A Tool for Performance Analysis of
GPU-Accelerated Applications

Keren Zhou
Department of Computer Science
Rice University
Houston, Texas, USA
keren.zhou@rice.edu

Abstract—Architectures for High-Performance Computing
(HPC) now commonly employ accelerators such as Graphics
Processing Units (GPUs). High-level programming abstractions
for accelerated computing include OpenMP as well as RAJA and
Kokkos—programming abstractions based on C++ templates.
Such programming models hide GPU architectural details and
generate sophisticated GPU code organized as many small proce-
dures. For example, a dot product kernel expressed using RAJA
atop NVIDIA’s thrust templates yields 35 procedures. Existing
performance tools are ill-suited for analyzing such complex
kernels because they lack a comprehensive profile view. At best,
tools such as NVIDIA’s nvvp provide a profile view that shows
only limited CPU calling contexts and omits both calling contexts
and loops in GPU code. To address this problem, we extended
Rice University’s HPCToolkit to build a complete profile view
for GPU-accelerated applications.

I. APPROACH

We extended HPCToolkit [1], [2] with a wait-free measure-
ment subsystem to attribute costs of a GPU kernel measured
using instruction samples back to the worker thread that
launched the kernel. GPU instruction samples are collected
using NVIDIA’s CUPTI API, which spawns a background
CUPTI thread at program launch. When an application thread
T launches a GPU kernel, it tags the kernel with a correlation
ID C and notifies the CUPTI thread that C belongs to T;
when samples associated with C are collected, the CUPTI
thread uses this information to attribute the samples back to
thread T. The CUPTI thread and application threads coordinate
to attribute performance information using wait-free queues.
Using this strategy, HPCToolkit can monitor long-running
applications with low memory and time overhead.

To attribute costs to GPU code, HPCToolkit recovers loops
and calling contexts in GPU machine code. HPCToolkit re-
constructs GPU control flow graphs by parsing branch targets
and analyzes the graphs to identify loop nests. To understand
calling contexts in GPU code, HPCToolkit recovers static
call graphs and transforms them into calling context trees by
splitting call edges and cloning called procedures.

To analyze performance data for each GPU calling context,
HPCToolkit first attributes costs to inline functions, loop nests,
and individual source lines in GPU procedures. Next, it appor-
tions costs of each GPU procedure its call sites. If necessary,
HPCToolkit uses the sample count of each call instruction to

John Mellor-Crummey
Department of Computer Science
Rice University
Houston, Texas, USA
johnmc@rice.edu

S Coling Context View 1 |, Collrs view] . Flat view =5

120 6f W FA L]

sssss

GPU context
$_debug_$.29 | GPU hotspot

Fig. 1. HPCToolkit’s hpcviewer attributing performance metrics to a GPU
context that includes a call chain and a loop

divide a GPU procedure’s costs among its multiple call sites.
To cope with recursive calls, HPCToolkit merges all GPU
procedures in the same strongly connected component group
into a ”supernode” and apportions costs for the “supernode.”

II. INITIAL RESULTS

We have used HPCToolkit to analyze accelerated appli-
cations written using RAJA and OpenMP on the Summit
supercomputer, whose compute nodes are equipped with IBM
POWERY processors and NVIDIA Volta GPUs. Figure 1
shows HPCToolkit’s detailed analysis of calling contexts and
loops in GPU code, which enables precise attribution of costs
for executions of GPU-accelerated applications and helps users
identify hotspots and bottlenecks.

ACKNOWLEDGMENTS

This research was partially supported by LLNL Subcontract
B626605 of DOE Prime Contract DE-AC52-07NA27344 and
by the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Admin-
istration).

REFERENCES

[1] L. Adhianto et al., “HPCToolkit: Tools for performance analysis of
optimized parallel programs,” Concurrency and Computation: Practice
and Experience, vol. 22, no. 6, pp. 685-701, 2010.

[2] Rice University, “HPCToolkit performance
http://hpctoolkit.org.

tools project,”

