COMP 422, Lecture 7:
Shared-Memory Parallel

Programming with OpenMP
(Section 7.10)

Vivek Sarkar

Department of Computer Science
Rice University

vsarkar@rice.edu

COMP 422 Lecture 7 29 January 2008

Recap of Lecture 6 (Advanced Cilk Features)

Inlet
Abort
Cilk_alloca

SYNCHED
—Matrix Multiply example

Cilk_lockvar

Programming Assignment #1:
Parallel Graph Coloring in Cilk

Program inputs (see http://www.cs.princeton.edu/~appel/graphdata/):

* Number of colors, K

* Adjacency list for each node. If there is an edge between nodes x and y, y
will apear in x’s adjacency list and vice versa

* List of move pairs. Your goal is to find a legal solutions in which as many
move pairs as possible are “eliminated” i.e., are given the same color

Program outputs:

* Number of legal solutions

°* Minimum number of move-pairs that still remain in best legal solution (if
any)

What vou need to submit:

* Single source file containing your Cilk program.

* Write-up summarizing parallelizing approach used, and performance data
for sample input file for 1 - 4 processors on an Ada node.

More details to follow

Example: Graph coloring

O—CO

Given k colors, does there

exist a coloring of the nodes
such that adjacent nodes are
assigned different colors N\

()
U/

Source: http://ai.uwaterloo.ca/~vanbeek/Courses/Slides/introduction.ppt

Example: 3-coloring

variables: V4 <)

Vis Vo, Vg, Vg Vs

domains:
{1, 2, 3}

constraints:
v, = v, ifv,and v,
are adjacent

move pairs:
(V1’ V4)’ (V2’ V3)

Source: http://ai.uwaterloo.ca/~vanbeek/Courses/Slides/introduction.ppt

()
U/

Example: 3-coloring

A solution

vi ()
vy <1 1 J ‘V2

v, <2 @

v, <2 @

v, < 1

Ve <=3 @ Vs

Note that both move
pairs have been
eliminated:

(Vy, Vy), (Vo V)

Source: http://ai.uwaterloo.ca/~vanbeek/Courses/Slides/introduction.ppt

Acknowledgments for today’s lecture

* Slides from OpenMP tutorial given by Ruud van der Paas at
HPCC 2007

— http://www.tic2.uh.edu/hpcc07/Schedule/OpenMP

* Slides accompanying course textbook
—http://Iwww-users.cs.umn.edu/~karypis/parbook/

* OpenMP 2.5 specification
—http:/lIwww.openmp.org/mp-documents/spec25.pdf

What is OpenMP?

O De-facto standard API for writing shared memory parallel
applications in C, C++, and Fortran

Q Consists of:
e Compiler directives
® Run time routines
® Environment variables

Q Specification maintained by the OpenMP
Architecture Review Board (http:/www.openmp.org)

Q Latest Specification: Version 2.5

Q Version 3.0 has been in the works since September 2007,
final specification expected late 2007/early 2008

A first OpenMP example

For-loop with independent For-loop parallelized using

iterations an OpenMP pragma
for (1 = 0; i < n; i++) || #pragma omp parallel for \
c[i] = a[i] + b[i]; shared(n, a, b, c)\
private(i)

for (i = 0; i < n; i++)
c[i] = a[i] + b[i];

% cc -xopenmp source.c
% setenv OMP_NUM THREADS 4
% a.out

The OpenMP Execution Model

Master
Thread

Fork and Join Model

- Worker
Parallel reqgion
g! * + { * Threads

_ Worker
Parallel region * * * * Threads

i
|
}
1

10

Terminology

O OpenMP Team := Master + Workers

Q A Parallel Region is a block of code executed by all
threads simultaneously

<~ The master thread always has thread ID 0

< Thread adjustment (if enabled) is only done before entering a
parallel region

<~ Parallel regions can be nested, but support for this is
implementation dependent

< An "Iif" clause can be used to guard the parallel region; in case
the condition evaluates to "false", the code is executed serially

Q A work-sharing construct divides the execution of the
enclosed code region among the members of the team; in

other words: they split the work

11

Components of OpenMP

Directives

¢ Parallel regions
¢ Work sharing
¢ Synchronization

¢ Data-sharing
attributes

v private

v firstprivate
v lastprivate
« shared

~ reduction

¢ Orphaning

Environment
variables

¢ Number of threads
¢ Scheduling type

¢ Dynamic thread
adjustment

¢ Nested parallelism

Runtime
environment

¢ Number of threads
¢ Thread ID

¢ Dynamic thread
adjustment

¢ Nested parallelism
¢ Timers

¢ API for locking

12

OpenMP directives and clauses

Q C: directives are case sensitive

® Syntax: #pragma omp directive [clause [clause] ...]

