-
Parallel (MHP) analysis [3]. The mid-level PIR has a flat control
flow structure and is useful for performing optimizations such as
Load Elimination [5] that build on classical data flow frameworks.
For example, a forall loop is kept intact in the high-level PIR but
expanded into a for-loop with async statements in the mid-level
PIR. All HJ constructs are later expanded into standard Java op-
erations in the low-level PIR, with calls to the HJ runtime library
inserted as needed. For instance, an async is transformed into an
instance of an anonymous inner class (closure) that can be passed
to the HJ task scheduler. Most traditional Java optimizations can be
performed at the low-level PIR level.

3.2 The Habanero-Java Runtime System

The HJ runtime system provides support for many of the HJ con-
structs described in Section 2. It is also responsible for orchestrat-
ing the creation, scheduling, execution and termination of tasks.
The core of the runtime scheduler provides support for the fin-
ish/async model, which includes tracking the Immediately Enclos-
ing Finish (IEF) scope for each dynamic task. Constructs such as
phasers and data-driven tasks also need runtime support to
maintain their internal data structures and keep track of synchro-
nization status.

The HJ runtime has a set of worker threads that can execute
tasks. When the hj command is invoked, control is transferred to the
HJ runtime which wraps the main method of the application to be
executed in a finish and starts executing it. Whenever a new task
is created, the runtime associates the task with the current finish
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Figure 5. Architecture of the HJ compiler (hjc).

scope and increments its finish state counter. The newly created
task is then scheduled for execution. At this point, no assumptions
are made as to where and when the task will be executed. The
runtime maintains a stack of finish scopes. When a task waits at
the end of a finish, it only needs to wait for the finish counter to
reach zero since that indicates that all (transitively) spawned child
tasks in the finish scope have terminated.

With this basic support for the finish/async model in place, the
runtime has several options as to how the tasks should be scheduled
on workers. The HJ runtime includes both work-sharing and work-
stealing task schedulers. The work-sharing scheduler supports the
full HJ language but relies on a single queue, from where workers
put and get tasks; this scheduler may create new workers in a place
if needed. The work-stealing implementation relies on a distributed
deque implementation and includes support to alleviate the cost of
blocking operations such as finish without creating new work-
ers; however, this scheduler only supports a subset of HJ’s parallel
constructs (primarily async, finish and isolated). The deci-
sion of which policy to use must be made at compile time since the
generated bytecode is tailored to the appropriate scheduler (work-
sharing is the default). Note that an HJ program can be recompiled
for either scheduling policy without requiring source code modifi-
cations. Further details on the HJ work-sharing and work-stealing
schedulers can be found in [17].

4. HJ Runtime Deployment and Feedback Tools

The tool-chain for HJ programs is similar to that of Java. An HJ
distribution includes a compiler command (hjc) and an execution
command (hj). Both commands take options similar to Java’s com-
mands e.g., sourcepath (-sp), classpath (-cp), destination folder for
classes (-d), etc. The hjc compiler option “-rt” allows the user to
specify which runtime scheduler the code should be compiled for.

4.1 Interactions with system host

The HJ runtime can interact with the host system in various ways.
First, an HJ program can call native CPU and GPU code through
the extern interface described below. Second, the user can tune the
HJ runtime deployment using the “-places” option and its accom-
panying thread-binding mechanism. These deployment options al-
low the user to control the mapping of an HJ program on a specific
multicore processor without having to modify or recompile the pro-
gram.



Invocation of native code from an HJ program: HJ’s extern
capability is a restricted and easy-to-use version of the Java Native
Interface (JNI). The extern keyword, introduced in X10 1.5, en-
ables HJ methods to pass and return values of primitive types to
and from calls to native C code. The programmer just has to de-
clare a method as extern in an HJ file, and implement its body as
a function in a C file. All the necessary casting from the Java native
type system to the C native type system is handled by a stub gen-
erated by the HJ compiler. Similarly to the Java native interface,
the implementation of native extern methods must be bundled as
a shared library object.

