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Abstract
In this paper, we compare the usability of a library approach with
a language approach to task parallelism. There are many practical
advantages and disadvantages to both approaches. A key advantage
of a library-based approach is that it can be deployed without
requiring any change in the tool chain, including compilers and
IDEs. However, the use of library APIs to express all aspects of
task parallelism can lead to code that is hard to understand and
modify. A key advantage of a language-based approach is that the
intent of the programmer is easier to express and understand, both
by other programmers and by program analysis tools. However,
a language-based approach usually requires the standardization of
new constructs and (possibly) of new keywords. In this paper, we
compare the java.util.concurrent (j.u.c) library [10] from
Java 7 and the Habanero-Java (HJ) [13] language, supported by our
experiences in teaching both models at Rice University.

1. Introduction
The computer industry is at a major inflection point due to the
end of a decades-long trend of exponentially increasing proces-
sor clock frequencies. It is widely agreed that parallelism in the
form of multiple power-efficient cores must be exploited to com-
pensate for this lack of frequency scaling. Unlike previous cases
of hardware evolution, this shift towards homogeneous and het-
erogeneous manycore computing will have a profound impact on
software. Two complementary approaches to address this prob-
lem are 1) the use of implicitly-parallel high-level programming
models such as the map-reduce pattern [2] and data parallel lan-
guages such as Ct, NESL [1], and Matlab, and 2) the use of task-
parallel programming models such as Java Concurrency [10], Intel
Threading Building Blocks (TBB), .Net Task Parallel Library [17],
OpenMP 3.0, Cilk [8], X10 [7], and Habanero-Java (HJ) [13]. In
this paper, we focus on task-parallel programming models, and
study the usability of library vs. language approaches to task par-
allelism. The comparison in this paper is performed between the
java.util.concurrent (j.u.c) library [10] from Java 7 and the
Habanero-Java (HJ) [13] language, and is supported by our experi-
ences in teaching both models at Rice University.

There are many practical advantages and disadvantages to both
approaches. A key advantage of a library-based approach to task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Evaluation and Usability of Programming Languages and Tools (PLATEAU) ’10
October 18, Reno, NV USA
Copyright c© 2010 ACM 978-1-4503-0547-1/10/08. . . $10.00

parallelism is that it can be deployed without requiring any change
in the tool chain including compilers and IDEs. However, the use
of library APIs to express all aspects of task parallelism can lead
to code that is hard to understand and modify. A key advantage of
a language-based approach is that the intent of the programmer is
easier to express and understand, both by other programmers and
by program analysis tools. However, a language-based approach
usually requires the standardization of new language constructs.
We try to highlight the pros and cons of each approach in terms
of usability, with a focus on how task creation, scheduling, and
synchronization are expressed in both approaches.

The rest of the paper is organized as follows. Section 2 in-
cludes background on the j.u.c package and the HJ language.
Sections 3–5 compare how the Habanero-Java language and the
Java Concurrent Utilities library express the notions of tasks, their
synchronization and parallel loop processing. Section 6 discusses
usability issues with respect to code migration and porting, and
Section 7 contains our conclusions.

2. Background
2.1 java.util.concurrent package
The java.util.concurrent (j.u.c) package grew out of JSR 166,
and has been included in all Java releases since Java 5.0 [10]. It
builds on the lower-level Java Thread construct and Runnable
interface in standard Java. It includes an Executor framework
with support for using worker thread pools to execute tasks as
logical units of work. Each thread pool has an associated work
queue that holds tasks waiting to be executed. Different kinds
of thread pools can be created (e.g., newFixedThreadPool(),
newSingleThreadExecutor()) to enforce different execution
policies. A Callable interface is also provided to support tasks
that can return values and whose exceptions can be caught by ap-
plication logic. A number of concurrent data structures are also
provided including implementations of Queue, BlockingQueue
as well as ConcurrentHashMap, ConcurrentSkipListMap,
and ConcurrentSkipListSet. The j.u.c package includes
synchronizer objects, such as CountDownLatch, FutureTask,
Semaphore, and CyclicBarrier that can be used to help co-
ordinate the execution of tasks. Alternatives to exclusive locks are
also provided in the form of ReadWriteLock’s, ReentrantLock’s
and atomic variables to reduce the impact of lock contention. The
latest release of j.u.c in Java 7 includes ForkJoinTasks with
support for work-stealing schedulers, and Phaser synchronizer
objects which are derived in part [16] from the phaser construct in
HJ.

