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Abstract—Two concurrent accesses to a shared variable that
are unordered by synchronization are said to be a data race if
at least one access is a write. Data races cause shared memory
parallel programs to behave unpredictably. This paper describes
ROMP – a tool for detecting data races in executions of scalable
parallel applications that employ OpenMP for node-level par-
allelism. The complexity of OpenMP, which includes primitives
for managing data environments, SPMD and SIMD parallelism,
work sharing, tasking, mutual exclusion, and ordering, presents
a formidable challenge for data race detection. ROMP is a
hybrid data race detector that tracks accesses, access orderings
and mutual exclusion. Unlike other OpenMP race detectors,
ROMP detects races with respect to concurrency rather than
implementation threads. Experiments show that ROMP yields
precise race reports for a broader set of OpenMP constructs
than prior state-of-the-art race detectors.

Index Terms—Data race detection, OpenMP, OMPT, DynInst

I. INTRODUCTION
OpenMP [1] is a sophisticated, directive-based model for

writing shared-memory parallel programs. It provides a wide
range of constructs including parallel regions that define a
team of implicit tasks with SPMD parallelism, data environ-
ments that include both shared and private variables, parallel
loops for homogeneous threaded and SIMD parallelism, paral-
lel sections for heterogeneous parallelism, explicit tasks, and
synchronization primitives that enforce ordering and/or mu-
tual exclusion. Today, there is intense interest in augmenting
scalable parallel applications written using MPI with OpenMP
directives to exploit node-level parallelism. In fact, OpenMP
is recommended as the node-level programming model for US
DOE supercomputers, e.g., [2].

When adding shared-memory parallelism to node programs,
application developers must avoid introducing data races—
two or more conflicting, concurrent accesses to a variable that
are unordered by synchronization; two accesses conflict if at
least one is a write. Programs with data races may behave
unpredictably because the value read from a variable may
differ if it occurs before or after a racing write. Manually
detecting races with print statements or a debugger is difficult
because both strategies can affect access interleavings. For
that reason, programmers need tools to help detect data races.
Given the growing use of OpenMP, tools for detecting data
races in OpenMP node programs are an urgent need.

To avoid overlooking races, static analysis of parallel pro-
grams to pinpoint data races must be conservative. As a result,
for all but simple programs, static analysis to detect data
races can produce many false positives—access pairs that it
cannot prove are ordered or reference different data despite
the fact that they cannot race in any program execution. For
that reason, dynamic data race detection tools that monitor an
execution of a parallel program to detect observed races are
preferred by application developers.

Dynamic data race detectors use either post-mortem or
on-the-fly analysis. Post-mortem race detection tools trace
synchronization and memory accesses as a program executes
and analyze the trace for races after the execution terminates.
In contrast, on-the-fly race detectors check memory accesses
for races as a program executes. Ideally, on-the-fly race
detectors should minimize the extra state needed at runtime
to check for races, minimize the cost of checking if an access
is involved in a race, avoid false positives, and avoid false
negatives— failing to report actual races. Prior work defines
data race detectors that do not generate false positives as
precise race detectors. Building a precise race detector re-
quires maintaining detailed information about concurrency and
synchronization. Since different parallel programming models
have different primitives for concurrency and synchronization,
detailed knowledge about a programming model’s primitives
is necessary to develop a precise data race detector for it.

Since a data race is caused by the absence of ordering
between a pair of accesses to the same variable, a precise
race detector must be aware of how a programming model’s
primitives impose ordering or mutual exclusion. The happens-
before relation defines the order between two events in an
execution. If two events are unordered by happens-before,
they are concurrent. Reasoning about orderings and mutual
exclusion requires different approaches. Reasoning about event
orderings requires assigning a label to each task, updating
that label at synchronization points, and comparing task labels
either directly, e.g., [3], [4], or with the aid of auxiliary data
structures, e.g., [5], [6]. Reasoning about mutual exclusion re-
quires determining if two conflicting accesses were performed
while holding one or more common locks. Prior work has
shown that applying these methods separately causes race
detectors to generate false positives. To avoid this shortcoming,
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hybrid race detectors maintain happens-before orderings, lock
sets, and an access history for each memory location [?]. The
best strategy for maintaining information to reason about races
depends upon a programming model’s primitives.

Prior state-of-the-art OpenMP-aware race detectors [7], [8]
employ thread-level schemes for labeling concurrency and
checking for data races. Such strategies cannot avoid false
negatives, which occur when conflicting accesses to shared
variables are logically concurrent but are mapped to the same
implementation thread. Such strategies can overlook races that
would occur with a different partitioning of work, i.e., if the
program was run on a different number of threads.

To address this shortcoming of existing OpenMP race
detectors, we developed ROMP—an on-the-fly race detec-
tor for OpenMP programs that tracks logically concurrent
OpenMP task intervals instead of thread-level concurrency.
ROMP reasons about a broad range of OpenMP constructs
including parallel regions, work-sharing constructs, tasks,
data environments, barriers, critical sections (ordered and
unordered), and locks. ROMP employs a hybrid race detection
algorithm that combines happens-before analysis and lock set
analysis. To reason about happens-before orderings between
memory accesses, ROMP employs two strategies. For struc-
tured parallelism, ROMP extends offset-span labeling [3] to
represent orderings that arise from work-sharing constructs
and explicit tasking in addition to those from nested fork-
join parallelism. For unstructured synchronization (i.e., task
dependences between explicit tasks), ROMP performs graph
reachability queries to evaluate the happens-before relation.

This paper describes the following contributions of ROMP:
• a hybrid algorithm that supports data race detection in

parallel executions,
• novel mechanisms for tracking and reasoning about the

concurrency of accesses performed by OpenMP tasks,
• mechanisms for tracking OpenMP data environments,
• extensions to the OMPT API needed to build a precise

race detector for abelian OpenMP programs (parallel
programs whose critical sections commute [9]), and

• an experimental evaluation that compares ROMP’s capa-
bilities to those of a prior state-of-the-art race detector.

The rest of the paper is organized as follows. Section II
provides some background about data races and OpenMP
constructs. Section III discusses related work on race detec-
tion. Section IV describes ROMP’s hybrid data race detection
algorithm and its novel strategy for maintaining and reasoning
about orderings of accesses. Section V provides a high-level
description of ROMP’s implementation. Section VI presents an
evaluation of ROMP with a standard set of data race detection
benchmarks for OpenMP. Section VII presents our conclusions
and future plans.

II. BACKGROUND

Data races have been formally defined in the literature [10],
[11], [12]. We formally define a data race and some notation
in this section for the paper to be self-contained. We begin by

defining a happens-before relation [13] between two events in
a concurrent program.

