Abstract

We extended HPC'Toolkit to build a complete profile view for analyzing the runtime character-

istics of GPU-accelerated applications. Our tool has the following key innovations:

« A wait-free sample collection system in multi-threaded environment with low contention and
memory overhead.

« A complete profile view with calling contexts and control flows for both CPU and GPU codes.

« A heuristic method to attribute costs associated with GPU instruction samples to the
appropriate contexts.

Background

A variety of programming models are developed for emerging GPU-accelerated HPC systems,
such as OpenMP target and RAJA.

Due to the lack of a complete profile view, existing performance tools are not helpful for

programs written by these programming models with complicated runtime contexts.
nvvp ignores calling contexts and control flows in GPU code.

Other tools, including Vampir, TAU, Allinea MAP, and Open|SpeedShop, only provide a trace
view.

M 951.8 ms 951.9 ms 952 ms 952.1 ms
*Process "main" (46641)

=[0] Tesla V100-PCIE-16GB
-Context 1 (CUDA)

~MemCpy (HtoD) 1 §

~MemCpy (DtoH) 1 |
-Compute

<Streams

-Context 2 (CUDA)

~MemCpy (HtoD) 1 B

~MemCpy (DtoH) 1 1 1|

-Compute acAdc

<Streams

nvvp's trace view that shows a series of events happen at the different time

LinLatency Reasons

1 __device

2 int _ attribute ((noinline)) add(int a, int b) {

3 .~ return a + b;

4 }

5

6

7 extern "C"

8 global

9 void vecAdd(int *I, int *r, int *p, size t N, size_t iterl, size_t iter2) {
10 size t 1dx = blockDim.x * blockldx.x + threadldx.Xx;
11 for (size t 1 =0; 1 < iterl; ++1) {
12 if (idx < N) {
13 plidx] = add(l[idx], r[idx]);
14 }
15 } Coons [MSirction issued
16 for (size t i =0; 1 < iter2; ++) { s e
17 if (idx < N) { T e
18 plidx] = add(l[idx], r[idx]); e
19 }
2 0 } fzﬂfgﬂfg dependency _, 4 3’;?;“,5“ dependency
21 }

nvvp's profile view only shows latency reasons associated with individual lines

A Tool for Performance Analysis of GPU-accelerated Applications

Keren Zhou and John Mellor-Crummey

Department of Computer Science, Rice University

Sample Collection

« We designed a wait-free sample collection system to attribute costs associated with GPU
instruction samples back to threads that launched the corresponding GPU kernels.

« Mlechanism: We define two sets of threads in our system. GPU instruction samples are

collected using NVIDIA’s CUPTI API, which spawns a background CUPTI thread at program

launch. Worker threads are responsible for handling CPU workloads, including kernel launch
and GPU memory allocation.

Our system manages inter-thread communication using two types of records. When a worker
thread T launches a kernel, the worker thread assigns a correlation ID C to the kernel instance

and sends a notification record to the CUPTI thread indicating that C belongs to T. When the
CUPTT thread collects samples associated with C, it communicates a sample attribution record

back to thread T.

 Requirements: The collection system must be non-blocking. Neither the CUPTT thread
nor the worker threads should delay each other.
The system also needs explicit memory management. For long-running applications that

generate many notification and sample attribution records, records must be reclaimed after they

are consumed.

« Approach: To satisty the requirements, each worker thread and the CUPTI thread share two
pairs of non-blocking queues. Because notification and sample attribution queues employ the

same mechanism and only differ in the direction and data passed, we only explain the sample
collection queues in the figure below.

CPU Calling Context Tree

Worker Thread | Attribute samples CUPTI Thread

—

Sample Queue ~ —

—
—

CAS
Free Sample Queue

CAS

CAS: Compare-And-Swap ~
XCHG: Exchange

Samples are collected by the CUPTI thread and stolen by worker threads; "free" sample attribution records are stolen

back by the CUPTI thread

« The CUPTI thread maintains a list of sample attribution queues, where each queue stores
sample attribution records that need to be delivered to the corresponding worker thread.

« The CUPTI thread adds records to sample attribution queues using CAS. Each worker thread
swaps the head of its sample attribution queue with NULL to steal all of its records.

« Wait-free progress is guaranteed because a CUPTT thread CAS on a queue fails at most once
when tries to add records.

« After a worker thread attributes its samples to its calling context tree, the worker puts its
sample attribution records into a free queue, where they can be stolen back by the CUPTI
thread using a swap.

XCHG Worker Threads List: Ty > T; > T, =» -+ > T, _4

Recover Calling Contexts and Control Flows

« We recover draft control flow graphs, using NVIDIA’s nvdiasm. In their original form, these
eraphs are unsuitable for analysis. We modify them to address their shortcomings.

« We split blocks into basic blocks that end with either a function call or a branch instruction.

« We link dangling blocks by matching the offset of the first instructions in the dangling blocks
and last instructions in control flow graphs.

« dince nvdisasm fails to parse all the functions in GPU binaries if some of the functions are
unparsable due to invalid instructions or branch targets, we parse each function individually
and skip ones that cause failures.

= We apply the Dyninst binary analysis toolkit to analyze loop nests in control flow graphs.

« We recovery static call graphs by parsing call instructions and linking callers and callees.