While the j.u.c package contains a wide variety of choices to
enforce different execution policies, we believe that its usability de-
sign is biased more towards advanced users than mainstream users.
As an example, the following comment from [10] regarding the use



of ReentrantLock is a good indication of the target audience for
j.u.c

“ReentrantLock is an advanced tool for situations where
intrinsic locking is not practical. Use it if you need its ad-
vanced features: timed, polled, or interruptible lock acquisi-
tion, fair queueing, or non-block-structured locking. Other-
wise, prefer synchronized.”

2.2 Habanero-Java (HJ)
The Habanero-Java (HJ) language [13] developed at Rice Univer-
sity was derived from X10 v1.5 [23]1, starting in 2007. The current
HJ implementation uses Java v1.4 as its base language, but the con-
currency extensions in HJ can be applied just as well to sequential
programs written in Java 5 or Java 7. The code generated by the
HJ compiler consists of Java classfiles that can be executed on any
standard JVM. Likewise, the HJ runtime system is written in stan-
dard Java, and can also be executed on any standard JVM. A brief
summary of the key constructs in HJ relevant to this paper is in-
cluded below.
async: Async is a construct for creating a new asynchronous task.
The statement async 〈stmt〉 causes the parent task to create a new
child task to execute 〈stmt〉 (logically) in parallel with the parent
task. 〈stmt〉 is permitted to read/write any data in the heap and to
read (but not write) any local variable belonging to the parent task’s
lexical environment.
finish: The statement finish 〈stmt〉 causes the parent task to
execute 〈stmt〉 and then wait until all sub-tasks created within
〈stmt〉 have terminated (including transitively spawned tasks). Op-
erationally, each instruction executed in an HJ task has an unique
Immediately Enclosing Finish (IEF) statement instance [4].

Besides termination detection, the finish statement plays an im-
portant role with regard to exception semantics. An HJ task may
terminate normally or abruptly. A statement terminates abruptly
when it throws an exception that is not handled within its scope,
otherwise it terminates normally. If any async task terminates
abruptly by throwing an exception, then its IEF statement also
terminates abruptly and throws a MultiException [7] formed from
the collection of all exceptions thrown by all abruptly-terminating
tasks in the IEF.
future: HJ includes support for async tasks with return values
in the form of futures. The statement, “final future<T> f =
async<T> Expr;” creates a new child task to evaluate Expr that
is ready to execute immediately. (Expr may consist of a statement
block ending with a return statement.) In this case, f contains a “fu-
ture handle” to the newly created task and the operation f.get()
(also known as a force operation) can be performed to obtain the
result of the future task. If the future task has not completed as yet,
the task performing the f.get() operation blocks until the result
of Expr becomes available.
isolated: The isolated construct enables execution of a statement
in isolation (mutual exclusion) relative to all other instances of iso-
lated statements. The statement isolated 〈Stmt〉 executes 〈Stmt〉
in isolation with respect to other isolated statements. As advocated
in [14], we use the isolated keyword instead of atomic to make ex-
plicit the fact that the construct supports weak isolation rather than
strong atomicity. Commutative operations, such as updates to his-
togram tables or insertions into a shared data structure, are a natural
fit for isolated blocks executed by multiple tasks.
phasers: The phaser construct [4] integrates collective and point-
to-point synchronization by giving each task the option of reg-
istering with a phaser in signal-only/wait-only mode for pro-
ducer/consumer synchronization or signal-wait mode for bar-
rier synchronization. These properties, along with the generality

1 See http://x10-lang.org for the latest version of X10.

of dynamic parallelism and the phase-ordering and deadlock-
freedom safety properties, distinguish phasers from synchroniza-
tion constructs in past work including barriers [12, 18], counting
semaphores [19], and X10’s clocks [7]. The latest release of j.u.c
in Java 7 includes phaser synchronizer objects which are derived in
part [16] from the phaser construct in HJ.

