
Vivek Sarkar

Department of Computer Science
Rice University

vsarkar@rice.edu

COMP 422, Lecture 7:
Shared-Memory Parallel

Programming with OpenMP
(Section 7.10)

COMP 422 Lecture 7 29 January 2008

2

Recap of Lecture 6 (Advanced Cilk Features)

• Inlet

• Abort

• Cilk_alloca

• SYNCHED

—Matrix Multiply example

• Cilk_lockvar

3

Programming Assignment #1:
Parallel Graph Coloring in Cilk

Program inputs (see http://www.cs.princeton.edu/~appel/graphdata/):

• Number of colors, K

• Adjacency list for each node. If there is an edge between nodes x and y, y
will apear in x’s adjacency list and vice versa

• List of move pairs. Your goal is to find a legal solutions in which as many
move pairs as possible are “eliminated” i.e., are given the same color

Program outputs:

• Number of legal solutions

• Minimum number of move-pairs that still remain in best legal solution (if
any)

What you need to submit:

• Single source file containing your Cilk program.

• Write-up summarizing parallelizing approach used, and performance data
for sample input file for 1 - 4 processors on an Ada node.

More details to follow

4

Example: Graph coloring

Given k colors, does there
exist a coloring of the nodes
such that adjacent nodes are
assigned different colors

Source: http://ai.uwaterloo.ca/~vanbeek/Courses/Slides/introduction.ppt

5

Example: 3-coloring

variables:
 v1, v2 , v3 , v4 , v5

domains:
 {1, 2, 3}

constraints:
 vi ≠ vj if vi and vj
 are adjacent

move pairs:
 (v1, v4), (v2 , v3)

v2

v3

v1

v5

v4

Source: http://ai.uwaterloo.ca/~vanbeek/Courses/Slides/introduction.ppt

6

Example: 3-coloring

A solution

 v1 ← 1
 v2 ← 2
 v3 ← 2
 v4 ← 1
 v5 ← 3

Note that both move
pairs have been
eliminated:
 (v1, v4), (v2 , v3)

v2

v3

v1

v5

v4

Source: http://ai.uwaterloo.ca/~vanbeek/Courses/Slides/introduction.ppt

7

Acknowledgments for today’s lecture

• Slides from OpenMP tutorial given by Ruud van der Paas at
HPCC 2007
— http://www.tlc2.uh.edu/hpcc07/Schedule/OpenMP

• Slides accompanying course textbook
—http://www-users.cs.umn.edu/~karypis/parbook/

• OpenMP 2.5 specification
—http://www.openmp.org/mp-documents/spec25.pdf

8

What is OpenMP?

9

A first OpenMP example

10

The OpenMP Execution Model

11

Terminology

12

Components of OpenMP

13

OpenMP directives and clauses

14

Parallel Region

A parallel region is a block of code executed by multiple
threads simultaneously, and supports the following clauses:

15

OpenMP Programming Model

• The clause list is used to specify conditional parallelization, number of
threads, and data handling.

— Conditional Parallelization: The clause if (scalar expression) determines
whether the parallel construct results in creation of threads.

— Degree of Concurrency: The clause num_threads(integer expression)
specifies the number of threads that are created.

— Data Handling: The clause private (variable list) indicates variables local
to each thread. The clause firstprivate (variable list) is similar to the
private, except values of variables are initialized to corresponding values
before the parallel directive. The clause shared (variable list) indicates
that variables are shared across all the threads.

16

Work-sharing constructs in a Parallel Region

• The work is distributed over the threads
• Must be enclosed in a parallel region
• Must be encountered by all threads in the team, or none at all
• No implied barrier on entry; implied barrier on exit (unless
nowait is specified)
• A work-sharing construct does not launch any new threads
• Shorthand syntax supported for parallel region with single
work-sharing construct e.g.,

17

Example of work-sharing “omp for” loop

18

Reduction Clause in OpenMP

• The reduction clause specifies how multiple local copies of a
variable at different threads are combined into a single copy at the
master when threads exit.

• The usage of the reduction clause is reduction (operator:
variable list).

• The variables in the list are implicitly specified as being private to
threads.

• The operator can be one of +, *, -, &, |, ^, &&, and ||.

#pragma omp parallel reduction(+: sum) num_threads(8) {

/* compute local sums here */

}

/*sum here contains sum of all local instances of sums */

19

OpenMP Programming: Example

/* **

An OpenMP version of a threaded program to compute PI.