Q Continuation: use\ in pragma

Q Conditional compilation: _OPENMP macro is set

‘ if (scalar expression) ‘ #pragma omp parallel if (n > threshold) \

shared(n,x,y) private(i)
{

v Only execute in parallel if tpragma omp for

expression evaluates to true et ot i Bl

} /*-- End of parallel region --*/

v Otherwise, execute serially

‘ private (list) ‘

‘firstprivate (list) ‘
v No storage association with original object v All variables in the list are initialized with the

. value the original object had before enterin
v All references are to the local object the parallel cg(,,,stm,;'t g

v Values are undefined on entry and exit ‘I torivate (list) ‘
asiprivate (lis

shared (list) v The thread that executes the sequentially last
iteration or section updates the value of the
v Data is accessible by all threads in the team objects in the list

v All threads access the same address space 13

Parallel Region

#pragma omp parallel [clause[[,] clause] ...]
{

"this is executed in parallel”

} (implied barrier)

A parallel region is a block of code executed by multiple
threads simultaneously, and supports the following clauses:

if (scalar expression)

private (list)

shared (list)

default (nonelshared) (C/C++)
default (nonelsharediprivate) (Fortran)
reduction (operator: list)

copyin (list)

firstprivate (/isf)
num_threads (scalar _int_expr)

14

OpenMP Programming Model

The clause list is used to specify conditional parallelization, number of
threads, and data handling.

— Conditional Parallelization: The clause if (scalar expression) determines
whether the parallel construct results in creation of threads.

— Degree of Concurrency: The clause num_threads (integer expression)
specifies the number of threads that are created.

— Data Handling: The clause private (variable list) indicates variables local
to each thread. The clause firstprivate (variable list) is similar to the
private, except values of variables are initialized to corresponding values
before the parallel directive. The clause shared (variable list) indicates
that variables are shared across all the threads.

15

Work-sharing constructs in a Parallel Region

#pragma omp for
{

}

#pragma omp sections

{
}

* The work 1s distributed over the threads
e Must be enclosed in a parallel region

* Must be encountered by all threads in the team, or none at all
e No implied barrier on entry; implied barrier on exit (unless

nowait 1s specified)
e A work-sharing construct does not launch any new threads
e Shorthand syntax supported for parallel region with single
work-sharing construct e.g.,

#pragma omp single
{

}

#pragma omp parallel I

#pragma omp for
for (...)

#pragma omp parallel for
for (...

-)

16

Example of work-sharing “omp for” loop

'#pragma omp parallel default(none)\
shared(n,a,b,c,d) private(1i)

{

pragma omp for nowait

for (i=0; i<n-1; i++)
b[i] = (a[i] + a[i+1])/2;

#pragma omp for nowait

for (i=0; i<n; i++)
d[i] = 1.0/c[1];

} /*-- End of parallel region --*/
(implied barrier)

17

Reduction Clause in OpenMP

* The reduction clause specifies how multiple local copies of a
variable at different threads are combined into a single copy at the
master when threads exit.

* The usage of the reduction clause is reduction (operator:
variable list).

* The variables in the list are implicitly specified as being private to
threads.

* The operator canbeoneof+, *, -, &, |, ~, &&, and |]|.

#pragma omp parallel reduction(+: sum) num threads(8) {

/* compute local sums here */

}

/*sum here contains sum of all local instances of sums */

18

OpenMP Programming: Example

/* khkkkkhkkhkkkkhkkhkkhkhkkkkkkhkkhkkhkhkhkkhkkhkkhkkhkkhkhhkkkkhkkkkkkkkkkkk*

An OpenMP version of a threaded program to compute PI.

ER R R S e S b S b S S b S b b S i S b S b S S b b b S S b b S S I I S */

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num threads (8)

num_threads = omp_get num threads();

sample points per thread = npoints / num_threads;
sum = 0;
for (i = 0; i < sample points per thread; i++) {
rand_no_x =(double) (rand_r(&seed))/(double) ((2<<14)-1);
rand_no_y =(double) (rand_r(&seed))/(double) ((2<<14)-1);
if (((rand_no x - 0.5) * (rand no x - 0.5) +
(rand no y - 0.5) * (rand _no_ y - 0.5)) < 0.25)
sum ++;

19

Example of work-sharing “sections”

#pragma omp parallel default(none)\
shared(n,a,b,c,d) private(1i)

{

#ipragma omp sections nowait

{

#pragma omp section

for (i=0; i<n-1; i++)
b[i] = (a[i] + a[i+l1])/2;

#pragma omp section
for (i=0; i<n; i++)
d[i] = 1.0/c[i];

} /*¥-- End of sections --*/

} /*—- End of parallel region —--*/

20

“single” and “master” constructs in a parallel region

Only one thread in the team executes the code enclosed

#pragma omp single [clause[[,] clause] ...]
{

<code-block>
}

Only the master thread executes the code block.