In general, a task may be registered on multiple phasers, and
a phaser may have multiple tasks registered on it. Two key phaser
operations are:
• new: When a task Ai performs a new phaser() operation, it re-
sults in the creation of a new phaser ph such that Ai is registered
with ph.
• next: The next operation has the effect of advancing each phaser
on which the invoking task Ai is registered to its next phase,
thereby synchronizing all tasks registered on the same phaser. In
addition, a next statement for phasers can optionally include a sin-
gle statement, next {S}. This guarantees that the statement S is
executed exactly once during the phase transition [4, 5]. We define
the exception semantics of the single statement as follows: an ex-
ception thrown in the single statement causes all the tasks blocked
on that next operation to terminate abruptly with a single instance
of the exception thrown to the IEF task2. While our HJ phaser im-
plementation also supports explicit signal and wait operations
on phasers, it is important to point out that structuring the paral-
lel program so that all the tasks use only the next operation for
synchronization guarantees deadlock freedom among the synchro-
nizing tasks, a key usability feature of HJ.
forall: The statement forall (point p : R) S supports paral-
lel iteration over all the points in region R by launching each iter-
ation as a separate async, and including an implicit finish to wait
for all of the spawned asyncs to terminate. A point is an element
of an n-dimensional Cartesian space (n ≥ 1) with integer-valued
coordinates. A region is a set of points, and can be used to specify
an array allocation or an iteration range as in the case of async.

Each dynamic instance of a forall statement includes an im-
plicit phaser object (let us call it ph) that is set up so that all it-
erations in the forall are registered on ph in signal-wait mode3.
Since the scope of ph is limited to the implicit finish in the forall,
the parent task will drop its registration on ph after all the forall
iterations are created.

3. Task Creation And Scheduling
3.1 Task Creation
The j.u.c library requires tasks to be objects implementing the
Runnable interface. Generally, programmers can either create sep-
arate new classes, or anonymous inner classes implementing the
Runnable interface. The first approach is a good programming prac-
tice in the sense that it forces the programmer to understand what
are the inputs and outputs of the task since they need to be made
available to the class. However, this tends to separate the code of
the task from the context in which it will be executed. The sec-
ond approach that uses anonymous inner classes places the code of
the task much closer to the rest of the application code. However,
anonymous inner class declarations degrade the readability of the
code as they introduce a new type creation and method declarations
right in the middle of the application code.

In contrast, the HJ async Stmt construct allows programmers to
create a task anywhere in the code where parallelism is required.

2 Since the scope of a phaser is limited to its IEF, all tasks registered on a
phaser must have the same IEF.
3 For readers familiar with the foreach statement in X10 and HJ, one way
to relate forall to foreach is to think of forall 〈stmt〉 as syntactic sugar
for “ph=new phaser(); finish foreach phased (ph) 〈stmt〉”.



public static ArrayList<Integer>
quickSort(ArrayList<Integer> a) {
if (a.isEmpty()) return new ArrayList<Integer>();
ArrayList<Integer> l = new ArrayList<Integer>();
ArrayList<Integer> r = new ArrayList<Integer>();
ArrayList<Integer> m = new ArrayList<Integer>();
for (Integer i : a)

if ( i < a.get(0) ) l.add(i);
else if ( i > a.get(0) ) r.add(i)
else m.add(i);

ArrayList<Integer> l_s = quickSort(l);
ArrayList<Integer> r_s = quickSort(r);
return l_s.addAll(m).addAll(r_s);

}

Figure 1. Original (sequential) Java version of Quicksort example

public static ArrayList<Integer>
quickSort(ArrayList<Integer> a) {
if (a.isEmpty()) return new ArrayList<Integer>();
ArrayList<Integer> l = new ArrayList<Integer>();
ArrayList<Integer> r = new ArrayList<Integer>();
ArrayList<Integer> m = new ArrayList<Integer>();
for (Integer i : a)

if ( i < a.get(0) ) l.add(i);
else if ( i > a.get(0) ) r.add(i)
else m.add(i);

final ArrayList<Integer> l_f = l, r_f = r;
FutureTask<ArrayList<Integer>> l_t =

new FutureTask<ArrayList<Integer>>(
new Callable<ArrayList<Integer>>() {

public ArrayList<Integer> call()
{ return quickSort(l_f); } } );

FutureTask<ArrayList<Integer>> r_t =
new FutureTask<ArrayList<Integer>>(
new Callable<ArrayList<Integer>>() {

public ArrayList<Integer> call()
{ return quickSort(r_f); } } );

new Thread(l_t).start();
new Thread(r_t).start();
ArrayList<Integer> l_s = l_t.get();
ArrayList<Integer> r_s = r_t.get();
return l_s.addAll(m).addAll(r_s);

}

Figure 2. Parallel Java version of Quicksort example using
j.u.c’s FutureTask

As in anonymous inner classes, the task has access to all variables
declared in its enclosing lexical scope. However, the benefit of this
language approach is that a simple keyword can be used, while the
compiler takes care of lower-level code generation such as creating
a new anonymous inner class.