Definition 1. Let εi and εj be two events (e.g., a read, write,
or synchronization operation) in a concurrent program. Let→
denote the happens-before relation between two events. εi →
εj if: i) εi and εj occur in the same thread and εi precedes εj
in program order, or ii) there exists a directed synchronization
from εi to εj , or iii) there exists an event εk such that εi → εk
and εk → εj (transitivity)

Definition 2. Let ⇒ denote the following relation: εi and εj
occur in the same thread, εi precedes εj in program order, and
no fork/join or synchronization event occurs between them in
the thread. Note that εi ⇒ εj implies εi → εj . But εi → εj
does not imply εi ⇒ εj . We call this relation happens-before-
serially.

We use the happens-before relation to define the concurrent
relation between two events:

Definition 3. Let ‖ denote the concurrent relation between
two events. εi ‖ εj iff ¬(εi → εj ∨ εj → εi).

Definition 4. A lock set is the set of implicit or explicit locks
held when a memory access is performed.

Definition 5. There exists a data race between two memory
access events εi and εj that access the same memory location
if the following three conditions are all true: i) εi ‖ εj , and ii)
εi’s lock set does not share a common element with εj’s lock
set, and iii) at least one of εi and εj performs a write.

OpenMP supports nested fork-join parallelism. Nested fork-
join parallelism is realized by nesting OpenMP parallel re-
gions. An OpenMP parallel region consists of a team of
worker threads (implicit tasks). Each worker thread can create
a nested parallel region. OpenMP constructs fall into four main
categories: i) parallel construct, 2) task construct, 3) synchro-
nization constructs 4) work-sharing constructs. Upon reaching
a parallel construct, a parallel region is created and the code
surrounded by the parallel construct is executed by all worker
threads in that parallel region. Upon reaching a task construct,
the encountering task spawns an explicit task. The spawned
explicit task is concurrent with other tasks in the parallel
region unless ordering is enforced by synchronization. Explicit
tasks differ from implicit tasks, whose creation, execution and
destruction correspond to structured fork-join parallelism. The
happens-before relation is more difficult to analyze for explicit
tasking because of its unstructured nature. Upon entering a
work-sharing construct, work to be performed is partitioned
and distributed to a team of worker threads either statically at
compile time or dynamically at run time.

OpenMP includes synchronization directives related to mu-
tual exclusion (e.g., critical) or barriers (e.g., ordered)
and data sharing clauses that specify whether a variable is
task private or shared. A dynamic OpenMP data race detector
should be able to analyze the effects of OpenMP constructs
and data sharing attributes in programs as they execute.



III. RELATED WORK

Race detectors use a variety of representations for happens-
before relationships. Offset-span labeling, which represents
happens-before relationships in series-parallel graphs [3], la-
bels each task with a vector of tuples proportional to the
task’s nesting depth. The Cilk project’s Nondeterminator [5]
and Nondeterminator-2 [9] maintain happens-before order-
ings using a series-parallel bags (SP-bags) representation that
employs path compression on balanced trees [14] to reduce
task label comparisons to nearly constant time. This approach
supports a fully-strict concurrency model where a task signals
completion to its parent. Raman et al. [15] extended this
approach to Habanero Java’s terminally strict async-finish
synchronization model, where a task may signal completion
to any single ancestor. While SP-bags approaches are efficient
and increase space by only a small constant factor, they only
express happens-before orderings that arise from fork and join
operations and maintenance of this representation is serial.

To support on-the-fly race detection in parallel executions,
Raman et al. [6] use a Dynamic Program Structure Tree
(DPST) to model relationships between tasks in Habanero
Java. Their SPD3 race detector infers ordering between two
tasks by searching a DPST for their least common ancestor.
A recent paper by Agrawal et al. [16] proposes a DAG reach-
ability based race detection algorithm for detecting races in a
program with arbitrary synchronization constraints in addition
to series-parallel constructs. While Agrawal et al.’s algorithm
requires serial execution of programs, ROMP supports on-the-
fly race detection in parallel program executions.

Many tools employ hybrid algorithms that consider both
happens-before ordering and lock sets when checking for data
races, e.g. [9], [?], [17], [11].

The Archer data race detector for OpenMP [7] uses static
analysis to create a black of source lines (e.g., those in serial
code) guaranteed to be race free. Archer’s black list and
synchronization orderings gathered by an annotated runtime
are passed as annotations to a dynamic analysis module based
on Google’s ThreadSanitizer, known as TSan [17]. TSan uses a
thread-centric, vector-clock scheme for reasoning about order-
ings. Because of TSan’s thread-centric design, Archer cannot
avoid false negatives when conflicting, logically concurrent
accesses are both performed by the same thread.

Atzeni et al. [8] describe SWORD—an OpenMP data race
detector that reduces memory overhead by having each thread
record a history of its accesses into a log file. In a post-mortem
phase, SWORD analyzes log files for races using an algo-
rithm based on offset-span labeling [3]. Offset-span labeling
lacks support for reasoning about inter-task synchronization—
a challenge that we address in ROMP.

IV. APPROACH
Here, we describe ROMP’s approach for detecting data

races on-the-fly as an OpenMP program executes. Sec-
tion IV-A describes ROMP’s hybrid data race detection al-
gorithm. Sections IV-B, IV-C and IV-D describe mechanisms
for tracking and reasoning about the concurrency of accesses

Algorithm 1 A hybrid data race detection algorithm
1: procedure CHECKDATARACE(l, [ε,a,h])
2: skip current ← FALSE
3: for [ε′,a′,h′]∈ History[l] do
4: if ε ‖ ε′ ∧ h ∩ h′ = ∅ ∧ (a = w ∨ a′ = w) then
5: report a data race
6: if ((a′ = w ∧ a = w) ∨ a′ = r) ∧ h′ ⊇ h ∧ ε′ → ε then
7: History[l]← History[l] - [ε′,a′,h′]
8: continue
9: if ((a′ = r ∧ a = r) ∨ a′ = w) ∧ h ⊇ h′ ∧ ε′ ⇒ ε then

10: skip current← TRUE
11: if skip current is False then
12: History[l]← History[l] ∪ [ε,a,h]

performed by OpenMP tasks. Section IV-F describes mecha-
nisms for tracking OpenMP data environments.

A. Hybrid Data Race Detection Algorithm

All-Sets [9] is a powerful hybrid data race detection algo-
rithm designed for detecting data races in a depth-first serial
execution of a Cilk program. ROMP employs a variant of
All-Sets shown in Algorithm 1 adapted to support data race
detection during a parallel execution of an OpenMP program.
The key differences between ROMP’s algorithm and All-Sets
are the criteria for pruning an access history (lines 6 and 9 in
Algorithm 1). ROMP cannot use the pruning criteria employed
by All-Sets because All-Sets assumes pseudo transitivity of
the parallel relation between memory access events (i.e., if
ε1 ‖ ε2 and ε2 ‖ ε3, ε1 ‖ ε3); pseudo-transitivity does not
hold for programs that execute in parallel. This difference can
be explained without considering lock sets. All-Sets does not
record information about an access a in the access history for
a memory location l if l’s access history already contains a
concurrent access a′ with the knowledge that in its depth-first
serial execution, any future access a′′ to l that is concurrent
with a is also concurrent with a′. For programs executing
in parallel, pruning based on pseudo transitivity can cause
races to be missed. For example, the task t′ that performed
a′ may still be executing while task t performs a. Not adding
a to the access history would cause a race to be missed if
t′ subsequently performs a write w′ that would conflict with
a but is not concurrent with a′ since a′ ⇒ w′. With that
clarification out of the way, we now explain ROMP’s hybrid
race detection algorithm in its entirety.

