
Declarative Aspects of Memory Management in the Concurrent
Collections Parallel Programming Model

Zoran Budimlić
Rice University
zoran@rice.edu

Aparna Chandramowlishwaran
Georgia Institute of Technology

aparna@cc.gatech.edu

Kathleen Knobe
Intel Corporation

kath.knobe@intel.com

Geoff Lowney
Intel Corporation

geoff.lowney@intel.com

Vivek Sarkar
Rice University

vsarkar@rice.edu

Leo Treggiari
Intel Corporation

leo.treggiari@intel.com

Abstract
Concurrent Collections (CnC)[8] is a declarative parallel language
that allows the application developer to express their parallel appli-
cation as a collection of high-level computations called steps that
communicate via single-assignment data structures called items.
A CnC program is specified in two levels. At the bottom level,

an existing imperative language implements the computations
within the individual computation steps. At the top level, CnC
describes the relationships (ordering constraints) among the steps.
The memory management mechanism of the existing imperative
language manages data whose lifetime is within a computation
step. A key limitation in the use of CnC for long-running programs
is the lack of memory management and garbage collection for data
items with lifetimes that are longer than a single computation step.
Although the goal here is the same as that of classical garbage
collection, the nature of problem and therefore nature of the solu-
tion is distinct. The focus of this paper is the memory management
problem for these data items in CnC.
We introduce a new declarative slicing annotation for CnC

that can be transformed into a reference counting procedure for
memory management. Preliminary experimental results obtained
from a Cholesky example show that our memory management
approach can result in space reductions for CnC data items of up to
28× relative to the baseline case of standard CnC without memory
management.
Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors
General Terms Languages
Keywords Concurrent Collections, Reference Counts

1. Introduction
Parallel computing has become mainstream due to the rapid in-
crease in the adoption of multicore processors. Unlike previous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAMP’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-419-5/09/01. . . $5.00

generations of hardware evolution, this trend will have a major im-
pact on existing and future software. A highly desirable solution to
the multicore software productivity problem is to introduce high-
level declarative programming models that are accessible to devel-
opers who are experts in different domains but lack deep experience
with imperative parallel programming. In previous work [1], we
described the Concurrent Collections (CnC) programming model,
which builds on past work on TStreams [9]. In the CnC model, the
parallel structure of a program is described declaratively in terms
of computation steps that communicate via data items that satisfy
the dynamic single assignment property. A complete parallel pro-
gram can be obtained by using a sequential or parallel imperative
language to implement individual computation steps; however, the
interaction among computation steps still remains side-effect-free
thereby making parallelization and fault tolerance easy to support.
In [1], we presented parallel performance results for two differ-

ent runtime implementations of CnC, one based on C++ and the
Intel Threading Building Blocks [4] and the other based on Java
and X10 [3]. Though the results demonstrated the feasibility of
obtaining scalable parallel speedup with the CnC approach, they
also highlighted a key limitation of CnC implementations, viz., the
lack of automatic memory management and garbage collection for
data items. This limitation arises from the use of data items as a
single-assignment data interface among computation steps. In par-
ticular, in standard CnCwhen a data item is made available to other
computation steps, it is unclear how many computation steps in the
future may need to use that data item. In fact, some of these compu-
tation steps may not yet exist. Therefore it is unclear when the data
item becomes ready for garbage collection. This is a serious limita-
tion for long-running programs because the space requirement for
data items can grow unboundedly as a CnC program executes.
Standard garbage collection approaches are insufficient to solve

the memory management problem in the CnC programming model,
because references (tags) to data items can be created dynamically
by future computation steps performing get operations. Unless the
runtime system is absolutely certain that no future steps will create
a reference to the data item, it cannot free the memory occupied by
it.
The approach proposed in this paper is to introduce declara-

tive annotations in CnC that indicate which computation step will
read a specific data item. These are checked at runtime for potential
violations. These slicing annotations are converted into reference-
counting procedures that can be used to identify dead data items.
A single data item may be a scalar or may consist of a large data

F1 X F2

Data Dependence

F3 F4

T
Control Dependence

Figure 1. Data and Control dependences in a CnC program

structure. However, the only references permitted to a data item
are through get operations, thus making the problem of identifying
dead CnC data items different from the classical garbage collection
problem. Our preliminary experimental results show that our mem-
ory management approach can result in space reductions for data
items of up to 28× relative to the baseline case of standard CnC
without memory management, for the Cholesky example studied
in this paper.
The rest of the paper is organized as follows. Section 2 summa-

rizes the CnC model from past work. Section 3 introduces a new
declarative slicing annotation that serves as a key input for auto-
matic memory management. Section 4 defines the Memory Man-
agement problem statement for CnC, and Section 5 describes our
solution. Section 6 contains preliminary experimental results, and
Section 7 contains our conclusions.