As an example, Figure 1 shows a sequential Java implementa-
tion of the quicksort algorithm taught in the introductory program-
ming class (COMP 211) in the Spring 2010 semester at Rice Uni-
versity. Figure 2 shows the corresponding Java Concurrency par-
allel version which was also taught in the same class with the in-
tention of introducing students to simple examples of parallel pro-
gramming. While the logic of the parallelism was easy for students
to understand, all the additional syntax needed for j.u.c’s library
interface in Figure 2 was a major source of confusion. (The ex-
ample in Figure 2 will be even more complicated if an Executor
or ForkJoinTask framework is used instead of creating a sepa-

public static ArrayList<Integer>
quickSort(ArrayList<Integer> a) {

if (a.isEmpty()) return new ArrayList<Integer>();
ArrayList<Integer> l = new ArrayList<Integer>();
ArrayList<Integer> r = new ArrayList<Integer>();
ArrayList<Integer> m = new ArrayList<Integer>();
for (Integer i : a)
if ( i < a.get(0) ) l.add(i);
else if ( i > a.get(0) ) r.add(i)
else m.add(i);

final future<ArrayList<Integer>> l_t =
async<ArrayList<Integer>> {return quickSort(l);};

final future<ArrayList<Integer>> r_t =
async<ArrayList<Integer>> {return quickSort(r);};

ArrayList<Integer> l_s = l_t.get();
ArrayList<Integer> r_s = r_t.get();
return l_s.addAll(m).addAll(r_s);

}

Figure 3. Parallel Java version of Quicksort example using
Habanero-Java

rate thread for each task.) In contrast, students learning HJ in the
COMP 322 course at Rice University found it was much easier to
understand the HJ version4 in Figure 3 than the j.u.c version.

3.2 Task Scheduling
As highlighted in the previous section, in HJ, tasks are not explicit
objects that the programmer can access or manipulate (e.g., to
change execution policies). An async is created and scheduled at
the point it is declared in the program, but the programmer has no
handle over it and should not make assumptions as to when the task
will be executed and on which specific worker. (HJ instead offers
the option of using hierarchical places [24] to support locality
management policies, for advanced users interested in that level
of control.)

This is a radically different approach from j.u.c which re-
quires programmers to create tasks, store them and possibly modify
them before submitting them to the scheduler. This responsibility
is likely to become a source of bugs, either by omitting to execute
some tasks or allowing a task representation to outlives its execu-
tion, which may lead to unexpected side effects if it was executed
several times.

Although programmers used to parallelism can endeavor to fol-
low good programming practices when using the j.u.c package,
there are plenty of opportunities for mainstream programmers to
shoot themselves in the foot. One strength of the language approach
is that it can choose whether or not to expose task creation, whereas
a library approach has to put some burden on the programmer to
manage a task representation of some form. The HJ language de-
sign is motivated by usability for mainstream users rather than ad-
vanced users and tries to reduce opportunities for the programmer
to make mistakes.

3.3 Task Execution
Both the j.u.c and HJ provide work-sharing and work-stealing
task execution strategies. The j.u.c provides two sets of API
that define various kind of work-sharing executors and a fork-join
framework [15] based on work-stealing. The HJ language makes no
assumptions on how the runtime will schedule tasks. With language

4 The publicly available version of the HJ compiler does not fully support
generic types as shown in Figure 3, but does support type declarations of
the form future<T>. Full support for generic types is currently a work in
progress for the HJ compiler.



support, all finish-async programs can be compiled either for work-
sharing or work-stealing execution without requiring any changes
to the source code [6, 9, 11].

The language approach results in improved productivity as pro-
grammers do not have to rewrite their code to take advantage of
one or the other task execution strategy. This is possible because
the language defines general purpose constructs and lets the com-
piler and runtime take care of implementation details. Although it
would probably be possible for a library implementation to provide
a more unified approach, the j.u.c API chose to clearly separate
two sets of API, meant to do two different things, keeping them
consistent and usable.

Another critical aspect for a task execution framework is to be
able to handle tasks that block and ensure there is enough active
workers for the program to continue to make progress. There are
two key aspects to tackling this problem: how can a task let the
runtime know it is going to block, and what can the runtime do
about it.