In line 1, l stands for the memory location being accessed.
[ε,a,h] stands for an access record, where ε is a memory access
event; a is the type of access, either a read (r) or a write (w);
h is the set of mutual exclusion entities being held on the
memory location at the time of access. ’History’ in line 3 is
the access history for each memory location maintained by the
algorithm. Access history pruning is viable because the goal
of a data race detector is to report at least one data race on any
memory location that contains data races. Multiple data races
on a memory location are likely to be correlated so reporting
one representative data race on a memory location is efficient
and practical. Access histories may be pruned in two ways:



1) Line 6 checks if an access record in the history could be
discarded while adding the current access record to access
history; 2) Line 9 checks if the current access record need not
be added to the access history. When the predicate in line 6
is true, any future access racing with history access A′ whose
access record is [ε′,a′,h′] will also race with the current access
A whose access record is [ε,a,h], so A′ may be pruned. When
the predicate in line 9 is true, any future access racing with
current access A will also race with the history access A′. In
this case, A need not be recorded in the history. Note that
in line 9, we use relation happens-before-serially instead of
happens-before. By definition, relation happens-before-serially
eliminates the possibility of the following scenario: Let events
of history, current, future accesses be ε′, ε, ε′′ respectively.
Then (ε′ → ε) ∧ (ε′ → ε′′) ∧ (ε ‖ ε′′) satisfies ε′ → ε, but
does not satisfy ε′ ⇒ ε. If the access record for current access
not recorded and if at least one of the memory access events
is a write, an OpenMP data race detector will miss detecting
the data race.

B. OpenMP Task Graph Model

Parallel program execution forms a directed acyclic graph
(DAG) [16], [3]. Prior work on OpenMP race detection reasons
about a thread-based DAG that models structured fork-join
parallelism in OpenMP programs [18], [19], [8]. A thread-
based DAG is limited in its ability to model a rich set of
OpenMP constructs. Because each physical thread can execute
several tasks during its lifetime, a thread-based model cannot
accurately represent logical concurrency between OpenMP
tasks. We use an OpenMP task graph model that is an
extension to the fork-join graph [3] to model logical concur-
rency and happens-before ordering in an OpenMP program
execution.

Definition 6. An OpenMP task graph G = (V,E, vsrc, vsnk)
is a directed acyclic graph such that

• Each vertex v is either an implicit task vertex of type
Timp, an explicit task vertex of type Texp, a logical task
vertex of type Tlgc, or a synchronization vertex of type
Tsyn. Vertices with type Timp, Texp, Tlgc are called task
vertices.

• A directed edge eij exists between two task vertices vi and
vj if vi is parent task of vj and the following predicate
is true: (vi.type = Timp ∧ vj .type = Timp)∨ (vi.type =
Timp ∧ vj .type = Tlgc) ∨ (vi.type = Tlgc ∧ vj .type =
Timp) ∨ (vi.type = Texp ∧ vj .type = Timp).

• A directed edge eij exists between task vertex vi and
synchronization vertex vj , if vi performs synchronization
operation that creates vertex vj .

• A directed edge eij exists between synchronization vertex
vi and task vertex vj , if εi → εj , where εi and εj denote
the events associated with vi and vj , respectively.

• A directed edge eij exists between two synchronization
vertices vi and vj , if εi ⇒ εj , where εi and εj denote the
events associated with vi and vj , respectively.

Fig. 1: OpenMP task graph for program in listing 1

Listing 1: An OpenMP program example
#pragma omp p a r a l l e l
#pragma omp s i n g l e
#pragma omp p a r a l l e l f o r
f o r ( i n t i = 0 ; i < 4 ; i ++) {

i f ( i == 0) {
# pragma omp t a s k
{

# pragma omp t a s k
{
}
# pragma omp t a s k w a i t

}
}

}

Let ε be the event associated with vertex v in a task graph
of an OpenMP program. It is obvious that εi → εj if there
exists a directed path connecting vi and vj in the task graph.

Figure 1 shows an example of OpenMP task graph for the
program in Listing 1. For simplicity of the graph, we assume
that each parallel region has two worker threads.

In Figure 1, circles represent implicit tasks, double cir-
cles represent logical tasks, squares represent explicit tasks,
and diamonds are vertices that represent synchronization. In
Figure 1, vertex E1 corresponds to the outer explicit task
in Listing 1. At some point in its execution, represented by
synchronization node S5, E1 creates an an inner explicit task
E2. Following synchronization point S5, the continuation of
E1 is represented as E′1. Events in vertex E1 happen before
events vertex E2 because there exists a directed path between
them. In contrast, events in vertex E2 and events in vertex
E′1 are in parallel because no directed path connects the two
vertices. Synchronization vertex S6 represents the taskwait
directive and task vertex E′′1 corresponds to the outer task
in Listing 1 after executing the taskwait directive. Vertex
E′′1 is reachable from vertex E2, so events in E2 happen
before events in E′′1 . This is consistent with the semantics
of #pragma omp taskwait.

Each work-sharing loop iteration is a logical task vertex. In
Figure 1, implicit task vertices I3 and I4 are each assigned two
iterations. While each implicit task executes its two iterations
sequentially, concurrency still exists among all iterations of
a work-sharing loop. By assigning each iteration a logical
task vertex, concurrency in a work-sharing loop is exposed
in our task graph model. This enables ROMP to represent and
reason about concurrency among iterations. One can derive
the corresponding task graph from the semantics of OpenMP



synchronization constructs. Vertices S2 and S3 correspond to
the end of the work-sharing loop for each implicit task. while
vertex S4 and S7 represent the implicit barriers at the end of
the inner and outer parallel regions, respectively. The novelty
of our OpenMP task graph model is its ability to fully depict
logical concurrency among tasks in OpenMP programs with
arbitrary valid combinations of OpenMP constructs.

If an ordered section were present, it would cause
logical tasks in the graph to be split into pieces that represent
before, during, and after the ordered section with synchro-
nization nodes interspersed. An edge from the synchronization
node representing the end of the ordered section on one logical
task would connect to the synchronization node prior to the
ordered section in the next logical task.