#pragma omp master
{<code-block>}

 Single and master are useful for computations that are intended for
single-processor execution e.g., I/O and initializations

 There 1s no implied barrier on entry or exit of a single or master
construct

21

Implicit barrier

Barrier Region

for gl—o- i < N; i++)
a[.1.] = b[i] + c[i];

Implicit barrier %

wait !

for (i=0; 1 < N; i++)
d[i] sa[1]%+ b[i];

barrier

NOTE: barrier is redundant if there is a guarantee that the
mapping of iterations onto threads is identical in both loops

22

nowait clause & explicit barrier

#pragma omp for nowait

{
}

#pragma omp barrier

* To minimize synchronization, some OpenMP
directives/pragmas support the optional nowait clause
* If present, threads do not synchronize/wait at the end of that

particular construct

e An explicit barrier can then be inserted at only the desired

program points

23

A more elaborate example

#pragma omp parallel if (n>limit) default(none) \

Statement is executed
-] —

scale = sum(a,0,n) + sum(z,0,n) + f; by all threads

SharEd (n r a r h ’ c r &y Y ’ Z) pri‘vate (f ’ i ’ scale) *IIIIIIIIIIIlllllllllllllle_

{
£f=1.0; - Statement is executed g

by all thread :

#pragma omp for nowait o y e
{20: j : ' parallel loop

={)* - +) - - s

fnrz :i] 0; ;?:i :1,; i1; = (work is distributed) o |

r E 2 g

“"IIIIIIIIIIIIH 2 ;

#pragma omp for nowait S ‘_';‘
@ :

for (i=0; i<n; i++) : p:@':?' |9§pec’ Q :
a[i] = b[i] + c[i]; (work is distributed) g

o ¢

#pragma omp barrier <¢— synchronization

} /*-- End of parallel region --*/ S T———

schedule clause for parallel loops

schedule (static | dynamic | guided [, chunk])
schedule (runtime)

‘ static [, chunk]

v Distribute iterations in blocks of size "chunk"” over the

threads in a round-robin fashion

v In absence of "chunk", each thread executes approx. N/P
chunks for a loop of length N and P threads

Example: Loop of length 16, 4 threads:

"TID 0 2 3
no chunk 1-4 9-12 13-16
chunk 1-2 5-6 71-8
9-10 11-12 13-14 15-16

25

schedule clause for parallel loops (contd)

‘ dynamic [, chunk] ‘

v Fixed portions of work; size is controlled by the value of
chunk

v When a thread finishes, it starts on the next portion of
work

‘ guided [, chunk]

v Same dynamic behavior as "dynamic", but size of the
portion of work decreases exponentially

‘ runtime

v [lteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

26

Assigning lterations to Threads

* The schedule clause of the for directive deals with the
assignment of iterations to threads.

* The general form of the schedule directive is

schedule(scheduling_class[, parameter]).

* OpenMP supports four scheduling classes: static,
dynamic, guided, and runtime.

27

Assigning Iterations to Threads: Example

/* static scheduling of matrix multiplication loops */

#pragma omp parallel default(private) shared (a, b, c, dim) \
num_threads (4)

#pragma omp for schedule(static)
for (i = 0; i < dim; i++) {

for (j = 0; j < dim; j++) {
c(i,j) = 0;

for (k = 0; k < dim; k++) {
c(i,j) += a(i, k) * b(k, j);

28

NeSti ng parallel DireCtiveS

* Nested parallelism can be enabled using the OMP_NESTED
environment variable.

* If the OMP_NESTED environment variable is set to TRUE, nested
parallelism is enabled.

* In this case, each parallel directive creates a new team of
threads.