2. Concurrent Collections Programming Model
The goal of the CnC language design is to provide a way to ex-
press the semantically required ordering constraints but avoid all
the arbitrary ones. This simplifies the mapping to parallel hardware
and also makes it more effective. There is a required ordering be-
tween two computation steps if one produces data consumed by
the other (data dependence) or one determines that the other will
execute (control dependence). Arbitrary orderings often appear in
other languages in several forms. Programs written using modifi-
able variables unnecessarily limit the interleavings of distinct as-
signments and uses. Our system is based on dynamic single as-
signment to avoid this ordering constraint. Serial languages (and
parallel languages embedded within serial languages) often exhibit
cases where two code segments are serialized arbitrarily. It is also
common to tightly bind the question of if a fragment will execute
with when it will execute. For example, code determines the loop
indices for the next body to execute and then immediately executes
it. Control flow arrives at the point of a call, determines that the call
will execute and the code immediately executes it.
The three constructs in this model are computation steps, data

items, and control tags. Statically, each of these constructs is a
collection representing a set of dynamic instances. Step instances
are the unit of distribution and scheduling. Item instances are the
unit of synchronization and communication. Item instances are the
unit of control.
The program is represented as a graph. The computation step,

data item and control tag collections are represented as circles,
boxes and triangles respectively (See Figure 1). We represent the

graph in textual form using () to suggest circles for computation
steps, [] to suggest boxes for data items and <> to suggest triangles
for control tags.
The edges in the graph specify the partial ordering constraints

required by the semantics. One type of ordering constraint arises
from a data dependence. This relationship is shown in Figure 1
where an instance of step (F1) produces a an instance of item [X]
consumed by an instance of step (F2). Clearly the producing step
instance must occur before the consuming step instance.
Another type of ordering constraint arises from a control de-

pendence, where one computation step determines if another com-
putation step will execute. Since we explicitly do not require that
the controlled computation step execute immediately, we need a
way of referring to it. For this purpose we introduce the notion of
control tags to distinguish among instances of computation steps.
These typically have some meaning within the application. They
might be loop indices, for example, or they might identify a recur-
sion instance. The control dependence relationship is also shown
in Figure 1. Here an instance of computation step (F3) produces
a control tag instance in <T> that controls an instance of computa-
tion step (F4). The controller step controls the controllee step. The
controller step puts a control tag in the tag collection. The mean-
ing of this is that (not necessarily immediately but) at some time
the controllee step with that same tag, e.g., with the same loop in-
dices, will execute. The controlled computation step has access to
its controlling tag much like the body of a loop has access to its loop
indices. These will be used to determine which data item instances
to consume and which to produce much like a loop body uses the
loop indices for array references. If there is a control tag in a tag
collection with tag value k, then a step with tag k will execute. That
step might consume items tagged k-1, k and k+1. It might produce
a tag value k+1.
As opposed to languages that embed parallelism within serial

code, in CnC there is no overwriting of the items and no arbi-
trary serialization among the steps. The data in items is accessed by
value, not by location. The items are tagged and obey dynamic sin-
gle assignment constraint. The steps themselves are implemented in
a serial language and are viewed as atomic operations in the model.
They are functional and have no side-effects.

2.1 Creating a graph specification
We will introduce the graph specification by showing the process
of creating a graph for a specific application. This discussion refers
to Figure 2 which shows a simplified graphical representation of a
Cholesky factorization example.
Cholesky factorization [2] takes a symmetric positive definite

matrix as an input, and factors it into a lower triangular matrix and
its transpose. It can be derived by equating corresponding entries of
A and LLT and generating them in order. The input is a symmetric
positive definite matrix A and Aij represents a block of size bxb
where b = n/p and i ∈ [0,1,...,p-1], j ∈ [0,...,i].
The process below describes how to put an application into CnC

form.

2.1.1 Step collections:
The computation is partitioned into high-level operations or step
collections. In this application, there are six step collections: three
step collections (k), (kj) and (kji) produce tags <K>, <KJ>
and <KJI> for the computation steps. The computation can be
broken down into three step collections. The step (s1) performs
unblocked Cholesky factorization of the input symmetric positive
definite tile producing a lower triangular matrix tile. Step (s2)
applies a triangular system solve on the result of the step (s1).
Finally the step (s3) is used to update the underlying matrix via a
matrix-matrix multiplication.

L

t2

t3

t1

t0

S1

S2

S3

KJI

KJ

K

Tag Collection

Step Collection

Item Collection

Producer / consumer
relation
Prescription relation
Input / output

Determine 3 tag collections

Compute steps

// Declarations
[double** L: int, int, int]; // The in/out matrix
// p and b are global read-only values, not items
global int p; // Tile loop end value
global int b; // Tile size

// Tags
<singleton>;
<K>; //Step 1 indices [k = 0...p-1]
<KJ: int,int>; //Step 2 indices [j = k+1...p-1]
<KJI: int,int,int>;//Step 3 indices [i = k+1...j]

// Step Prescriptions
<singleton> :: (k);
<K> :: (s1),(kj);
<KJ> :: (s2),(kji);
<KJI> :: (s3);

// Input: tile pointers, tile size and loop end value
env -> [L], p, b, <singleton>;

// Step execution
// The k step produces ’k’ loop indices
p -> (k);
(k) -> <K>;
// The kj step produces ’j’ loop indices
p -> (kj);
(kj) -> <KJ>;
// The kji step produces ’i’ loop indices
p -> (kji);
(kji) -> <KJI>;
// Step 1 Executions
[L: k, k, k], b -> (s1);
(s1) -> [L: k, k, k+1];
// Step 2 Executions
[L: j, k, k], [L: k, k, k+1], b -> (s2);
(s2) -> [L: j, k, k+1];
// Step 3 Executions
[L: j, i, k], [L: j, k, k+1],
[L: i, k, k+1], b -> (s3);
(s3) -> [L: j, i, k+1];
// Return value
[L: k, k, k+1], [L: j, k, k+1] -> env;

Figure 2. Graphical and Textual CnC Representations for Cholesky Factorization Example

2.1.2 Item collections and producer-consumer relations:
The data is partitioned into data structures or item collections. In
this application there is one item collection, [L], corresponding to
the input/output matrix tile. The producer and consumer relation-
ships between step collections and item collections are represented
as directed edges between steps and items as shown in Figure 2.
The environment (the code that invokes the graph) may produce

and consume items and tags. These relationships are represented by
directed squiggly edges in the graphical form and by producer and
consumer relations with env in the text form. In our application,
for example, env produces [L] input tile items and consumes [L]
output tile items.
After completing these first two phases the domain expert has a

description that is similar to how people communicate informally
about their application on a whiteboard. The next two phases are
required to make this description precise enough to execute.