C. ROMP Task Labeling

The data race detection algorithm discussed in Section IV-A
requires mechanisms for reasoning about the concurrency of
accesses performed by OpenMP tasks. Here we describe a
scheme for assigning a task label to each node in our task
graphs to solve the problem of analyzing the concurrency of
memory accesses performed by OpenMP tasks.

Our task labeling scheme is inspired by offset-span thread
labeling [3]. Offset-span labeling solved the problem of rea-
soning about concurrency of memory accesses by a program
with nested fork-join parallelism. If an OpenMP program only
contains parallel constructs (i.e., nested fork-join parallelism),
offset-span labeling suffices. However, extensions to offset-
span labeling are needed to represent the full spectrum of
concurrency and synchronization possible with OpenMP.

Definition 7. A label L for a vertex in an OpenMP task graph
consists of a sequence of label segments: L = S1S2...Sk.
Each label segment is marked as implicit, explicit or logical,
mapping to a type of task vertex. The type of the last label
segment in L reflects the type of task vertex labeled by L.

A label segment encodes information about OpenMP con-
structs related with current task. It is composed of the
following fields: {offset, span, iter-id, task-wait-count, task-
create-count, loop-count, phase, task-waited, task-group-info,
segment-type}. Each field holds information about different
OpenMP constructs. The original offset-span labeling mecha-
nism only contains two fields: offset and span; we use several
additional fields to represent the full range of OpenMP order-
ing concerns. During the execution of an OpenMP program,
the state of an OpenMP task changes as it encounters different
OpenMP constructs and synchronization events. The task label
for each task also changes accordingly.

As an OpenMP program runs, it creates tasks. To create
a task’s label, ROMP copies the label of its parent task and
appends a new label segment. Let the label of parent task be
Lp = S1S2...Sk. Then the label for the newly created task is
Ln = S1S2...SkSk+1 = LpSk+1. Besides creating the new
label, the last segment of the parent label will be modified
accordingly to record the effect of the task creation event. This
label creation rule has two implications: First, by inheriting the

label of parent task, the history of task creation dating back to
the creation of initial task is available for the current task. This
makes reasoning about concurrency of accesses by comparing
task labels possible. Second, the number of label segments of
a task label is equal to the number of task vertices along the
path of task creation in the OpenMP task graph. The following
paragraphs briefly describe how the fields of the label segment
encode information of various OpenMP constructs.

1) Parallel Construct: Upon encountering a parallel con-
struct, a team of implicit tasks is created. Each new implicit
task gets a task label by appending a new label segment to
the label of the encountering task. In the new label segment,
offset is set to the relative id of the implicit task within the
team and span is set to the size of the team.

2) Work-sharing Loop Construct: Each work-sharing loop
iteration is treated as a logical task. A task label is created as
an iteration is dispatched. For the appended label segment, the
iter-id is set to the relative id of the iteration.

3) Task Construct: An explicit task is created upon en-
countering the task construct. The task label creation proce-
dure is the same as the one for implicit task. However, the
(offset,span) pair is set to (0,1) because we regard an explicit
task as a team with only one task (itself). After the label is
created, the task-create-count field in the last segment of the
parent label is incremented by one to record the change of
state due to the creation of the explicit task.

4) Implicit/Explicit Barrier: We treat a barrier as a fork
immediately after a join. We label a task leaving a barrier by
updating the second-to-last segment of its task label prior to
the barrier by adding its span to its offset.

5) Ordered Section: Upon entering or exiting an ordered
section, increment the phase field in the last segment of the
task label. The phase field is for reasoning about happens-
before relation with tasks that encounter ordered section.

6) Taskwait / Taskgroup: Upon encountering a taskwait,
increment the task-wait-count field in the last segment of
the task label. Upon encountering a taskgroup construct,
modify the task-group-info field which can encode nesting
task-group information.

ROMP uses our task labeling scheme to reason about the
concurrency of memory accesses by comparing segments of
the labels of tasks performing the accesses. ROMP compares
label segments of two task labels left to right to find the
first pair of segments that differ in the segment fields. Then,
ROMP uses information stored in the fields to reason about
the concurrency of associated memory accesses.

D. Other Synchronization Constraints

Although structured OpenMP constructs enable direct en-
coding of ordering information using task labels, some
OpenMP synchronization constraints cannot be directly en-
coded in task labels. In such cases, ROMP maintains additional
information about these constraints, as described below.

1) Task Dependencies: OpenMP task dependences are ex-
pressed using dependence variables. ROMP maintains a de-
pendency graph built from dependency variables passed by



OMPT callbacks as described later in Section V-B. ROMP
directly searches the graph to check for dependencies between
explicit tasks. ROMP only checks task dependences when two
accesses are judged concurrent by their task labels and both
accesses are performed by explicit tasks with one or more
dependence variables specified for each task.

2) Reductions: OpenMP’s reduce clause directs worker
threads in a parallel region to combine their private partial
results into a final result. Without considering the thread
synchronization performed during a reduction, access to a
peer’s thread-private variable would appear to be a data race.
ROMP employs a flag to indicate whether a task is performing
a reduction in a parallel region. While performing a reduction,
ROMP treats memory accesses to variables written by another
implicit task labeled as a peer as safe. If an OpenMP runtime
library is correctly implemented, variable accesses during a
reduction region should not race with accesses by peers.

3) OpenMP critical or atomic sections: For OpenMP crit-
ical or atomic sections, ROMP utilizes OMPT callbacks to
get notified upon entering and exiting the sections. A unique
id is assigned to each section by the OMPT callback, ROMP
treats entering and exiting the same critical or atomic section
as locking and unlocking a lock with the unique id.

E. OpenMP SIMD Directive

Dynamic data race detectors (including ROMP) cannot
support race detection for OpenMP SIMD constructs with
today’s compilers. A compiler either replaces scalar code
marked with an OpenMP SIMD directive with a vector version
or not. Without the original scalar code as a guide, a dynamic
race detector cannot determine if the vectorizer changed the
program semantics by ignoring a data race associated with a
data dependence.