A key enhancement to the extern capability in HJ is the ad-
dition of array-views as parameters in extern methods/functions.
Sharing multi-dimensional arrays between Java and native code is
challenging because the native side cannot see a multi-dimensional
Java array as a chunk of contiguous memory. To circumvent this
problem, the programmer can either linearize array accesses in the
Java code or access the Java array from the native side to perform
a copy. Both solutions incur overheads in programmability and/or
performance. Since an array-view is an abstraction built atop a one-
dimensional Java array, it can be passed through the extern in-
terface to the native code, where it can be considered as a simple
chunk of contiguous memory. In this context, array-views are par-
ticularly useful as they eliminate the need to adapt any existing
code either on the HJ side or the native side. The programmer can
then easily share data with existing native library code that uses one
dimensional arrays by calling them through the extern interface.
On the HIJ side, the programmer remains free to view the array as
multi-dimensional through an array-view.

Array-views can also make it easier to bind HJ code with either
Fortran or C native code by allowing the HJ programmer to easily
switch the view from row-major to column-major layouts, without
changing any of the array accesses. Integration with Fortran code
is also made easier by using HJ views that re-base the index of the
first element of an array from zero to one.

Integration of native code and GPUs: The combination of array-
views and extern makes the switch from a classical native code
implementation to a GPU implementation seamless. The program-
mer only need to replace the native implementation by the GPU
implementation and compile a new version of the native shared li-
brary. The next execution of the HJ program will then perform calls
to the GPU through the extern interface [39].

Exploiting Locality and Affinity: The hj command option, “-
places p:w”, allows the user to specify how many places (p) and
workers per place (w) the runtime should be initialized with. Spec-
ifying the number of places and worker per places can be a critical
performance tuning option, depending on the nature of the appli-
cation and the target architecture. The HJ runtime supports thread-
binding capabilities to deliver on the programmer’s expectation that
workers in the same place should have greater affinity with each
other than workers in different places. When launching an HJ pro-
gram, a configuration file can be used to specify which physical
cpu-id (the id used by the OS to identify a core) an HJ worker thread
should be bound too. Figure 6 shows an example configuration file
that maps four cpu_ids to two places, each with two workers.

4.2 Productivity Tools

The HJ environment currently includes three kinds of tools to im-
prove programmer productivity. First, HJ features an abstract exe-
cution metrics framework that extracts various metrics from a dy-
namic execution of an HJ program, such as the total work, critical
path length (span) and the ideal speedup. These metrics can help
assess the theoretical efficiency of a parallel program, before ac-
tually evaluating its performance on a large number of cores. Sec-
ond, a data-race detection tool [30] helps programmers identify the

2 2 // nb_places nb_workers_per_places
0:0->0 // place_id : worker_id -> cpu_id
0:1->1
1:0->2
1:1->3

Figure 6. Example of an HJ runtime thread-binding configuration
file for the work-stealing runtime, mapping four workers from two
places to four cpu ids [16]

source of data race errors in their program. Finally, the HJ environ-
ment includes the DrHJ integrated development environment [28],
which was implemented as an extension to the DrJava IDE.

The Abstract Execution Metrics API: The HJ runtime provides
an API for the programmer to register and request abstract exe-
cution metrics. The abstract execution metrics can be particularly
useful when debugging performance problems, and when compar-
ing alternate implementations of an application. The programmer
can insert a call of the form, perf.addLocalOps(N), anywhere in a
task to indicate execution of N application-specific abstract opera-
tions e.g., floating-point operations, comparison operations, stencil
operations, or any other data structure operations. Multiple calls to
perf.addLocalOps() are permitted within the same task. They have
the effect of adding to the abstract execution time of that task. The
main advantage of using abstract execution times is that the per-
formance metrics will be the same regardless of which physical
machine the HJ program is executed on. The main disadvantage
is that the abstraction may not be representative of actual perfor-
mance on a given machine. When an HJ program is executed with
the -perf=true option, abstract metrics are printed at the end of pro-
gram execution. It captures the total number of operations executed
(WORK) and the critical path length (CPL) of the call graph gen-
erated by the program execution. The ratio, WORK/CPL is also
printed as a measure of ideal speedup for the abstract metrics.
Race Detection: A central property affecting the correctness of
parallel algorithms is data-race freedom. Data-race freedom is a
desirable property as in some cases it can imply determinism. For
instance, in the absence of data races, all parallel programs with
async and finish are guaranteed to be deterministic.