2.1.3 Tag components:
The typical computation steps in CnC are not long-lived computa-
tions that continually consume input and produce output. Rather,
as each step instance is scheduled it consumes item instances, exe-
cutes, produces item instances and terminates.
We need to distinguish among the instances in a step or item

collection. Each dynamic step instance is uniquely identified by an
application-specific tag. A tag component might indicate a node
identifier in a graph, a row number in an array, an employee num-
ber, a year, etc. A complete tag might be composed of several com-
ponents, for example, employeeID and year or maybe xAxis,
yAxis, and iterationNum.
In our example, the instances of the [L] item collection are

distinguished by k, j and i.

2.1.4 Tag Collections and Prescriptions:
The specification of the tag components that distinguish among
instances is still not precise enough to execute. Knowing that we
distinguish instances of (s1) steps by values of k does not tell us
if a (s1) step is to be executed for k = 3. This control is the role
of tag collections.
Tag collections are sets of tag instances. There are three tag

collections in our example graph. A tag in <K> identifies the tiles
step (s1) computes on. A tag in <KJ> identifies the tiles step
(s2) computes on and a tag in <KJI> identifies the tiles step
(s3) computes on. A prescriptive relation may exist between a
tag collection, (<K> for example) and a step collection ((s1) for
example). The meaning of such a relationship is this: if a tag
instance t, say k=3, is in <K>, then the step instance s in (s1)
with tag value k=3, is guaranteed to (eventually) execute. Notice
that the prescription relation mechanism determines if a step will
execute.When and where it executes is up to a subsequent scheduler
or the tuning expert. A prescriptive relation is shown as a dotted
edge between a tag collection and a step collection. The form of
the tags for a step collection is identical to the form of the tags of
its prescribing tag collection, e.g., instances of the tag collection
<K> and the step collection (s1) are both distinguished by k. The
task of (s2) and (s3) steps is to perform some processing on each
of the tiles generated. A (s2) step will execute for each k and j. A
(s3) step will execute for each k, j and i.
Now we consider how the tag collections are produced. The tags

in <K> are produced by the step (k). The tags in <KJ> are produced
by the step (kj) and the tags in <KJI> are produced by the step
(kji).
Step (k) and step (s1) form a control dependence mediated by

<t1>. This approach allows us maximal flexibility in scheduling.
The specific constraint represented is that the step instance of (k)

L

putS2A: (s2) puts [L: j, k, k+1]

getS2A: (s2) gets [L: j, k, k]

getS2A: (s2) gets [L: k, k, k+1]

S2

L
putS2

S2

Figure 4. Step – Item relationship

producing a given tag valuemust execute before the step (s1) with
that same tag value.
In this example, the instances in the collections of <K> tags,

[L] items and (s1) steps do not correspond exactly to each other.
For example, step (s1: k) produces items [L: k, k, k+1].
These relationships are allowed to be complex, involving near-
est neighbor computations, top-down or bottom-up tree processing
or a wide variety of other relationships. Tags make the Concurrent
Collections programming model more flexible and more general
than streaming programming models. The relationship in Figure 2
really represents the more complex relationship as shown in Fig-
ure 4. The step code in Figure 3 illustrates how we can identify the
puts and gets with these labels.

2.2 Textual Representation
A full textual representation of the graph includes one statement
for each relation in the graph. Arrows are used for the producer and
consumer relations. The symbol :: is used for the prescription re-
lation. Declarations indicate the tag components for item and tag
collections. (Recall that tag components for step collections are de-
rived from the tag components of their prescribing tag collections.)
The resulting graph for Cholesky factorization in textual form is
shown in Figure 2.

2.3 The serial code
In addition to specifying the graph, we need to code the steps and
the environment in an imperative language. Figure 3 is the step
code for the step S2. The step has access to the values of its tag
components. It uses get operations to consume items and put
operations to produce items and tags.

2.4 Optimizing and Tuning a Concurrent Collections
specification

In this section, we consider the potential parallelism in the example
from the perspective of an optimizing compiler or a tuning expert
that has no knowledge of the internals of the steps or items. While
the specification determines if a step will execute, the output of
an optimizing compiler or tuning-expert will in general determine
when and where each step will execute.
What can we tell just by looking at the textual representation in

Figure 2? We will consider each of the three step collections de-

StepReturnValue_t S2_compute(cholesky_graph_t& graph, const
Tag_t& S2_compute_Tag) {

double **A_block;
double **Li_block;
double **Lo_block;
double temp;
const int b = graph.b.Get(Tag_t(0));
const int k = (S2_compute_Tag[0]);
const int j = (S2_compute_Tag[1]);

// Get the input tile.
A_block = graph.Lkji.Get(Tag_t(j,k,k));

// Get the 2nd input tile (Output of previous step).
Li_block = graph.Lkji.Get(Tag_t(k, k, k+1));

// Allocate memory for the output tile.
Lo_block = (double **) malloc(b * sizeof(double*));
for(int i = 0; i < b; i++) {

Lo_block[i] = (double *) malloc(b * sizeof(double));
}

for(int k_b = 0; k_b < b; k_b++) {
for(int i_b = 0; i_b < b; i_b++) {
Lo_block[i_b][k_b] = A_block[i_b][k_b]/Li_block[k_b][k_b];

