
A Tool for Performance Analysis of GPU-accelerated Applications
Keren Zhou and John Mellor-Crummey

Department of Computer Science, Rice University

Abstract

We extended HPCToolkit to build a complete profile view for analyzing the runtime character-
istics of GPU-accelerated applications. Our tool has the following key innovations:
•A wait-free sample collection system in multi-threaded environment with low contention and
memory overhead.

•A complete profile view with calling contexts and control flows for both CPU and GPU codes.
•A heuristic method to attribute costs associated with GPU instruction samples to the
appropriate contexts.

Background

•A variety of programming models are developed for emerging GPU-accelerated HPC systems,
such as OpenMP target and RAJA.

•Due to the lack of a complete profile view, existing performance tools are not helpful for
programs written by these programming models with complicated runtime contexts.

• nvvp ignores calling contexts and control flows in GPU code.
•Other tools, including Vampir, TAU, Allinea MAP, and Open|SpeedShop, only provide a trace
view.

nvvp’s trace view that shows a series of events happen at the different time

nvvp’s profile view only shows latency reasons associated with individual lines

Sample Collection

•We designed a wait-free sample collection system to attribute costs associated with GPU
instruction samples back to threads that launched the corresponding GPU kernels.

• Mechanism: We define two sets of threads in our system. GPU instruction samples are
collected using NVIDIA’s CUPTI API, which spawns a background CUPTI thread at program
launch. Worker threads are responsible for handling CPU workloads, including kernel launch
and GPU memory allocation.
Our system manages inter-thread communication using two types of records. When a worker
thread T launches a kernel, the worker thread assigns a correlation ID C to the kernel instance
and sends a notification record to the CUPTI thread indicating that C belongs to T. When the
CUPTI thread collects samples associated with C, it communicates a sample attribution record
back to thread T.

• Requirements: The collection system must be non-blocking. Neither the CUPTI thread
nor the worker threads should delay each other.
The system also needs explicit memory management. For long-running applications that
generate many notification and sample attribution records, records must be reclaimed after they
are consumed.

• Approach: To satisfy the requirements, each worker thread and the CUPTI thread share two
pairs of non-blocking queues. Because notification and sample attribution queues employ the
same mechanism and only differ in the direction and data passed, we only explain the sample
collection queues in the figure below.

�����������	
 ��
�������	


�
�

→ �
�

→ �
�

→ ⋯ → �
���

����

������	
����

����

����

�
��	������	
����

����

���

����

���

���������	
���
����	�

����������	
��

���

���

����

������	
����

�
��	������	
����

�����������	
���
���

����

���� ����

	�
����
����	�

�

�	� �	� �	�

�

�

�
���	������������������

����	
���
�������

Samples are collected by the CUPTI thread and stolen by worker threads; "free" sample attribution records are stolen
back by the CUPTI thread

•The CUPTI thread maintains a list of sample attribution queues, where each queue stores
sample attribution records that need to be delivered to the corresponding worker thread.

•The CUPTI thread adds records to sample attribution queues using CAS. Each worker thread
swaps the head of its sample attribution queue with NULL to steal all of its records.

•Wait-free progress is guaranteed because a CUPTI thread CAS on a queue fails at most once
when tries to add records.

•After a worker thread attributes its samples to its calling context tree, the worker puts its
sample attribution records into a free queue, where they can be stolen back by the CUPTI
thread using a swap.

Recover Calling Contexts and Control Flows

•We recover draft control flow graphs, using NVIDIA’s nvdiasm. In their original form, these
graphs are unsuitable for analysis. We modify them to address their shortcomings.

•We split blocks into basic blocks that end with either a function call or a branch instruction.
•We link dangling blocks by matching the offset of the first instructions in the dangling blocks
and last instructions in control flow graphs.

•Since nvdisasm fails to parse all the functions in GPU binaries if some of the functions are
unparsable due to invalid instructions or branch targets, we parse each function individually
and skip ones that cause failures.

•We apply the Dyninst binary analysis toolkit to analyze loop nests in control flow graphs.
•We recovery static call graphs by parsing call instructions and linking callers and callees.

�

���������� ��	���	��

���
������� ��	���	��	��


���
�������	� ����

���������� ��	���	��

��

����

(a) Control Flow Graph

�

��������� ��	�
���

��������� 
���

�

��

�

��������� ��	�
���

��������� 
���

�

��

�

��������� ��	���

�

��

(b) Static Call Graph

Heuristic Sample Attribution

•We attribute costs to inline functions, loop nests, and individual source lines.
•We transform static call graphs into calling context trees by splitting call edges and cloning
called procedures.

•We adopt a heuristic method to apportion samples to procedures called from multiple call sites.
•To handle recursive calls, we merge all procedures in the same strongly connected component
group into a "supernode" and apportion costs for the "supernode".

�����������	

�����������
 ������������

������������

��������	


��������	
 ��������	


��������	


���������	�
�������
�

4 ����� 6 �����

����� �
�

, �
�

�
4

4 
 6
� 0.4 ����� �

�

, �
�

�
6

4 
 6
� 0.6

�����������	

�����������
 ������������

������������


��������	


��������	
 ��������	


� �����	


����
�������
�����������

4 ����� 6 �����

������������



�������	


Costs associated with each call site to a procedure are approximated using the number of samples at each call site

Applications

•We have used our tools to analyze HPC applications on the Summit supercomputer whose
computing nodes equipped with IBM POWER9 processors and NVIDIA Volta GPUs.

•We profiled LULESH—an ultra-shock hydrodynamics benchmark code that offloads
computation to GPUs using OpenMP TARGET directives.

•We profiled the RAJA performance suite which uses C++ templates to implement loop-based
GPU kernels.

Next Steps

Currently, nvvp takes multiple phases to collect kernel performance, data movement, compute
utilization, and PC sampling information because of limitations in the CUPTI API, which allows
neither PC sampling information to be collected with memory activities nor activity records to
be collected with event records. We have devised an innovative method to measure parallel effi-
ciency with only sampling information. In this way, we can collect a few activity records that are
compatible with PC sampling and gather all the necessary performance information in a single
phase.
We plan to enhance our graphical interface to facilitate hierarchical analysis of multiple metrics.
Also, we want to augment the information we present with GPU parallelism metrics and gain
experience analyzing MPI-based HPC applications.