F. Data Environment Tracking

In OpenMP, each variable instance has an associated data
scoping attribute. A variable may be shared or private. Shared
variables may be accessed by tasks other than the binding task.
Private variables are meant to only be accessed by the binding
task. ROMP must track data scoping attributes for variables to
accurately identify data races. Consider the following. During
execution, a thread may execute an explicit task T1, using
space on its stack to hold T1’s local variables. When T1
finishes, the thread may execute a logically concurrent explicit
task T2 using the same stack space. Without considering the
stack space used by each task as private, it would appear that
these two logically concurrent tasks were racing by using the
same stack space. Algorithm 2 shows how ROMP manages
state of memory locations. The algorithm assumes the stack
grows downward. In the algorithm, mem addr is the address
of the memory location being accessed. Line 2 to 3 checks
if the memory access is not on the local thread stack. If the
access is on the local thread stack, line 6 checks if the access
is above the current task’s base runtime frame. If so, it means
that current task is accessing another task’s data, (i.e., shared
access). Line 5 updates the lowest stack memory address

Algorithm 2 Data Sharing Attributes Management
1: procedure UPONMEMORYACCESS(mem addr)
2: if mem addr falls out of thread stack then
3: mem addr.state ← shared
4: if mem addr falls within thread stack then
5: thread.lowest ← min(thread.lowest, mem addr)
6: if mem addr > thread.cur task frame base then
7: mem addr.state ← shared
8: if mem addr ≤ thread.cur task frame base then
9: mem addr.state ← private

10: procedure UPONTASKSCHEDULE(old task, new task)
11: for mem addr ∈ [thread.lowest, thread.active task frame] do
12: mem addr.state ← deallocated
13: if old task is explicit then
14: for mem addr ∈ {old data.heap task private data} do
15: mem addr.state ← deallocated
16: thread.active task frame ← new task.task frame base
17: thread.lowest ← new task.task frame base

accessed so far by the task. This serves as the lower bound of
the local stack access. When a task finishes or suspends, stack
local memory locations are marked as deallocated, as shown
in line 11 and 12. When memory is marked as deallocated, its
access history is lazily discarded. Note that if a task is explicit,
the runtime library may allocate task private data on the heap.
Line 16 and 17 reset the boundary of the stack local memory
locations.

V. IMPLEMENTATION

ROMP is implemented as a shared library that provides all
data race checking protocols and maintains shadow memory
for access histories. We use DynInst [20]—an open source
binary instrumentation tool—to statically rewrite an executable
by inserting a call to CheckAccess before each memory
access instruction. To make a runtime-independent race de-
tector such as ROMP possible, we worked with the OpenMP
language committee to extend the design of the OMPT tool
interface for OpenMP 5.0 with sufficient hooks to meet the
needs of precise race detectors. When an application executes,
the OpenMP runtime system invokes OMPT callbacks im-
plemented in the ROMP library to track concurrency using
task labels and the application calls ROMP’s CheckAccess
routine to maintain access histories and check for data races.

Figure 2 shows how ROMP serves as a data race detection
library.

A. Shadow Memory Management

Each memory location has an associated slot in shadow
memory. A slot stores an access history for the associated
memory address. ROMP manages shadow memory using a
two-level page table, which is similar to the organization used
by Valgrind [21], but is more lightweight. As described in
Section IV-A, pruning is always legitimate. Multiple memory
accesses that touch the same memory address query the same
access history. Two threads may race to inspect and update an
access history for a variable if they both access the variable
at the same time. ROMP uses an MCS queueing lock [22] in
each slot to guard against racing updates to an access history.



Fig. 2: Illustration of ROMP system workflow

Threads may inspect or update independent access histories
concurrently. ROMP can directly infer a race condition on
a memory address when a thread wanting to inspect and
update an access history for a write access finds the slot
already locked. Lock contention for a slot occurs if two calls
to CheckAccess are concurrent, meaning that they are not
ordered by either the happens-before relation or mutual exclu-
sion. Lock contention is identified by a failing try_lock()
operation on a slot’s lock. In our implementation, when ROMP
knows that there are races associated with a memory location
due to lock contention for its access history, ROMP skips
the traversal of access records and task label checks and
immediately reports the race.

B. Metadata Management

As described in section IV-C, task labels are modified as
appropriate at OpenMP runtime events, (e.g., task creation,
barriers, etc.). ROMP relies upon the LLVM OpenMP runtime
library which includes a draft implementation of the OpenMP
5.0 OMPT monitoring API [23]. The OpenMP 5.0 version of
the OMPT interface enables a monitoring tool to store pointers
to tool-defined metadata for parallel regions and tasks. ROMP
allocates metadata for OpenMP tasks and parallel regions and
uses these pointers to associate ROMP’s metadata with runtime
implementation of these OpenMP constructs. For precise race
detection, we worked with the OpenMP language committee
to add two new callback notifications to the OMPT interface
for OpenMP 5.0. To detect races between two iterations of a
parallel loop that are scheduled to the same physical thread,
OMPT was extended to support a callback at the beginning of
each loop iteration. To avoid false race reports for accesses
associated with reductions, OMPT was extended to invoke
a callback when a thread begins and completes a parallel
reduction associated with a loop, parallel region, or task group.

C. Data Environment Management

Section IV-F describes ROMP’s mechanism for tracking
data environments. ROMP keeps track of states for mem-
ory locations being accessed by leveraging OMPT callbacks.
ROMP calls OMPT API function ompt_get_task_info
to get the base address of current task frame. ROMP calls
ompt_get_thread_data to access thread local data struc-
tures that store variables thread.* shown in algorithm 2.

ROMP registers a ompt_callback_task_schedule
callback to receive notification when a task is scheduled.
ROMP manages the state of each memory location by ma-
nipulating bits in the access history for the memory location.
When a memory location is deallocated, ROMP only marks
it as deallocated and does not clear access history records
for this memory location until it is allocated again. This lazy
destruction policy is a trade-off between memory usage and
running time. Note that clearing access records is safe because
future memory accesses will not race on dead variables.

VI. EVALUATION

We evaluate the precision, recall, and accuracy of ROMP
as well as its runtime and memory overhead using two suites
of OpenMP microbenchmarks: DataRaceBench [24] and Omp-
SCR [25]. DataRaceBench was designed for systematic evalu-
ation of OpenMP data race detection tools [24]. OmpSCR [25]
contains OpenMP programs that implement common scientific
computing algorithms. We performed our experiments on a
single-node server equipped with four 1.9GHz 12-core AMD
Opteron 6168 processors and 128GB of memory.

A. Evaluation Methodology

Liao et al. [24] use DataRaceBench to compare the quality
of four different tools for detecting data races in OpenMP
programs: Helgrind, ThreadSanitizer, Archer and Intel Inspec-
tor. Their results show that OpenMP-aware tools such as Intel
Inspector and Archer are better than other tools according
to three metrics: Precision (P), Recall (R) and Accuracy
(A). These metrics are computed using counts of TP—true
positives, TN—true negatives, FP—false positives, and FN—
false negatives:
• P = TP/(TP+FP)
• R = TP/(TP+FN)
• A=(TP+TN)/(TP+FP+TN+FN)
We choose to compare ROMP’s effectiveness with

Archer [7], which was found to be the most effective
OpenMP data race detector in Liao et al.’s study using
DataRaceBench [24]. To fairly compare ROMP with Archer,
we replicated the evaluation method and parameters used in the
prior evaluation of Archer [24]. For each test case, we control
the number of threads through the OMP NUM THREADS
environment variable and select from a set of numbers: (3, 36,
45, 72, 90, 180, 256). For test cases that can allocate arrays
with different sizes based on the command line input, we
choose the array sizes from the following set (32, 64, 128, 256,
512, 1024). We run each test case five times with same input.
We define TP/TN/FP/FN as follows: Suppose each benchmark
program p is run multiple times with different parameters.
Denote the test result of a race detector D on p as D(p).
Then D(p) = TP if p contains race conditions and at least one
race is reported in each run. D(p)=FP if p is data race free but
at least one race is reported by D among all runs. D(p)=TN
if p is data race free and no race is reported among all runs.
D(p)=FN if p contains race conditions but in at least one run,
no race is reported. Our definitions of TP and TN are different