}
for(int j_b = k_b+1; j_b < b; j_b++) {

for(int i_b = 0; i_b < b; i_b++) {
A_block[i_b][j_b] = A_block[i_b][j_b]
- (Li_block[j_b][k_b] * Lo_block[i_b][k_b]);

}
}

}

// Write the output tile at the next time step.
graph.Lkji.Put(Tag_t(j, k, k+1),Lo_block);
return CNC_Success;

}

Figure 3. Perform triangular solve on the input tile

scribing the computation of the algorithm in turn. Since the step
collection (s1) is prescribed by the tags of <K> and consumes
only items of [L: k, k, k] and since the producer of this col-
lection in the first iteration alone is env, the (s1: k, k, k) step
instance is enabled at the start of execution. The producer of this
collection for subsequent iterations is step (s3). Steps in (s2) is
prescribed by tags in <KJ> and consumes items of [L: j, k, k]
and [L: k, k, k+1]. The producer of this collection is both the
env and step (s1) in the first iteration. For all subsequent iterations
the producer of this collection are both steps (s1) and (s3). Steps
in (s3) is prescribed by tags in <KJI> and consumes items of [L:
j, i, k], [L: j, k, k+1] and/or [L: i, k, k+1]. The pro-
ducer of this collection is both the env and step (s2) in the first
iteration. For all subsequent iterations the producer of this collec-
tion are both steps (s2) and (s3). It might appear that we have
to wait for the (s2) steps to complete before beginning any (s3)
steps but let us examine the specification a bit more closely with a
focus on the tag components. The scope of a tag component name
is a single statement. If the same name, e.g., j, k is used on both
sides of an arrow, it has the same value. For example, (s2: j, k)
-> [L: j, k, k+1]; means that the [L] item instance produced
has the same j, k as the step that produced it. [L: j, i, k] ->
(s3: j, i, k); means that the [L] item instance consumed has
the same i, j, k as the instance of (s3) step that consumed it. This
means that there is a data dependence, and therefore an ordering
constraint, between a step instance of (s2: j, k) and any step

instance of (s3: j, i, k) with the same j and k. For similar
reasons, there is a control dependence between a step (s2: j, k)
and any step (s3: j, i, k) with the same j and k. This control
dependence is via the tag collection <KJ: j, k>. In this particu-
lar application the control and data dependencies leads to exactly
the same ordering constraint. Notice that none of this reasoning has
anything to do with the code within the step or the data structures
in the items. In other words, the tuning expert does not need to have
any knowledge of the domain.
The current implementation does not support arithmetic op-

erators. Instead we allow user-supplied tag functions such as
northwest(i, j) or parent(nodeID).

3. Slicing Annotation
The Concurrent Collections Programming Model described in the
previous section allows expression of very general forms of dy-
namic parallelism and dynamic data accesses, while still preserving
important invariants such as determinism and data race freedom.
In this section, we introduce a declarative slicing annotation for
CnC programs. Slicing annotations can be used by the programmer
to restrict which step instances can read a specific item instance.
The annotations can be used for additional correctness checking
by (say) enabling the CnC runtime to throw an exception if a get
operation is attempted by a step instance in violation of a slicing
constraint. In addition, the annotation can be used by the CnC run-

time to perform optimizations such as garbage collection of dead
items and update-in-place transformations [7, 5]. The later sections
of this paper focus on the use of slicing annotations of this paper
for optimized memory management and garbage collection of dead
items.
Consider an item instance in collection [C: T], and an instance

of step (S: I). The annotation,

(S: I) ⊆ readers([C: T]), constraints(I, T)

indicates that step instance (S: I) may perform a get operation
on item [C: T] if constraints(I, T) = true. In the absence of any
annotations for [C: T], the default semantics is that readers([C:
T]) = ∗ i.e., any step may perform a get operation on ([C: T]).
In general, compiler analysis can be used to further refine the
slicing annotations (if any) provided by the user. However, if an
annotation is provided for ([C: T]), we assume that readers([C:
T])will exactly equal the union of the (S: I)’s specified in all
slicing annotations for which constraints = true. In this paper, we
will restrict our attention to constraints that include conjunctions
and disjunctions of affine equalities and inequalities involving tag
components and literal or symbolic global constants. We refer to
this annotation as a slicing annotation because it specifies the slice
(set) of step instances that reads a given item, akin to an iteration
slice [10].
As an example, consider collection [Lijk] in the Cholesky

CnC program discussed in Section 2. Items in this collection are
indexed by a three-dimensional tag, T = t1,t2,t3. The slicing
annotations for [Lijk] are shown in Figure 5. The constraints in
these annotations include conjunctions and disjunctions of affine
equalities and inequalities1 involving tag components and global
constants. The naming convention for labels is used to distin-
guish among different get operations in the same step e.g., getS3A,
getS3B, and getS3C refer to three different gets in step S3.

4. Memory Management Problem
This section addresses the use of memory for application data. We
show the various types of user data and show the transitions among
these types to motivate the memory management issues addressed
in the remainder of the paper.

4.1 Possible states for regions of memory
There are several types of user data available in Concurrent Collec-
tions.

Global read-only memory: This data is produced by the environ-
ment of the CnC graph and not modified by the CnC execution.
The environment is responsible for managing this storage.

Locals: A local within a step might be a stack local or a heap local.
In either case, the lifetime of a local is within the life of a single
step instance. It may be shorter. Stack locals are managed by the
serial language. The step code is responsible for deallocating
any heap allocated local.