The HJ compiler and runtime implement an efficient dynamic
analysis algorithm that checks the presence of data races in fin-
ish/async style parallel computations. The analysis implemented is
a generalization of Feng and Leiserson’s SP-bags algorithm [13]
which was designed for checking determinism of spawn-sync Cilk
programs. Since the SP-bags algorithm cannot be applied directly
to finish/async parallel programs (which have more general struc-
tures than spawn/sync parallel programs), a new algorithm called
ESP-bags was designed and implemented for HJ in [30]. Both the
SP-bags and ESP-bags algorithms are sound for a given input. This
means that if a data race exists for an input, it will be detected, re-
gardless of the schedule. This race detector for HJ programs has
been especially useful in the COMP 322 course, when students
needed help debugging their programs.

DrHJ, an IDE for HJ: DrHJ [28] is an extension of the DrJava
integrated development environment developed at Rice University.
It is mainly composed of three elements, a navigation pane that
shows documents currently opened, an editor pane that shows the
source code, and a console pane that displays compiler messages
and program output. The editor helps students edit HJ source code
with syntax highlighting for HJ keywords. Compilation and exe-
cution of HJ programs can be done directly from the IDE. The
interface also allows students to turn on the race detection mode.
When this mode is used and a data race is detected, the student gets
an error message indicating where in the source file the conflicting
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Figure 7. Pedagogical classes of HJ programs

operation happened. If the race occurs while operating on array el-
ements, the index of the conflicting operation is provided as well.
The integration of HJ with the original DrJava IDE has been done
through the DrJava compiler adapter interface. A compiler adapter
takes care of building invocations to a particular compiler and run-
time as well as providing language specific information to the GUI
such as a list of keywords to be highlighted, the file extension the
compiler supports, etc. DrHJ is bundled as a single jar file and re-
quires no particular installation beside having Java present in the
environment path.

5. Pedagogical Approach

As mentioned earlier, HJ is used in a new sophomore-level course
on “Fundamentals of Parallel Programming” (COMP 322 [1])
which has become a required course for all Computer Science
majors at Rice. The orthogonal nature of HJ’s features enables
the creation of rich varieties of parallel programs. Figure 7 illus-
trates different classes of HJ programs that can enable students to
progress along a sequence from simpler to more complex examples.
The following abbreviations are used to define this classification:
DLF = DeadLock-Free
DRF = DataRace-Free
SER = Serializable
DET = Deterministic (includes SER)
ALL = Deterministic and nondeterministic (includes DET)

Thus, the 7 classes of HJ programs shown in Figure 7 can be
summarized as follows:

1. DLF-DRF-DET-SER: Any HJ program in this class is deadlock-
free, data-race-free, deterministic and serializable. If a program
is data-race-free and only uses the following three parallel con-
structs, then it is guaranteed to belong to this class: async
(without an await clause), finish, and future get. The DLF
guarantee comes from the HJ constructs used (async, finish,
future get). The DET guarantee follows from the DRF prop-
erty for these programs. Finally, programs in this class are se-
rializable (SER) because the sequential program obtained by

removing the async and finish operations is guaranteed to
represent a legal schedule for the original parallel program.

2. DLF-DRF-DET: Any HJ program in this class is deadlock-free,
data-race-free and deterministic, but not necessarily serializ-
able. If a program is data-race-free and only uses phasers with
registration, next, signal operations (but no explicit wait) in ad-
dition to the constructs listed above for DLF-DRF-DET-SER,
then it is guaranteed to belong to this class. The addition of
phasers leads to the possibility of obtaining non-serializable
programs since it may not be easy to convert an HJ program
that uses phasers into an equivalent sequential program in gen-
eral [35].

3. DRF-DET: Any HJ program in this class is data-race-free and
deterministic. If a program is data-race-free and only uses
data-driven futures and phasers with wait operations
in addition to the constructs listed above for DLF-DRF-DET,
then it is guaranteed to belong to this class. Both data-driven
futures and phasers with explicit wait operations can lead
to programs that deadlock. However, the deadlock will still be
deterministic i.e., all executions of the program with the same
input will quiesce with exactly the set of suspended tasks (if
any).