ID Microbenchmark Program R Archer ROMP ID Microbenchmark Program R Archer ROMP
1 antidep1-orig-yes.c Y TP TP 2 antidep1-var-yes.c Y TP TP
3 antidep2-orig-yes.c Y TP TP 4 antidep2-var-yes.c Y TP TP
5 indirectaccess1-orig-yes.c Y TP TP 6 indirectaccess2-orig-yes.c Y FN TP
7 indirectaccess3-orig-yes.c Y FN TP 8 indirectaccess4-orig-yes.c Y FN TP
9 lastprivatemissing-orig-yes.c Y TP TP 10 lastprivatemissing-var-yes.c Y TP TP

11 minusminus-orig-yes.c Y TP TP 12 minusminus-var-yes.c Y TP TP
13 nowait-orig-yes.c Y FN TP 14 outofbounds-orig-yes.c Y TP TP
15 outofbounds-var-yes.c Y TP TP 16 outputdep-orig-yes.c Y TP TP
17 outputdep-var-yes.c Y TP TP 18 plusplus-orig-yes.c Y TP TP
19 plusplus-var-yes.c Y TP TP 20 privatemissing-orig-yes.c Y TP TP
21 privatemissing-var-yes.c Y TP TP 22 reductionmissing-orig-yes.c Y TP TP
23 reductionmissing-var-yes.c Y TP TP 24 sections1-orig-yes.c Y TP TP
25 targetparallelfor-orig-yes.c Y TP TP 26 taskdependmissing-orig-yes.c Y FN TP
27 truedep1-orig-yes.c Y TP TP 28 truedep1-var-yes.c Y TP TP
29 truedepfirstdimension-orig-yes.c Y TP TP 30 truedepfirstdimension-var-yes.c Y TP TP
31 truedeplinear-orig-yes.c Y TP TP 32 truedeplinear-var-yes.c Y TP TP
33 truedepscalar-orig-yes.c Y TP TP 34 truedepscalar-var-yes.c Y TP TP
35 truedepseconddimension-orig-yes.c Y TP TP 36 truedepseconddimension-var-yes.c Y TP TP
37 truedepsingleelement-orig-yes.c Y FN TP 38 truedepsingleelement-var-yes.c Y FN TP
39 3mm-parallel-no.c N TN TN 40 3mm-tile-no.c N TN TN
41 adi-parallel-no.c N TN TN 42 adi-tile-no.c N TN TN
43 doall1-orig-no.c N TN TN 44 doall2-orig-no.c N TN TN
45 doallchar-orig-no.c N TN TN 46 firstprivate-orig-no.c N TN TN
47 fprintf-orig-no.c N TN TN 48 functionparameter-orig-no.c N TN TN
49 getthreadnum-orig-no.c N TN TN 50 indirectaccesssharebase-orig-no.c N TN TN
51 inneronly1-orig-no.c N TN TN 52 inneronly2-orig-no.c N TN TN
53 jacobi2d-parallel-no.c N TN TN 54 jacobi2d-tile-no.c N TN TN
55 jacobiinitialize-orig-no.c N TN TN 56 jacobikernel-orig-no.c N FP TN
57 lastprivate-orig-no.c N TN TN 58 matrixmultiply-orig-no.c N TN TN
59 matrixvector1-orig-no.c N TN TN 60 matrixvector2-orig-no.c N FP TN
61 outeronly1-orig-no.c N TN TN 62 outeronly2-orig-no.c N TN TN
63 pireduction-orig-no.c N FP TN 64 pointernoaliasing-orig-no.c N TN TN
65 restrictpointer1-orig-no.c N TN TN 66 restrictpointer2-orig-no.c N TN TN
67 sectionslock1-orig-no.c N TN TN 68 simd1-orig-no.c N TN TN
69 targetparallelfor-orig-no.c N TN TN 70 taskdep1-orig-no.c N TN TN
71 ordered-section-missing-yes.c Y FN TP 72 taskgroup-missing-yes.c Y TP TP
73 taskwait-missing-yes.c Y TP TP 74 doall2-orig-yes.c Y FN TP
75 fibonacci-orig-yes.c Y TP TP 76 taskdep2-orig-no.c N FP TN
77 taskdep3-orig-no.c N FP TN 78 taskdep-chain-orig-no.c N FP TN
79 taskwait-orig-no.c N FP TN 80 multiple-ordered-section-no.c N FP TN
81 taskgroup-taskwait-mix-no.c N TN TN 82 fibonacci-orig-no.c N FP TN

Summary Precision Archer – 0.79 Recall Archer – 0.79 Accuracy Archer – 0.78
ROMP – 1.00 ROMP – 1.00 ROMP – 1.00

TABLE I: Data race detection report I. Column R: Y if a program contains a data race; N if it is data race free

from the definitions in [24]. In their definitions, the data race
detection result on a benchmark program could be listed as
TP and FN, or TN and FP at the same time (e.g., for a race
free benchmark program, detector reports races in some runs,
and doesn’t report races in other runs, in [24], D(p) is both
TN and FP.) We regard our definitions being stricter and could
reflect the effectiveness of a race detector more accurately.

To evaluate the efficiency of ROMP, we ran ROMP and
Archer (version 0.1) on OmpSCR [25] benchmark suite. We
set environment variable OMP_NUM_THREADS to 48, which
equals to the maximum number of physical threads available
on our experimental platform. Benchmark programs are com-
piled using clang (version 8.0.0) with compilation flags ’-g
-O2 -fopenmp -fpermissive -ltcmalloc’. After compilation, the
benchmark program is instrumented by our DynInst client
omp_race_client. We conducted 10 independent runs
for each benchmark program and collected the elapsed real
time and the resident set size of the program during its
lifetime using command /usr/bin/time -f "%E %M".

The result is described in Section VI-C.

B. DataRaceBench Results

Table I shows results for ROMP and Archer on
DataRaceBench. The type of result (i.e., TP/TN/FP/FN)
is determined according to the definition in
section VI-A. We do not include experiments with two
microbenchmarks that employ the OpenMP SIMD construct
simdtruedep-{orig|var}-yes.c for the reason
discussed in section IV-E.