Contents of items: The lifetime of an item may span many step
executions. It is alive from the time it is produced until all the
steps that get it have executed. This lifetime may vary from
execution to execution as the schedule varies but the contents
of an item is guaranteed to be alive for any get. For a statically
scheduled execution, the guarantee is a requirement of a valid
static schedule. For a dynamically scheduled execution, it is the
responsibility of the runtime to schedule the steps to ensure that
this is true.

1 Note that i != j is translated to (i<j ∨ i>j) in annotation 1.

Figure 6. State Transitions in Global Memory

4.2 Memory state transitions
As the program executes, memory undergoes state transitions. The
possible states of a memory location are the states of user data
presented above and one additional state: free.

Free: Memory is free before it becomes the contents of an item or
a local. It is free at the end of the lifetime of an item containing
it. It becomes free at the end of the lifetime of a local. It stops
being free when it becomes part of a local, either stack or heap.

From the perspective of the Concurrent Collections code, mem-
ory for user data starts out as free or as global read-only memory.
Global read-only memory remains in that state through out. Mem-
ory that starts as free may go through the following state transitions:

• Free to Stack Local: This transition occurs when a local is
allocated on the stack (upon entering a step or a block within
a step).

• Free to Heap Local: This transition occurs when a local is on
the heap (by explicit allocation).

• Stack Local to Free: This transition occurs when a stack local is
deallocated from the stack (upon exiting a step or a block within
a step).

• Heap Local to Free: This transition occurs when a heap local is
explicitly deallocated within a step.

• Heap Local to Item: This transition occurs when heap allocated
local memory is put as the contents of an item.

• Item to Free: This transition is instigated by the runtime system
when dead item analysis has determined that the item is dead,
i.e., its last use has executed.

Notice that there is no transition from free directly to item. The
assumption is that for a step to put the contents as an item the
contents had to be heap local first.
To ensure clean semantics regardless of the schedule and limit

the transitions to those shown above we impose the following
limitations on what a step instance s may do.

• s may read read-only global data without performing a get. It
may not write into read-only global data.

• s may create local values and it may write and read them. It
may not read its own locals before it has written them. (This is

getS1A: (s1 : k) ⊆ readers([Lijk : t1, t2, t3]) , t1 = t2 ∧ t2 = t3 ∧ t1 = k

getS2A: (s2 : k, j) ⊆ readers([Lijk : t1, t2, t3]) , t2 = t3 ∧ t3 = k ∧ t1 = j

getS2B: (s2 : k, j) ⊆ readers([Lijk : t1, t2, t3]) , t1 = t2 ∧ t2 = k ∧ t3 = k + 1

getS3A: (s3 : k, j, i) ⊆ readers([Lijk : t1, t2, t3]) , t1 = j ∧ t2 = i ∧ t3 = k

getS3B: (s3 : k, j, i) ⊆ readers([Lijk : t1, t2, t3]) , t1 = j ∧ t2 = k ∧ t3 = k + 1 ∧ i = j

getS3C: (s3 : k, j, i) ⊆ readers([Lijk : t1, t2, t3]) , t1 = i ∧ t2 = k ∧ t3 = k + 1 ∧ (i < j ∨ i > j)

Figure 5. Get Operations and Slicing Annotations for Collection Lijk from Cholesky example

a requirement of any serial language.) It may not read or write
locals of other step instances.

• s may put an item with name n and tag t in accordance with
single assignment rules. It may not put an item with name n and
tag t if a distinct instance has put an item with the same name
and tag but a different value.

• s may read the contents of an item if s has performed a get
on that item. The contents of an item may include a tag, a
pointer to elsewhere within the same item, or a pointer to read-
only memory. It may use these for a get, for traversing its own
contents or to find a place in read-only memory. It may not read
the contents of an item instance it has not gotten. It may not
write into the contents of an item instance regardless of whether
it has or has not gotten that item. It may not contain a pointer to
memory that is local, contents of other items or free.

Note: It is the responsibility of the runtime system (not the CnC
specification) to ensure that an item is put before it is gotten.

5. Memory Management via the Slicing
Annotation

There are no new memory management issues within steps or
within the environment. These are handled by the language of
the steps and the environment. However, Concurrent Collections
has introduced the new concept of items. Taken all together, these
items may occupy more memory than is available. But, while the
lifetime of an item is longer than a single step, it is typically much
shorter than the execution of the whole graph. It is both possible
and critical to remove items when they will no longer be referenced.
The language semantics include the single assignment rule, so the
semantics are at the level of values, not storage. This frees the user
from worrying about the management of the memory. This task is
left to the runtime. Notice that, in fact, the determination of when an
item becomes dead can not be part of the CnC specification because
that is very dependent on the schedule which is not known to the
specification.
Dead item analysis is similar to garbage collection in that we

are interested in determining when values are dead so their storage
can be reclaimed. But it is different from standard GC in several
ways: First, for CnC, we have built a wide range of runtimes. They
vary according to whether the grain-size, the schedule and the dis-
tribution among processors is determined statically or dynamically
and is performed by a programmer or automatically. In this paper
we discuss how to determine when an item is dead regardless of
the style of runtime. GC, on the other hand, is typically part of
a dynamic managed runtime. In addition, dead item analysis is not
about detecting if a pointer points to that storage. We have no point-
ers to an item. We have to prove that no future step (even if the step
is not yet prescribed and it does not yet have any of its inputs avail-
able) can later execute a get on that item.