4. DLF-DRF-ALL: Any HJ program in this class is deadlock-free
and data-race-free, but may not be deterministic. If a program is
data-race-free and only uses isolated statements in addition
to the constructs listed above for DLF-DRF-DET, then it is
guaranteed to belong to this class. Even though HJ’s isolated
statements are simpler than Java’s synchronized statements,
this classification shows that it is very easy to lose determinism
when using a critical section construct like isolated.

5. DRF-ALL: Any program in this class is data-race-free, but may
not be deterministic. If a program is data-race-free and only
uses isolated statements in addition to the constructs listed
above for DRF-DET, then it is guaranteed to belong to this
class.

6. DET: Any HJ program in this class is deterministic.
7. ALL: Set of all HJ programs.

There are a number of other pedagogical benefits of the HJ lan-
guage in addition to the classification. The Java and HJ languages
are very close, which makes porting applications from one lan-
guage to the other quite straightforward. Other than the volatile,
synchronized and native keywords in Java, HJ can be considered
to be a superset of Java 1.4 (soon to be extended to Java 5). The
places construct enables students to experiment with locality opti-
mizations for memory hierarchies in a portable way. The data race
detection tool, DrHJ, helps students debug race conditions in their
program (especially since DrHJ reports all potential data races).
The low annotation overhead of being able to wrap any Java state-
ment with an async keyword, makes it easy to experiment with
different task decomposition. Finally, the management of tasks is
completed handled by the HJ runtime, unlike tasks in thread pools
where the programmer has to be involved in the different steps of a
task’s lifecycle.

6. Application Experience

As indicated below, the HJ project has benefited from early expe-
riences with the HJ language in both academic and industrial set-
tings.

6.1 Benchmarking

Some Java (Java Grande Forum, Shootout) and native (Barcelona
OpenMP Task Suite) benchmark suites have been ported to HJ.



The experience shown that porting existing Java code to HJ is
easy. If the application already exhibits parallelism, it can be as
simple as adding finish and async keywords or transforming a
for loop into a HJ forall loop. Converting parallel-Java to HJ is
also relatively simple in many cases. For instance, an anonymous
Runnable inner class can usually be converted to an HJ async
construct. Codes that are more task-oriented, and require the ap-
plication to maintain task handles, usually find a natural conver-
sion to HJ futures. There also natural synergies between HJ lan-
guage constructs and OpenMP pragmas. For example the parallel
*for’ OpenMP pragma can be mapped to an HJ forall construct.
The ’single’ and ’barrier’ pragmas in OpenMP can be replaced by
phasers constructs such as single and next. The ’critical’ pragma
can be translated to HJ isolated blocks.

The hierarchical phaser synchronization construct [34] ex-
hibits good performances with respect to Java and OpenMP barri-
ers. Microbenchmarks on a 128-thread UltraSPARC T2 SM shows
a 64-thread barrier overhead for hierarchical phasers is 126.6x
less than a CyclicBarrier, 27.2x less than an OpenMP barrier. Hier-
archical phasers barrier overhead using all 128 threads is 335.1x
less than a CyclicBarrier, 89.2 x less than an OpenMP barrier. Us-
ing the phaser accumulator feature, the barrier and reduction over-
head of a hierarchical phaser is 25.2x smaller than an OpenMP
reduction when 64 threads are used. When using 128 threads the
phaser overhead for performing the barrier and the reduction is
77.2% less than OpenMP. Experiments on some of the JGF (LU-
Fact, SOR, MolDyn) and NAS (CG and MG) benchmarks show
phaser can achieve between 15X and 45x speed-up when pre-
ferred over a traditional Java CyclicBarrier implementation.

Regarding task scheduling, generally speaking the work-stealing
runtime is more efficient than the work-sharing runtime. How-
ever, the work-stealing runtime requires the user to select the most
appropriate scheduling policy at compile time. Experimental re-
sults presented in [17] from a variety of benchmarks show that
the adaptive scheduler achieves 0.98x-9.2x speedup over the help-
first scheduler and 0.97x-4.5x speedup over the work-first sched-
uler for 64-thread executions. In contrast, the help-first policy is
9.2x slower than work-first only in the worst case, and the work-
first policy is 3.7x slower than help-first only in the worst case.
The adaptive policy enables the user to achieve better performance
without having to worry about selecting the most appropriate pol-
icy. Further, for large irregular recursive parallel computations, the
adaptive scheduler runs with bounded stack usage and achieves
performance (and supports data sizes) that cannot be delivered by
the use of any single fixed policy [17].