Regarding work-sharing, the j.u.c allows programmers to
adapt the size of the thread pool but does not provide any auto-
mated mechanisms for leveraging blocked task. HJ relies on lan-
guage semantics to determine when a task is going to block (for
example on a finish or a next operation) and generates code so that
the runtime can take actions to ensure progress is possible; for ex-
ample by creating new threads. Regarding work-stealing, both the
j.u.c and HJ provide support for blocked tasks, but differ in the
way they handle them.

The j.u.c provides a ManagedBlocker interface that defines
a block method. Whenever a task needs to block, it notifies the run-
time by providing an instance of ManagedBlocker. This indirec-
tion allows the runtime to decide which actions to take in face of
this task being blocked before calling the block method. In this sit-
uation the fork-join implementation is going to try to ensure paral-
lelism is maintained by eventually forking a new thread to compen-
sate for the blocked task.

In HJ, when a task blocks on a finish and no further progress
can be achieved by the current worker, the remaining code to be
executed (continuation) and the current context (locals) are set
aside. The worker tries to steal pending tasks from other workers
to make the computation progress. The continuation may then
be resumed or stolen by another worker. Although this kind of
code could be written by programmers to interface with a task
library implementation, it is application-specific and is in practice
cumbersome to write and error-prone. This is a situation where a
language implementation can really benefit the programmer as it
can rely on compiler analysis and code transformation to output
code that manages the creation and execution of continuations as
well as saving and restoring execution contexts.

The HJ compiler goes one step further by implementing code
generation for both help-first policies and work-first policies [9,
11]. Choosing one over the other is heavily dependent on the nature
of the parallelism present in the code. The help-first policy is more
efficient for flat and shallow loop parallelism whereas the work-
first policy is more suitable for recursive parallelism. A third policy,
named adaptive [11], allows the dynamic selection at runtime of the
more efficient policy depending on the nature of the application.

4. Task Synchronization
Phasers are dynamic synchronization constructs [4]. Tasks can
register and deregister dynamically on the phasers. Interestingly
enough, both the j.u.c and HJ implement such feature. In fact,
the Java concurrent utility Phaser class has also been inspired in
part by the HJ phaser construct [16].

Viewed as synchronization objects, the HJ implementation is
not far different from the j.u.c one. In both cases a phaser is

represented as an object the programmer can interact with using
its API. The main difference between the two implementations
is that HJ includes language and compiler support (such as the
phased clause in an async construct, and the next statement with
an optional “single” computation) that makes it easier to use.

4.1 Managing Phasers
Conceptually, all tasks need to register on a phaser in order to use
it and deregister when synchronization is no longer required. In
HJ there is no need for a task to explicitly register or deregister
on some phasers. When an async has an empty phased clause, the
child task inherits all active phaser registrations from the parent
task. When the async terminates, it automatically deregisters from
all the phasers that it was registered on. If the task needs to be
registered only with certain phasers, they can be specified in the
phased clause.

In contrast, the j.u.c implementation requires tasks to explic-
itly invoke a method call to register on a particular Phaser object.
Therefore it is the responsibility of the programmer to make sure
registration and de-registration are done correctly, which is likely
to become a source of bugs. For instance it is very easy to write a
program that deadlocks if a task does not deregister.

This is an interesting example of how a language approach
can reduce management chores. Figure 4 and Figure 5 show how
j.u.c and HJ phasers can be used to act as a barrier. In the
j.u.c version, the programmer has to call the register method for
each task and also make sure the current thread deregisters itself
by calling arriveAndDeregister (would deadlock otherwise) which
allows the barrier to make progress. On the other hand the HJ
implementation for the same code just needs to declare that the
asynchronous execution of the loop body has to collaborate with
phasers by specifying the phased keyword. HJ is able to hide the
implementation details for several reasons. The runtime execution
of an HJ program can be represented as a tree of tasks, the root
node being a task executing the main of the program. Hence, when
a phaser is created, it is always safe for the runtime to register
it with the ”current” executing task. Additionally, since the user
has no handle over a task, i.e. a task cannot be scheduled for
execution twice, it is always safe to deregister a phaser when a
task terminates. Similarly to arriveAndDeregister when an activity
reaches a finish it automatically deregisters from every phaser it is
registered with.