5.1 Attributes and their Propagation
The problem may sound impossible. Let us look at what informa-
tion we have to work with. We have access to the information in the
static CnC graph. In addition, we have access to the dynamic at-
tributes in the execution frontier and the cover sets described in [9].
In the discussion below, some of the expressions are static

properties of the graph (e.g., <T>:: (S)). Some expressions are
dynamic (e.g., [I: i].available.

1. The primitive attributes
The primitive attributes are .executed for steps and .available
for items and tags. These are generated by the runtime directly.

2. Propagation of attributes
These propagated attributes are based on the primitive attributes
and other propagated attributes.

• inputs-available

(S:s).inputs-available =
// indicates when all the inputs
// for a step are available
For all [I:i] s.t. (S:s) gets [I:i]

[I: i].available

• prescribed

(S:s).prescribed =
// indicates when it is known
// that the step will execute
<T> :: (S) and <T:t>.available

• enabled

(S:s).enabled =
// indicates when the step is ready to execute
(S:s).inputs-available and (S:s).prescribed

• complete

(S:s).complete =
// indicates when it is known that the
// step will not execute in the future
(S:s).executed
or (<T>:: (S) and !<T:s>.available)

• !< . . .>

!<T:t>.available =
// indicates when known that the tag will never
// be available. This attribute can be put by
// a step directly and is also propagated
not(<T:t>.available) and
for each (S) s.t. (S) -> <T>

for each s in writers((S),<T>)
(S:s).complete

• dead
One thing to note in the definition below is that the expres-
sion (!<T:t>.available) is not, in general, monotonic.
However, the whole definition is monotonic because, once
the second expression in the conjunction is true, all the pro-
ducers are complete so<T:t> can not subsequently become
available.

[I:i].dead =
// indicates when an item
// will not be used in the future
for each (S) s.t. [I] -> (S)
for each s in readers((S), [I])

(S:s).complete

5.2 Transform declarations into reference count functions
We consider each item collection in turn. The goal is to produce
a function that will convert the tag of an instance of an item to
the number of gets that will occur on that instance. We will call
that function at the time an item is produced and set its reference
count accordingly. Each time the item is gotten the count will be
decremented. The item can be removed when the reference count
goes to zero.
The process is shown below by applying it to the Cholesky

example introduced in Section 2 and then by a dynamic application,
face detection.

5.2.1 Cholesky
In the discussion below, p and b are global read-only data. k, j and
i are tag components.

1. tag spaces:
<K: k> is k = 0, p-1
<KJ: k, j> is k = 0, p-1; j = k+1, p-1
<KJI: k, j, i> is k = 0, p-1; j = k+1, p-1; i = k+1,
j

2. From the perspective of each get in each step
The three compute steps are prescribed as follows:
(s1: k) :: <K: k>
(s2: k, j) :: <KJ: k, j>
(s3: k, j, i) :: <KJI: k, j, i>

3. The distinct get operations are identified below. We give them
names here to help in following the example. The names are
not part of the specification. getS1A is in step (s1), getS2A
and getS2B are distinct static get operations within step (s2).
These two get operations get distinct instances of [L] as shown
by the distinct tag components below. Similarly for the three get
operations in (s3).
getS1A in (s1: k) gets [L: k, k, k]

getS2A in (s2: k, j) gets [L: j, k, k]
getS2B in (s2: k, j) gets [L: k, k, k+1]

getS3A in (s3: k, j, i) gets [L: j, i, k]
getS3B in (s3: k, j, i) gets [L: j, k, k+1]
if i != j
getS3C in (s3: k, j, i) gets [L: i, k, k+1]

4. From the perspective of an item

We have to transform the information from the perspective of a
step that does a get, to the perspective of an item that is gotten.
Remember that the ref count function we are generating will be
call for an item instance when that instance is put.
For a given item instance, say [L: t1, t2, t3], we deter-
mine the conditions under which each get in each step of its
consuming slice will execute and how many of these there will
be in total. We need to consider two distinct constraints:
• slice constraint: Is this item one that might be gotten by any
conceivable instance of the step?

• tag constraint: Is that step instance actually going to exe-
cute?

We then determine a simplified version of the constraint and
from that we compute the number of such instances.
In this example, a clean expression of these instances can be de-
termined statically. In general, for more dynamic computations,
we will use a more conservative notion of completed rather
than executed, where the initial ref count and the number of
completed steps must be identical.

• getS1A
from step: (s1: k) gets [L: k, k, k]
from item: [L: t1, t2, t3] is gotten by (s1: k)
slice constraint: t1 = t2 ∧ t2 = t3 ∧ t1 = k
tag constraint: 0 ≤ t1 ≤ p-1;
=⇒ simplified constraint: t1 = t2 = t3
number of instances: 1

• getS2A
from step: (s2: k, j) gets [L: j, k, k]
from item: [L: t1, t2, t3] is gotten by (s2: k, j)
slice constraint: t2 = t3 ∧ t3 = k ∧ t1 = j
tag constraint: 0 ≤ t3 ≤ p-1 ∧ t3+1 ≤ t1 ≤ p-1
=⇒ simplified constraint: t2 = t3 ∧ t1 > t3
number of instances: 1

• getS2B
from step:(s2: k, j) gets [L: k, k, k+1]
from item: [L: t1, t2, t3] is gotten by (s2: k, j)
slice constraint: t1 = t2 ∧ t2 = k ∧ t3 = k+1
tag constraint: 0 ≤ t2 ≤ p-1 ∧ t2+1 ≤ t1 ≤ p-1
=⇒ simplified constraint: t1 = t2 ∧ t3 = t2 + 1
number of instances: p-t2-1