6.2 DipolelD: Porting a production application to HJ

DipolelD [22] is the kernel of an inversion program for generating
smooth 1D models from Controlled-Source Electromagnetic and
Magnetotelluric data (OCCAMI1IDCSEM). A joint effort with col-
laborators at BHP-Billiton has been completed to port DipolelD, a
legacy Fortran 90 application, to HJ. The original code consisted of
a few thousand lines of Fortran code that relied heavily on complex
arithmetic. In Java, a complex number can either be represented as
a pair of reals or by a boxed class. Initial ports to HJ showed poor
performance (when boxing complex numbers as objects) or poor
code quality (when using pairs of real), since the Java language
does not include any first-class support for complex numbers. Con-
sequently the HJ language has been extended to support complex
numbers as a primitive type. The later HJ version of Dipole1D was
much easier to write, as the programmer can more easily compare it
to the Fortran 90 version. We used array-views to re-base all array
accesses through views with index origin = 1, so as to eliminate the
traditional and error-prone index conversion phase when moving
from Fortran to C or Java. The Dipole1D implementation has been

evaluated over different input sets that exercise different parts of
the code. Half the tests showed similar to better performance than
the original Fortran 90 implementation. Two thirds of the remain-
ing tests showed less than 50 percent of overhead, whereas the rest
had an overhead factor greater than 2x. For this last category, the
culprit was an inefficient implementation of the StrictMath.log10
function for Java. The DipolelD application is a good candidate
for parallelization as its outer-most loop is embarrassingly parallel.
Using finish and async constructs the application achieved a lin-
ear speedup when varying the number of workers up to four. The
best speed-up (6x) was achieved with 8 workers before the mem-
ory bandwidth became saturated. These results are especially en-
couraging, when one considers the minimal effort needed to insert
finish and async keywords in the code.

6.3 CnC-HJ: a high-level declarative programming model

The Concurrent Collection (CnC) model falls into the same family
as dataflow and stream-processing languages. CnC is provably de-
terministic and is suited for many applications incorporating static
and dynamic forms of task, data, loop, pipeline, and tree paral-
lelism. The three main constructs in the CnC coordination language
are step collections, data item collections, and control tag collec-
tions. Statically, each of these constructs is a collection representing
a set of dynamic instances. Step instances are the unit of distribu-
tion and scheduling. Item instances are the unit of synchronization
and communication. Control tag instances are the unit of control.

CnC-HJ is an implementation of the CnC model on top of the
Habanero-Java language [7]. The CnC-HJ translator processes a
CnC graph and generates skeletons of HJ source code. In addition
to the graph, the CnC programmer provides code for individual
steps in a CnC graph. Though the step code is often sequential,
the CnC-HJ implementation allows the user to exploit parallelism
within a step if they desire to. The HJ extern interface can also used
to delegate some heavy computations to a GPU [15].

The overall scheduling of CnC steps is performed by the CnC
runtime, which runs atop the HJ runtime system. Various CnC steps
scheduling policies have been implemented in the CnC runtime [7].
However, the best performance is obtained when CnC steps are
implemented as data-driven futures i.e., async tasks with
await clauses [36].

7. Related Work

Modern languages and libraries provide lightweight dynamic task
parallel execution models for improved programmer productivity.
In dynamic task parallelism, computations are dynamically created
as tasks and the runtime scheduler is responsible for scheduling and
synchronizing the tasks across the cores. We can roughly classify
implementations in three categories:

1. New languages, such as X10 [38], Chapel [9], and Fortress [4].

2. Extensions to existing languages, such as the Cilk [14] and
OpenMP 3.0 [27] extensions to C, and the HJ extensions to
Java.

3. Libraries extensions that provides parallel APIs, such as In-
tel Threading Building Blocks [31], Java Concurrency Utili-
ties [29] and the Microsoft Task Parallel Library [11].

There are many practical advantages and disadvantages to choosing
a language or a library approach [8]. A key advantage of a library-
based approach to task parallelism is that it can integrate with exist-
ing code easily without relying on new compiler support. However,
the use of library APIs to express all aspects of task parallelism
can lead to code that is hard to understand and modify, especially
for beginning programmers. A key advantage of a language-based
approach is that the intent of the programmer is easier to express



and understand, both by other programmers and by program anal-
ysis tools. However, a language-based approach usually requires
the standardization of new language constructs. In this regard, the
latest X10 language specification offers an interesting design point
that may be representative of future directions in both sequential
and parallel programming.