** */

#pragma omp parallel default(private) shared (npoints) \
reduction(+: sum) num_threads(8)

{
num_threads = omp_get_num_threads();
sample_points_per_thread = npoints / num_threads;
sum = 0;
for (i = 0; i < sample_points_per_thread; i++) {

rand_no_x =(double)(rand_r(&seed))/(double)((2<<14)-1);
rand_no_y =(double)(rand_r(&seed))/(double)((2<<14)-1);
if (((rand_no_x - 0.5) * (rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) < 0.25)
sum ++;

}

}

20

Example of work-sharing “sections”

21

“single” and “master” constructs in a parallel region

• Single and master are useful for computations that are intended for
single-processor execution e.g., I/O and initializations
• There is no implied barrier on entry or exit of a single or master
construct

22

Implicit barrier

#pragma omp for

NOTE: barrier is redundant if there is a guarantee that the
mapping of iterations onto threads is identical in both loops

#pragma omp for

Implicit barrier

23

nowait clause & explicit barrier

• To minimize synchronization, some OpenMP
directives/pragmas support the optional nowait clause
• If present, threads do not synchronize/wait at the end of that
particular construct
• An explicit barrier can then be inserted at only the desired
program points

24

A more elaborate example

25

schedule clause for parallel loops

26

schedule clause for parallel loops (contd)

27

Assigning Iterations to Threads

• The schedule clause of the for directive deals with the
assignment of iterations to threads.

• The general form of the schedule directive is
schedule(scheduling_class[, parameter]).

• OpenMP supports four scheduling classes: static,
dynamic, guided, and runtime.

28

Assigning Iterations to Threads: Example

/* static scheduling of matrix multiplication loops */

#pragma omp parallel default(private) shared (a, b, c, dim) \

num_threads(4)
#pragma omp for schedule(static)
for (i = 0; i < dim; i++) {

for (j = 0; j < dim; j++) {

c(i,j) = 0;
for (k = 0; k < dim; k++) {

c(i,j) += a(i, k) * b(k, j);
}

}
}

29

Nesting parallel Directives

• Nested parallelism can be enabled using the OMP_NESTED
environment variable.

• If the OMP_NESTED environment variable is set to TRUE, nested
parallelism is enabled.

• In this case, each parallel directive creates a new team of
threads.

30

Out-of-line (“orphaned”) directives

31

OpenMP Library Functions

• In addition to directives, OpenMP also supports a number of
functions that allow a programmer to control the execution of
threaded programs.

/* thread and processor count */
void omp_set_num_threads (int num_threads);
int omp_get_num_threads ();
int omp_get_max_threads ();
int omp_get_thread_num ();
int omp_get_num_procs ();
int omp_in_parallel();

32

Example

33

OpenMP Locks

• OpenMP also supports “critical” and “atomic” constructs that can be used
in lieu of locks

34

OpenMP Locking Example

35

Environment Variables in OpenMP

• OMP_NUM_THREADS: This environment variable specifies the default
number of threads created upon entering a parallel region.

• OMP_SET_DYNAMIC: Determines if the number of threads can be
dynamically changed.

• OMP_NESTED: Turns on nested parallelism.

• OMP_SCHEDULE: Scheduling of for-loops if the clause specifies
runtime

36

Shared Data in OpenMP

37

threadprivate directive

• Thread private copies of the designated global variables
created

• Several restrictions and rules apply when doing this:
—The number of threads has to remain the same for all the parallel

regions (i.e. no dynamic threads)
—Initial data is undefined, unless copyin is used
—......

• Check the documentation when using threadprivate !

38

OpenMP Performance Tips

39

OpenMP Performance Tips (contd)

40

Reading List for Next Lecture (Jan 31st)

• Task construct proposed in OpenMP 3.0
—Section 2.7: task construct
—http://www.openmp.org/mp-documents/spec30_draft.pdf

• Memory Models
—OpenMP 2.5

– Section 1.4: Memory Model
– Section 2.7.5: Flush construct
– http://www.openmp.org/mp-documents/spec25.pdf

—Cilk 5.4.6
– Section 2.5: Shared Memory (Cilk_fence construct)
– http://supertech.csail.mit.edu/cilk/manual-5.4.6.pdf