29

Out-of-line (“orphaned”) directives

¢+ The OpenMP standard does not restrict worksharing
and synchronization directives (omp for, omp single,
critical, barrier, etc.) to be within the lexical extent of a
parallel region. These directives can be orphaned

¢ That is, they can appear outside the lexical extent of a
parallel region

{
}

#ipragma omp parallel for (i=0;....)

void dowork()

(void) dowork(); !- Sequential FOR {

#pragma omp for
{

}

(void) dowork(); !- Parallel FOR

}

¢+ When an orphaned worksharing or synchronization directive is
encountered in the sequential part of the program (outside the
dynamic extent of any parallel region), it is executed by the
master thread only. In effect, the directive will be ignored 30

OpenMP Library Functions

* In addition to directives, OpenMP also supports a number of
functions that allow a programmer to control the execution of
threaded programs.

/* thread and processor count */

void omp set num threads (int num_ threads);
int omp get num threads ();

int omp get max threads ();

int omp get thread num ();

int omp get num procs ();

int omp in parallel();

31

Example

#pragma omp parallel single(...)
NumP = omp get num threads();

allocate WorkSpace[NumP][N];

#pragma omp parallel for (...)
for (i=0; i < N; i++)

{ TID = omp get thread num();
WorkSpace[TID][1i] = ;
... = WorkSpace[TID][i];

\ S

dWwnn

32

OpenMP Locks

Q Simple locks: may not be locked if already in a locked state

QO Nestable locks: may be locked multiple times by the same
thread before being unlocked

Q In the remainder, we discuss simple locks only

QO The interface for functions dealing with nested locks is
similar (but using nestable lock variables):

Simple locks Nestable locks

omp init lock omp init nest lock
omp destroy_ lock omp_destroy nest_lock
omp_set_ lock omp_set nest_lock
omp_unset_lock omp unset nest_lock
omp test lock omp test nest lock

* OpenMP also supports “critical” and “atomic” constructs that can be used
in lieu of locks

33

OpenMP Locking Example

parallel region - begin

TID = 0:

acquifé lock

Protected
Region

release lock

TID=1

Other Work

Other Work

acquir; lock
Protected
Region

release lock

pa;allel region - énd

¢ The protected region
contains the update of a
shared variable

¢+ One thread acquires the
lock and performs the
update

¢+ Meanwhile, the other
thread performs some
other work

¢ When the lock is released

again, the other thread
performs the update

34

Environment Variables in OpenMP

OMP_NUM_THREADS: This environment variable specifies the default
number of threads created upon entering a parallel region.

OMP_SET_DYNAMIC: Determines if the number of threads can be
dynamically changed.

OMP_NESTED: Turns on nested parallelism.

OMP_SCHEDULE: Scheduling of for-loops if the clause specifies
runtime

35

Shared Data in OpenMP

Q Global data is shared and requires special care

O A problem may arise in case multiple threads access the
same memory section simultaneously:

® Read-only data is no problem

e Updates have to be checked for race conditions

Q It is your responsibility to deal with this situation

Q In general one can do the following:

e Split the global data into a part that is accessed in serial parts
only and a part that is accessed in parallel

e Manually create thread private copies of the latter

e Use the thread ID to access these private copies

Q Alternative: Use OpenMP's threadprivate directive

36

threadprivate directive

#pragma omp threadprivate (list)

* Thread private copies of the designated global variables
created

* Several restrictions and rules apply when doing this:

—The number of threads has to remain the same for all the paraliel
regions (i.e. no dynamic threads)

—Initial data is undefined, unless copyin is used

* Check the documentation when using threadprivate !

37

OpenMP Performance Tips

Q Parallelize at the highest level possible

v Outer loop preferred over inner loop
¢ If it is sufficiently long
Q Parallel Regions

® Use as few parallel regions as possible

v Enclose multiple loops in one parallel region
® Avoid a parallel region in a inner loop

v Can often be moved up
QO Reduce barrier usage to the bare minimum

® Use nowait where possible
v Be careful not to introduce a data race though!

38

OpenMP Performance Tips (contd)

O Minimize the size of a critical region
Q Avoid the ordered construct

e |tis slow
J Avoid, or minimize, false sharing from the start
e Use private data as much as possible
e Experiment with different values for the chunk size
® Try a non-static iteration scheme
Q Things To Experiment With:
® Master versus Single
® Read-only data - shared or private ?

39

Reading List for Next Lecture (Jan 31st)

* Task construct proposed in OpenMP 3.0
—Section 2.7: task construct
—http://www.openmp.org/mp-documents/spec30 draft.pdf

* Memory Models
—OpenMP 2.5
— Section 1.4: Memory Model
— Section 2.7.5: Flush construct
— http://www.openmp.org/mp-documents/spec25.pdf
—Cilk 5.4.6
— Section 2.5: Shared Memory (Cilk_fence construct)

— http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf

40