HJ can be classified as being part of the group of parallel pro-
gramming languages that extend an existing language. We believe
it is important to leverage the existing knowledge of a programmer
community by extending an existing language, especially when se-
lecting a pedagogic language for teaching parallel programming.
Java is an interesting choice as the language is now commonly
used and relies on a managed runtime, providing safety, excep-
tions and garbage collection. Moreover, generating standard Java
bytecode allows HJ to take advantage of different JVM implemen-
tations developed by vendors for various hardware architecture. HJ
programmers can also take advantage of the rich eco-system of Java
libraries in their applications.

Compared to Cilk’s spawn-sync computations which must be
fully-strict, HJ’s finish/async computations are terminally-strict but
need not be fully-strict. Fully-strict computations can be scheduled
with provably efficient time and space bounds using work-stealing
with the work-first policy [6]. The same theoretical time and space
bounds were extended to terminally-strict computations such as
finish/async parallel computations [2] in languages like X10 and
HJ. Concretely, it means that HJ is more general than Cilk since
HJ activities can outlive their parent task. HJ also has a number of
other constructs that are not supported by Cilk e.g., futures, phasers,
and isolated.

Another difference between the Cilk and HJ implementations is
that the HJ implementation supports the help-first policy in addition
to the work-first policy, and also includes an adaptive mode [17]
that can switch back and forth between the two policies depending
on the kind of parallelism the application exhibits at runtime. The
adaptive policy is provably space-efficient if the serial depth-first
execution of the computation does not exceed the stack threshold.
If it exceeds the threshold, the scheduler moves the stack pressure
to the heap.

8. Conclusion

HJ shows that a combination of compiler and runtime techniques
can provide programmers with a simple, safe and powerful high-
level parallel programming language without sacrificing perfor-
mance. By relying on simple orthogonal parallel constructs with
important safety properties, HJ allows programmers with a ba-
sic knowledge of Java to get started with parallel programming
concepts by writing or refactoring applications to harness the
power of multicore architecture. The finish/async model enables
the creation of deadlock-free parallel applications. Phasers unify
point-to-point and collective synchronizations in a single construct.
Isolated provides a simple mutual exclusion construct that is
amenable to efficient implementation.

While programmers focus on the design of their application,
the HJ runtime delivers performance and scalability with respect
to the available number of cores as well as the nature of paral-
lelism that an application exhibits (recursive, flat or unstructured).
The various scheduling policies achieve efficient scheduling and
load balancing, while adapting to the specific nature of parallelism
present in an application. Phasers provide an efficient and scal-
able hierarchical implementation to perform synchronization op-
erations between tasks, which is critical as we move toward ma-
chines made of thousands of cores. Language extensions such as
the addition of complex primitive types, array-views and the ex-
tern clause help improve programmer’s productivity and simplify
porting and inter-operability with native code. Runtime deployment

options give users the flexibility to tune the HJ runtime to better
match the system host architecture. Finally, the HJ runtime feed-
back capacities such as the abstract execution metrics and the race
detection tools help the programmer to get feedback on theoretical
performance as well as the presence of potential data race bugs.

The usability of HJ has been assessed in various occasions when
porting benchmarks from Java or Fortran to HJ. The language has
also been used in the introductory parallel programming class for
sophomores at Rice University (COMP 322). It allowed students
to build on their previous knowledge of Java and focus on the fun-
damentals of parallel programming and algorithm design instead
of being distracted by the low-level intricacies of using a Java API
like the java.util.concurrent library.

We conclude that since the vast majority of programmers are
not parallel programming experts, it is essential for new genera-
tions of programming languages to provide easy-to-use first-class
constructs for parallelism. Additionally, a language implementa-
tion must be accompanied by an efficient and configurable runtime
framework that offers full performance transparency to the pro-
grammer. Finally, a programming language must also be accom-
panied by a well-integrated set of tools that focus on programmer
productivity. We believe that HJ achieves all these goals for pro-
grammers who have a basic knowledge of sequential programming
in Java.
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