In this scenario, the language approach can hide implementation
details of a phaser because it enforces an execution model that the
runtime can rely on.

4.2 Hierarchical Phasers
Both the j.u.c and HJ support organization of phasers into hierar-
chical trees [20]. This is a critical structure to achieve performance
and scalability as the number of tasks involved in the synchroniza-
tion grows.

The j.u.c implementation allows users to create trees of
phasers by construction. The constructor of a Phaser can take
a parent Phaser as argument. Although this approach is very flex-
ible it can induce errors if the programmer makes mistakes such as
introducing cycles or building a forest. The programmer must also
ensure that each task will be registered on the correct phaser when
building the tree.

The HJ implementation took a different approach by not allow-
ing teh programmer to access the internal nodes of the tree. A hi-
erarchical phaser [20] is initialized with two additional arguments,
the number of tiers and the number of degrees. The number of tiers
corresponds to the number of levels in the tree. The degree is the
maximum number of tasks that can be registered at each leaf phaser.



public void run(final int N, final float[][] data) {
final Phaser phaser = new Phaser() {
protected boolean onAdvance(int phase, int nb) {

mergeRows(data);
return cond();

}
};
phaser.register();
for (int i = 0; i < N; ++i) {
final int rowId = i;
phaser.register();
new Thread() {
public void run() {

do {
processRow(data[rowId]);
phaser.arriveAndAwaitAdvance();

} while(!phaser.isTerminated());
}

}.start();
}
phaser.arriveAndDeregister();

}

Figure 4. Parallel j.u.c version of matrix chunking example us-
ing phasers

When a new task is registered with the hierarchical phaser, it is go-
ing to automatically register with the next phaser slot available.

The hierarchical phaser API of HJ seeks a trade-off between
usability and flexibility. For instance a HJ program that uses phasers
can be converted to use hierarchical phasers simply by providing
additional information to its constructor.

4.3 Single Statements
It is convenient to allow a single worker to execute a piece of code
during a barrier synchronization when all tasks involved in a barrier
reach it, but before proceeding to the next phase of a computation.
For example, the code in question could involves checks for some
properties or performing a reduction.

The approach taken by the j.u.c phaser is to allow program-
mers to extend the onAdvance method defined by the Phaser class
whereas the HJ language defines the single construct as a block of
code that post-fix a next statement, allowing the programmer to pro-
vide the code to be executed directly at the synchronization point.

Figure 4 and Figure 5 show how a barrier is expressed using
j.u.c and HJ phasers. The strength of the HJ approach is that it
keeps the code snippet at the exact point where the synchroniza-
tion is performed. This approach increases the programmer pro-
ductivity as the code in the single statement can access all variables
accessible from the current lexical scope, which can be very con-
venient when checking whether the computation has reached some
threshold value or when performing a reduction. An extra burden of
the j.u.c approach is that programmers have to write and manage
one Phaser implementation for each kind of barrier their program
need. Additionally, usage of an anonymous inner class to override
the onAdvance method can be error-prone as the programmer need
to explicitly see the phaser declaration to determine if some extra
code is going to be executed after calling the barrier.

HJ also features accumulators [21] that integrate with phasers
to support parallel and dynamic reductions. Several tasks can con-
tribute to a parallel reduction using the accumulator send operation.
When tasks are synchronized, for instance in a single statement, the
result of the accumulator can then be retrieved.

public void run(final int N, final float[][] data) {
finish {

phaser ph = new phaser();
for (int rowId = 0; (rowId < N); ++rowId) {
async phased {

do {
processRow(data[rowId]);
next single { mergeRows(data); }

} while (cond());
}

} }
}

Figure 5. Parallel (verbose) HJ version for matrix chunking exam-
ple using phasers

public void run(final int N, final float[][] data) {
forall(point [rowId] : [0:N-1]) {

do {
processRow(data[rowId]);
next single { mergeRows(data); }

} while (cond());
}

}

Figure 6. Forall parallel HJ version for matrix chunking example

5. Loop parallelism
Loop parallelism is especially important when it comes to handling
large sets of data in parallel. A typical way to take advantage of
such parallelism is to partition the data to be processed and create
one computational task to process each chunk of data [22].