We found that the first 70 microbenchmarks (ID:1–70)
used in the evaluation of Archer in prior work [24] do
not cover all OpenMP constructs. For example, ordered
section, taskwait, and taskgroup synchronizations
are not tested in the 70 benchmark programs. To make a more
comprehensive evaluation of the effectiveness of both tools,
we added another 12 benchmark programs (ID: 71–82) that
cover those OpenMP constructs. Benchmarks 74, 76 and 77
are from DataRaceBench. We developed our additional test



cases following the design guideline of DataRaceBench [24]:
each test program either contains zero or one data races1

Our experiments show that ROMP success-
fully detects data races in benchmark programs
indirectaccess{2|3|4}_orig-*.c. Archer and
SWORD [8] (a new OpenMP race detector) yield false
negatives on these programs due to the thread-centric nature
of their data race detection algorithms. For these programs,
two iterations may be scheduled to the same physical thread
either statically at compile time or dynamically by the
OpenMP runtime library; in such cases, thread-based data
race detection algorithms do not report a data race. ROMP’s
algorithm is based on tasking and does not suffer from this
problem. We list the effectiveness metrics at the bottom
of Table I. The result demonstrates the high effectiveness
of ROMP due to its novel task labeling mechanism which
analyzes logical concurrency between tasks.

We enforce dynamic scheduling of work-share loop
iterations in benchmark programs 5–8 by specifying
schedule(dynamic). An OMPT dispatch callback noti-
fies ROMP as each iteration of the loop begins execution. With
static scheduling, ROMP will report false negatives due to an
incomplete logical task label. This shows that our task labeling
scheme reports races caused by loop-carried dependences.

C. OmpSCR Results

Table II shows the average runtime and memory overhead
of ROMP and Archer on our platform. Labels in the note
column of Table II have the following meaning: ST means that
the program is test with ’-test’ argument, with default input
size and using maximum number of threads on the system.
MT means that the program is tested with the input size
similar to the one set by ’-test’ argument using customized
number of threads2. CR means that the input parameter is
customized because ROMP’s run time exceeds our limit with
the default ’-test’ argument. CA means that the input parameter
is customized because Archer’s run time exceeds our limit with
the default ’-test’ argument. Arguments for programs labeled
with MT, CR and CA are listed in the Table II.

Table II also shows data race detection results of ROMP
and Archer. For benchmark programs reported by ROMP to
contain a data race, we checked the source code and verified
the race3 For example, ROMP found a data race at line 127,
column 10 of c loopA.badSolution. It is a data race caused
by a loop-carried dependence. We found that cpp_qsomp7
contains Intel-specific OpenMP pragmas, namely, #pragma
intel omp taskq, which is not recognized by the clang
compiler. Without the effect of this pragma, each thread
launches an instance of the outermost explicit task to sort
the vector instead of just one. This causes data races because

1Some of our new test cases have been added to DataRaceBench 1.2.0.
2For cpp_qsomp{1|2|3|4|6|7}, argument ’-test’ sets the number of

running thread to 1, while cpp qsomp5 fixes the number of threads to 2.
3 Original cpp_qsomp3 and cpp_qsomp4 crash because they access an

empty vector called globalStackWrite. We fixed the programs by ini-
tializing the vector before the parallel region and performed the experiments.

(a) ROMP running time for
OmpSCR’s cpp qsomp3 using
2 – 48 threads to sort 106

numbers on a system with 48
single-threaded cores.

(b) ROMP slowdown factor
and the maximum/average
number of access records
per access for OmpSCR’s
cpp qsomp3 using 48 threads
with different input sizes.

the vector will to be sorted concurrently by all OpenMP
threads. With this compiled code, ROMP instantly identifies
the data race. Since the idea of cpp_qsomp7 is to parallelize
the divide-and-conquer phase of quicksort using OpenMP
explicit tasking, instead of ignoring this benchmark program,
we modified the directives of the code to make it comply
with OpenMP standard. With this modification, it should not
contain a data race. Our result shows that ROMP does not
report any data race for this modified version of the program.

The data race ROMP found in c_md is related with a read
that is beyond the end of an allocated array in line 178. That
read accessed another array written by concurrent tasks.

In terms of geometric mean, ROMP’s slowdown is compa-
rable to that of Archer, while the memory overhead of ROMP
is roughly 2.5× smaller than that of Archer.

ROMP and Archer both have a large slowdown for some
of the benchmark programs. For ROMP, we found that if a
memory address is widely read shared (e.g., a global variable
that each task frequently reads), the lock protecting the access
history results in signifiant lock contention. ROMP’s perfor-
mance could be improved by reducing the lock contention.
To investigate the relation between ROMP’s slowdown and
the number of access records visited upon each checking,
we collected the histogram with respect to the number of
access records for the benchmark programs. Table II lists the
maximum and average number of access records visited per
access. cpp_qsomp7 recursively forks explicit tasks whose
task labels are different. The maximum number of records per
access is proportional to the number of different tasks in the
program, because a shared variable could be accessed by every
task and each task contains a unique task label.

D. Parallel Execution

Some prior data race detectors require serial execution of a
program [9], [16]. Like Archer and SWORD, ROMP executes
OpenMP programs in parallel while checking them for data
races. Figure 3a shows the execution time of cpp_qsomp3
being checked by ROMP with different numbers of OpenMP
threads. When the number of threads is below 16, ROMP’s
running time improves with additional threads.



Microbenchmark Note Original Original ROMP Archer
Time(s) Mem(kb) Type Time Mem ML AL Type Time Mem

c fft ST 0.112 1.28e4 TN 7.23× 8.40× 48 24 TN 18.0× 11.9×
c fft6 ST 0.045 1.64e4 TN 3.31× 2.69× 48 17 TN 29.1× 11.7×
c jacobi01 ST 0.97 5.98e5 TN 286× 28.7× 48 1 RE – –
c jacobi02 ST 0.85 5.95e5 TN 447× 28.9× 48 1 RE – –
c loopA.badSolution ST 0.066 1.02e4 TP 7.64× 3.35× 48 1.6 TP 6.10× 17.7×
c loopA.solution1 ST 0.092 1.06e4 TN 10.3× 4.29× 48 1.7 TN 6.28× 21.9×
c loopA.solution2 ST 0.1 9.37e3 TN 6.13× 3.38× 48 1.6 TN 6.35× 22.5×
c loopA.solution3 ST 0.09 1.00e4 TN 7.02× 3.26× 48 1.6 TN 6.63× 21.4×
c loopB.badSolution1 ST 0.089 1.02e4 TP 5.81× 3.59× 48 1.6 TP 6.36× 21.6×
c loopB.badSolution2 ST 9.53 9.78e3 TP 8.82× 4.44× 48 1.4 TP 1.27× 21.3×
c loopB.pipelineSolution ST 0.14 9.4e3 TN 5.63× 3.74× 48 1.6 TN 15.8× 19.6×
c lu ST 0.268 1.32e4 TN 607× 310× 499 64 CE – –
c mandel ST 0.079 9.62e3 TN 1.53× 2.93× 47 17.9 TN 25.9× 18.0×
c md 256 10 CR 0.27 1.08e4 TP 213× 2.74× 49 21 FN 8.7× 22.1×
c pi ST 0.047 9.87e3 TN 2.28× 2.64× 47 19 TN 32.9× 16.5×
c qsort ST 0.065 9.31e3 TN 4.09× 3.27× 48 3.1 TN 26.0× 13.7×
c testPath ST 0.028 9.53e3 TP 2.79× 2.78× 47 21.4 TP 46.6× 20.5×
cpp qsomp1 107 48 103 MT 0.78 4.83e4 TP 85.5× 31.2× 96 5 TP 5.53× 8.49×
cpp qsomp2 107 48 103 MT 0.743 4.97e3 TP 91.8× 30.6× 96 4.7 TP 5.27× 8.56×
cpp qsomp3 107 48 103 MT 0.643 5.09e4 TP 106× 29.8× 78 3.1 TP 6.06× 8.34×
cpp qsomp4 2 · 105 24 10 CA 0.13 1.03e4 TP 6.78× 4.84× 24 2.6 TP 1194× 18.2×
cpp qsomp5 2 · 105 24 10 CA 0.04 9.71e3 TP 24.5× 3.63× 1 1 TP 541× 14.9×
cpp qsomp6 107 48 103 MT 0.772 4.81e4 TP 85.8× 31.5× 96 6.1 TP 5.37× 8.74×
cpp qsomp7 2 · 104 24 10 CA 0.026 1.04e4 TN 169× 3.00× 3372 123 TN 491× 495×