• getS3A
from step: (s3: k, j, i) gets [L: j, i, k]
from item: [L: t1, t2, t3] is gotten by (s3: k, j,
i)
slice constraint:
t1 = j ∧ t2 = i ∧ t3 = k
tag constraint: 0 ≤ t3 ≤ p-1 ∧ t3 ≤ t1 ≤ p-1 ∧ t3+1 ≤
t2 ≤ t1
=⇒ simplified constraint: t1 > t3 ∧ t2 > t3
number of instances: 1

• getS3B
from step: (s3: k, j, i) gets [L: j, k, k+1]
from item: [L: t1, t2, t3] is gotten by (s3: k, j,
i)
slice constraint: t1 = j ∧ t2 = k ∧ t3 = k+1
tag constraint: 0 ≤ t2 ≤ p-1 ∧ t2+1 ≤ t1 ≤ p-1
=⇒ simplified constraint: t3 = t2 + 1 ∧ t1 > t2

number of instances: 1

• getS3C
from step: if i != j (s3: k, j, i) gets [L: i, k,
k+1]
from item: [L: t1, t2, t3] is gotten by (s3: k, j,
i)
slice constraint: t1 = i ∧ t2 = k ∧ t3 = t2+1 ∧ (i ≤
j ∨ i ≤ j)
tag constraint: 0 <= t2 <= p-1 ∧ t2+1 <= i
=⇒ simplified constraint: t3 = t2 + 1 ∧ t1 > t2
number of instances: p-t2-2

5. A ref count function can be built directly from this as follows:

rc = 0;
// getS1A
if(t1 == t2 && t2 == t3)
// adjustment for (s1:k) where t1 = k
rc = rc + 1;

// getS2A
if(t2 == t3 && t1>t3)
// (S2:k, j) where t3 = k and t1 = j
rc = rc + 1;

// getS2B
if(t1 == t2 && t3 == t2+1)
// (s2: k, j) step constraints t2 = k for all j
// range of j: k+1, p-1 = (p-1)-(k+1)+1 = p-k-1
rc = rc + p - t2 - 1 ;

// getS3A
if(t1>t3 && t2>t3)
// step constraints t1 = j and t2 = i and t3 = k
rc = rc + 1;

// getS3B
if(t2 +1 == t3 && t1 > t2)
// step constraints t1 = j and t2 = k for all i = j
rc = rc + 1;

// getS3C
if(t2 + 1 == t3 && t1 > t2)
// step constraints t1 = i and t2 = k for all i != j
// range of j : k+1, p-1 = (p-1)-(k+1)+1 = p-k-1
rc = rc + p - t2 - 2;

Notice that the approach used above uses the fact that an ex-
pression describing each tag space is known statically. If the ex-
pression might not be known at the time of the put the method will
not reliably convert the tag constraint to a constant number of ref-
erences. Below we show one way of extending the class of appli-
cations reliably handled by the approach. Even with this extension,
there may be applications for which the approach does not apply.
The approach is conservative in that nothing will be removed that
is not actually garbage but it may neglect to remove actual garbage.
As future work, we plan to better characterize the class of applica-
tions handled and, in addition, to extend the approach to expand the
class.

5.2.2 Face Detection
Here we consider an application that is much more dynamic than
Cholesky. It is an abstraction of a cascade face detector used in the
computer vision. It includes a cascade of classifiers. The first clas-
sifier, (c1) operates on images. It is controlled by a tag collection,
called ¡tc1¿. This tag collection contains tags specifying the im-
age. If the first classifier determines that an image might be a face,
it produces that same tag value but into a different tag collection,
¡tc2¿ that controls the second classifier. This tag collection will be
a subset of the first tag collection. An image may fail on any clas-
sifier but if it makes its way to the end, it is deemed to be a face. If
an image passes the last of the classifiers, it is identified in the item

collection [face]. The classifiers are determined by machine learn-
ing, but you might think of them as looking for eyes, nose, mouth,
etc. The tag w indicates a window in the image. The windows are
square, of all sizes, in all positions in the frame.

• tag spaces:
// tag collections for classifiers
<tc1: w>, <tc2: w>, <tc3: w>;

// detected faces
<face: w>;

// detected as not faces
!<tc2: w>, !<tc3: w>, !<face: w>;

• From the perspective of each get in each step
Examine each get operation in each step.
env -> <tc1>;
<face> -> env;

• prescriptions
(c1: w) :: <tc1: w>;
(c2: w) :: <tc2: w>;
(c4: w) :: <tc3: w>;

• produces < . . .> or !< . . .>;
[window: w] -> (c1: w) -> <tc2: w>, !<tc2: w>;

[window: w] -> (c2: w) -> <tc3: w>, !<tc3: w>;

[window: w] -> (c3: w) -> <face: w>, !<face: w>;

• from the perspective of the steps
get in (c1: w) gets [window: w] if <tc1:w>.available
get in (c2: w) gets [window: w] if <tc2:w>.available
get in (c3: w) gets [window: w] if <tc3:w>.available

• From the perspective of an item
Consider an item instance [window: w]. Under what conditions
is get g in step s complete? Each of these will count as one
reference.
(c1: w).complete =
(c1: w).executed ∨ !<tc1: w>.available
(c2: w).complete =
(c2: w).executed ∨ !<tc2: w>.available
(c3: w).complete =
(c3: w).executed ∨ !<tc3: w>.available

Notice that this case is dynamic and the Cholesky application
was static. We deal with the dynamism by considering both <
. . .> and !< . . .> for each tag. This means that for any w the ref
count for [window: w] is a constant 3.