The HJ language defines a forall construct to perform parallel
processing of arrays. The forall loop is similar to a regular for loop
except that all iterations of the loop are potentially running asyn-
chronously with respect to each other. The forall construct is im-
plicitly wrapped in a finish by the compiler. Additionally, the forall
construct also defines an implicit phaser allowing programmers to
get more control over synchronization using the next construct. Fig-
ure 6 shows how the matrix chunking example from Figure 5 can
be simplified using the forall construct.

The j.u.c implementation requires the programmer to be in-
volved in extracting parallelism from the loop by creating a set of
tasks, associating them with data and scheduling them for execu-
tion. Although this approach is very flexible and can be fine-tuned,
it requires more investment from the programmer and a deeper
knowledge of parallel programming than the forall approach.

Overall, the forall construct provides a very simple and practical
approach to parallelism. Once some of the basic parallel concepts
are understood, programmers can use the foreach construct that can
take a phased clause as a parameter which gives a finer level of
control to the programmer. These for loop constructs defined by the
HJ language manage most of the parallelism for the programmer.

6. Improving Habanero-Java Usability
The Java and HJ languages are very close, which makes porting
applications from one language to the other quite straightforward.
Other than the volatile, synchronized and native keywords in Java,
the Java language is a subset of the HJ language. The omission
of these constructs in HJ makes porting of parallel Java program
somewhat harder, but there are strong reasons for that. Usage of the
synchronized keyword would mean allowing the use of wait-notify



primitives which are difficult to use correctly, and erroneous code
that uses them can be difficult to detect and debug.

Since its creation from X10 v1.5, The HJ language has been
used as an introductory language to parallelism at Rice University
and we have been able to port various programs from other lan-
guages to HJ. In this section we present several language enhance-
ments created to improve the usability of the language.

The async constructs follows the same restrictions Java anony-
mous inner classes enforce. In the body of an async, any variables
referred to from the enclosing lexical scope have to be declared fi-
nal and therefore cannot be modified. This makes the semantics of
the programming model very clear, however, it makes porting code
from Java to HJ more complicated. It also complicates modifying
code from sequential to parallel and back. For instance, program-
mers need to constantly introduce final variables to make a value
accessible to the body of an async, which makes programs very ver-
bose. Judging by the feedback we received from programmers [3],
this requirement was viewed as being unduly restrictive. We have
removed this restriction from the HJ language. Now programmers
may or may not declare an inherited variable as final. However, it
is still a compilation error to try to assign a new value to an inher-
ited variable. This change doesn’t incur any runtime overhead as
the final nature of a local variable is not propagated down to the
generated bytecode. Therefore, there are no variable duplication
from the programmer non-final variable to some compiler gener-
ated variables. The new generated code is identical to the previous
one.

Although HJ generates Java bytecode, it is a language that used
to have its own type system independent of Java. For example,
when a programmer instantiated a new Integer object, the imple-
mentation package was hj.lang rather than java.lang This was
a major source of confusion for external collaborators and a major
source of compilation problems to transform any existing Java code
to HJ or use Java libraries and API from a newly written HJ pro-
gram. In order to further ease porting from Java, the HJ type system
has been relaxed to use primitive types classes from the java.lang
package in place of those defined by HJ.

Regarding the integration of HJ in the Java ecosystem, it should
be noted that since HJ produces 100% pure Java bytecode, pro-
grammers can take advantage of all the Java libraries by linking
their programs to any existing class files and jars. Hence some
of the j.u.c features can complement the primitives offered by
the HJ Language. Atomic variables, concurrent map, deque and
queue structures are particularly usefulto enable scalable data shar-
ing among several tasks.

7. Conclusion
In this paper, we compared the usability of the j.u.c library ap-
proach with the Habanero-Java (HJ) language approach to task par-
allelism. We have focused our study on comparing two approaches
that provide programmers with tasks creation and scheduling as
well as loop parallelism and high-level synchronization constructs.
We have shown a general purpose library-based approach to task
parallelism can be verbose and requires a lot of meticulous micro
management whereas a language-based approach provides enough
flexibility to hide complexity as well as reduce the possibilities
of flawed designs and errors in programs. The HJ language of-
fers simple and safe high-level parallel constructs for usability and
productivity. It provides programmers with a simple task-oriented
programming model, deadlock-free synchronization constructs and
parallel loop processing capabilities, which makes it appealing to
main-stream users.

Our conclusion is that a language approach such as HJ is more
suitable for mainstream users who lack expertise in parallelism,

whereas a library approach such as the j.u.c is appropriate for
more advanced users.
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