Summary
Mean – – 91.5× 23.1× – – – 118× 39.2×

Median – – 8.23× 3.69× – – – 8.7× 18×
Geometric Mean – – 20.5× 7.28× – – – 18.2× 18.3×

TABLE II: Overheads and data race detection results on the OmpSCR benchmark suite with 48 threads. ML means the
maximum number of access records visited per access. AL means the average number of access records visited per access. RE
means the augmented program encounters a runtime error. CE means compilation error. Measurements shown are the average
of 10 independent runs. The timings for ROMP in this table are measured without printing details of each data race.

VII. CONCLUSIONS

This paper describes ROMP—a precise race detector that
supports all OpenMP constructs except SIMD. While we have
not yet experimented with OpenMP’s TARGET pragma, we
believe that we can generate TARGET code for the host and
analyze it with ROMP just like we do host code.

While Archer relies on support for race detection in the
LLVM OpenMP runtime, ROMP lives on top of OMPT
callbacks and thus should work with any OpenMP runtime
library that supports the emerging OpenMP 5.0 standard.

Experiments show that unlike Archer, the most capable
OpenMP race detector to date, ROMP has perfect accuracy,
precision, and recall when checking for races in executables
for OpenMP programs. ROMP improves upon Archer’s preci-
sion by reasoning about the logical concurrency in an OpenMP
program rather than the concurrency of implementation threads
and tracking data environments. One important shortcoming of
ROMP at present is that it does not apply thorough checking to
all dynamically-loaded shared libraries used by an application.
Remedying this deficiency is the subject of future work.

For OmpSCR benchmark programs, ROMP’s space over-
head is 2.5× smaller than that of Archer, while its time over-
head is comparable to that of Archer. Using Rice University’s
HPCToolkit performance tools [26] to analyze the time over-
head of data race detection with ROMP gave us some insights
into scaling and performance issues that arose with some of the

benchmarks. Widely-shared data that is concurrently accessed
by multiple threads slows program executions monitored by
ROMP because ROMP protects shadow memory slots using
mutual exclusion. We see three principal opportunities for
improving ROMP’s performance. First, access histories for
widely shared data contain more entries than necessary to de-
tect representative races. While the complex concurrency and
synchronization relationships in OpenMP make it non-trivial
to prune access histories by dropping labels of concurrent tasks
without missing races, we have identified some opportunities
for doing so. This would mean refining the pruning performed
by Algorithm 1 using knowledge of OpenMP concurrency to
keep only labels necessary for detecting representative races
rather than those that are sufficient for detecting races. Second,
if we use the aforementioned idea to avoid modifying an
access history on most every read, using a reader-writer lock
might provide additional concurrency for shadow memory
inspection. Third, we identified that ROMP maintains access
histories for read-only data, which could never be the subject
of a race; accesses to read-only data need not be monitored.
Realizing these improvements is the subject of ongoing work.
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A. ARTIFACT DESCRIPTION
1) Overview:
• How software can be obtained. ROMP can be down-

loaded from https://github.com/zygyz/romp .
• Hardware dependencies. We used a single-node server

equipped with four 1.9GHz 12-core AMD Opteron 6168
processors and 128GB of memory. The server runs a
version of the Linux operating system. Currently ROMP
runs on x86 64 platforms. Any x86 64 platform that
runs Linux and supports execution of OpenMP programs
should be supported.

• Software dependencies. One needs to install
several software listed below to compile and
run romp. Installation details are listed on
https://github.com/zygyz/romp/blob/master/README.md

1) Clang version 8.0.0 or later version
(https://github.com/llvm-mirror/clang)

2) elfutils-0.173 (https://sourceware.org/elfutils/)
3) DynInst (https://github.com/dyninst/dyninst)
4) LLVM OpenMP runtime library. Note: ROMP

requires several OMPT callbacks that have not
yet been modified/implemented in the official
LLVM OpenMP repository. For that reason, one
should use the llvm-openmp library provided
at https://github.com/zygyz/romp/tree/master/pkgs-
src/llvm-openmp/openmp

5) tcmalloc (https://github.com/gperftools/gperftools)
2) Installation: Installation instructions can be found at

https://github.com/zygyz/romp/blob/master/README.md

3) Evaluation Workflow: One can evaluate romp with dif-
ferent benchmark suites. Detailed instructions can be found on
https://github.com/zygyz/romp/blob/master/README.md

1) DataRaceBench. We provide DataRaceBench at
https://github.com/zygyz/romp/tree/master/tests/dataracebench
. To enable automatic evaluation of romp, we modified
the test-harness.sh script provided in the original
source. To conduct the evaluation, one can invoke
./check-data-races.sh --romp

2) OmpSCR. We provide OmpSCR at
https://github.com/zygyz/romp/tree/master/tests/OmpSCR v2.0
. We fixed two missing initialization bugs in
cpp qsomp3 and cpp qsomp4 that cause the
original programs to crash. To conduct the
evaluation, one should first compile all the
benchmark programs. And then instrument each
program with DynInst client omp_race_client
in https://github.com/zygyz/romp/tree/master/pkgs-
src/dyninst-client .

4) Evaluation and Results:
1) DataRaceBench. check-data-races.sh will generate

csv files stored in a sub-directory called
results. A detailed description can be found at
https://github.com/zygyz/romp/tree/master/tests/dataracebench

2) OmpSCR. To evaluate the run time and memory
overhead, one can invoke /usr/bin/time -f "%E
%M" .
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