6. Preliminary Experimental Results
We have implemented the Cholesky factorization example [2] us-
ing the CnC programming model on two platforms. One is Intel R©
Concurrent Collections [8] for C/C++ based on Intel R©Threading
Building Blocks [4]. The other one is an X10/Java-based imple-
mentation using the Habanero Multicore Software Research project
at Rice University [6].
We have also implemented by hand a simulation of the mem-

ory management technique using slicing annotation described in
this paper within our two Cholesky implementations. We have ran
experiments for a matrix size of 2000x2000 and 1000x1000 and
different tile sizes, on a 2-core Intel MacBook Pro with 4GB of
memory, and on an Intel 8-core (two quad-core processors) Vista
machine with 3.2GB of memory.

Cholesky Factorization (N = 1000)

Block Size

0 200 400 600 800 1000

By
te

s

0

1e+7

2e+7

3e+7

4e+7

5e+7

6e+7

7e+7

No Memory Management
Memory Management using slicing annotation

Figure 7. Memory requirements for Cholesky factorization using X10 for a 1000x1000 matrix

Cholesky Factorization (N = 2000)

Block Size

0 500 1000 1500 2000

By
te

s

0

1e+8

2e+8

3e+8

4e+8

5e+8

No Memory Management
Memory Management using slicing annotation

Figure 8. Memory requirements for Cholesky factorization using X10 for a 2000x2000 matrix

An interesting and perhaps surprising result was that the mem-
ory requirements in this particular application only depended on the
problem size and tile size, and did not vary with number of cores,
number of threads or whether a C/C++ or X10/Java implementa-
tion was used. We believe that this is an inherent property of the
parallel algorithm used in this example, and that the memory usage
will depend on the amount of parallelism available and exploited in
an application.
The results of our experiments are shown on graphs on Figures 7

and 8. The numbers indicate the maximum space used by CnC
for items collections, without and with our optimized memory
management. Space used for other user data and space used for
the runtime are not considered.
We can conclude that the memory management technique pre-

sented in this paper has a significant impact on the memory foot-
print of the Cholesky factorization example. Memory requirements
for a problem with a small tile size were lowered up to 28 times
using our memory management technique. The optimal tile sizes
in terms of running times of the program were 125 in the X10/Java
implementation and 50 in the C/C++ implementation [1]. In these
two cases, the memory savings of our memory management tech-
nique were a factor of 7 and 14 respectively.
While it is customary in similar studies to compare the proposed

technique with the state of the art, and comparing our results against
no memory management at all may seem to be unjustly favoring
the technique we are proposing, we are unaware of the existence
of any memory management technique that is applicable to item
collections in the Concurrent Collections programming model.

7. Conclusions and Future Work
In this paper, we addressed the memory management problem for
item collections in the Concurrent Collections (CnC) programming
model. We introduced a new declarative slicing annotation for CnC
that can be automatically transformed into a reference counting
function, which can be further used for memory management. Pre-
liminary experimental results obtained from a Cholesky factoriza-
tion example show that our memory management approach can re-
sult in space reductions for item collections of up to 28× relative to
the baseline case of standard CnC without memory management.
There are many opportunities for future work to further extend

the memory management approach described in this paper. We
plan to extend the approach to handle a broader class of CnC
applications. We will explore ways of compactly indicating that
a step instance (with a specific tag) will never be executed in the
future; that information can be used to improve the precision of the
garbage collection approach presented in this paper. A hierarchical
approach to specifying CnC programs can be explored that enables
all sub-nodes within a hierarchical node to be collected, whenever
a super-node’s reference count becomes zero. Finally, we intend to
explore other applications of the slicing annotation, such as copy
elimination [7, 5], to further improver the performance of CnC
programs.

References
[1] Zoran Budimlić, Aparna Chandramowlishwaran, Kathleen Knobe,

Geoff Lowney, Vivek Sarkar, and Leo Treggiari. Multi-core
implementations of the concurrent collections programming model.
In CPC ’09: 14th International Workshop on Compilers for Parallel
Computers. Springer, January 2009.

[2] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra.
A class of parallel tiled linear algebra algorithms for multicore
architectures. Lapack working Note 191, abs/0709.1272, 2007.

[3] Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grothoff, Allan Kielstra, Christoph von Praun, Vijay Saraswat, and
Vivek Sarkar. X10: an object-oriented approach to non-uniform
cluster computing. In Proceedings of OOPSLA ’05, pages 519–538,
New York, NY, USA, 2005. ACM Press.

[4] Intel Corporation. Thread building blocks.
http://www.threadingbuildingblocks.org/.

[5] K. Gharachorloo, V. Sarkar, and J. L. Hennessy. Efficient Implemen-
tation of Single Assignment Languages. ACM Conference on Lisp
and Functional Programming, pages 259–268, July 1988.

[6] Habanero multicore software research project web page.
http://habanero.rice.edu.

[7] Paul Hudak and Adrienne Bloss. The aggregate update problem in
functional programming systems. Proceedings of the Twelfth Annual
ACM Conference on the Principles of Programming Languages,
pages 300–313, January 1985.

[8] Intel (r) concurrent collections for c/c++.
http://softwarecommunity.intel.com/articles/eng/3862.htm.

[9] Kathleen Knobe and Carl D. Offner. Tstreams: A model of parallel
computation (preliminary report). Technical Report HPL-2004-78,
HP Labs, 2004.

[10] William Pugh and Evan Rosser. Iteration space slicing and its
application to communication optimization. In ICS ’97: Proceedings
of the 11th international conference on Supercomputing, pages 221–
228, New York, NY, USA, 1997. ACM.