PO

0x10: LDG RS, [R2]
Ox18: CAL (P2)

—l Loop

0x10: IADD R5, R5, 1
0x18: ISETP P6, R5, 0, PT
[0x78: @P6 BRA 0x10

Ox18: MOV R1, R2

l 0x48: LDG RS, [R2]
0x30: IADD R6, R6, 1 Ox50: CAL(P2)

(b) Static Call Graph

(a) Control Flow Graph

Heuristic Sample Attribution

« We attribute costs to inline functions, loop nests, and individual source lines.

« We transform static call graphs into calling context trees by splitting call edges and cloning
called procedures.

« We adopt a heuristic method to apportion samples to procedures called from multiple call sites.

« 'To handle recursive calls, we merge all procedures in the same strongly connected component
eroup into a "supernode' and apportion costs for the "supernode’.

GPU Static Call Graph GPU Calling Context Tree

Procedure P1 ‘ 10 Samples ‘ Procedure P1 ‘ 10 Samples

Procedure P3

Procedure P2 Procedure P3 Procedure P2

10 Samples 10 Samples ‘ 10 Samples 10 Samples

4 Calls 6 Calls

e Procedure P4 AN Procedure P4’ Procedure P4”

4
Ratio(P,,P,) =——=0.4 | 10 Samples | Ratio(P;,P,) = 0.6 4 Samples 6 Samples

4+6 4+6

Costs associated with each call site to a procedure are approximated using the number of samples at each call site

Applications

« We have used our tools to analyze HPC applications on the Summit supercomputer whose
computing nodes equipped with IBM POWER9 processors and NVIDIA Volta GPUs.

« We profiled LULESH—an ultra-shock hydrodynamics benchmark code that offloads
computation to GPUs using OpenMP TARGET directives.

=|ulesh.cc =

2717 if (pHalfStep < pmin)
2718 pHalfStep = pmin ;
2719
2720 vhalf = Real t(1.) / (Real t(1l.) + compHalfStep) ;
2721
2722 if (delvc > Real t(0.)) {
2723 q new /* = qq old[i] = gl old[i] */ = Real t(0.) ;
2724 } else {
ssc = (pbvc * e new + vhalf * vhalf * bvc * pHalfStep) / rhoO ;
2727 if (ssc <= Real t(.1111111e-36)) {
2728 ssc = Real t(.3333333e-18) ;
2729 } else {
2730 ssc = SQRT(ssc) ;
2731 }
2732
2733 g new = (ssc*ql old + qq_old) ;
2734 }
2735
2736 e new = e new + Real t(0.5) * delvc
2737 * (Real t(3.0)*(p old + g _old)
2738 - Real t(4.0)*(pHalfStep + g _new)) ;
2739
2740 e new += Real t(0.5) * work;
2741
2742 if (FABS(e new) < e cut) {
2743 e new = Real t(0.) ;
2744 }
[
= Calling Context View = = Callers View i Flat View
& & | WS A | @
Scope CPUTIME (usec):Sum () |~GPU_ISAMP:Sum (I) |GL_STORE_BYTES:Sum (I)
~smain . 2.65e+07 99.8% 4.57e+06 100 % 1.48e+07 100 %
CPU Call’ng ConteXt 2.56e+07 96.3% 4.57e+06 100 % 1.48e+07 100 %

-®3225: LagrangeleapFrog(Domain&)
-»3056: LagrangeElements(Domainé&, int) 8.41e+06 31.7% 2.30e+06 50.2% 8.52e+05 5.8%
-=»2864: ApplyMaterialPropertiesForElems(Domain&, double*) 1.73e+06 6.5% 1.13e+06 24.7% 1.85e+05 1.3%
-»2846: EvalEOSForElems(Domain&, double*) 1.73e+06 6.5% 1.13e+06 24.7% 1.85e+05 1.3%
-#2626: omp_ offloading 35 d6ae3ae ZL15EvalEOSForElemsRéDomainPd 12626 - 1.11e+06 24.3% 1.85e+05 1.3%
-®2627: __omp_offloading_35_d6ae3ae_ ZL15EvalEOSForElemsRéDomainPd_12626_impl___debug GPU Ca”’ng Context 1.09e+06 23.9% 1.85e+05 1.3%
= [l] inlined from lulesh.cc: 2626 5.36e+05 11.7% 1.85e+05 1.3%
-#2626: _omp_kernel _initialization_$ 36 5.29e+05 11.6% 1.85e+05 1.3%

- loop at lulesh.cc: 0 5.21e+05 11.4% 1.85e+05 1.3%
-»2628: _$ omp outlined $ debug_ $ 29 3.09e+05 6.8% 1.85e+05 1.3%
lulesh.cc: 2725 1.97e+04 0.4%

lulesh.cc: 2803 1.97e+04 0.4%
lulesh.cc: 2767 1.95e+04 0.4%
lulesh.cc: 2720 9.92e+03 0.2%

« We profiled the RAJA performance suite which uses C++ templates to implement loop-based
GPU kernels.

=main.c =sm_30_intrinsics.hpp =

220 SM 30 INTRINSICS DECL _ int _ shfl xor(int var, int laneMask, int width) {

221 int ret;

222 int ¢ = ((warpSize-width) << 8) | 0Ox1f;

223 asm volatile ("shfl.bfly.b32 %0, %1, %2, %3;" : "=r"(ret) : "r"(var), "r"(laneMask), "r"(c));
224 return ret;

225}

226

227 SM 30 INTRINSICS DECL__ int _ shfl xor sync(unsigned mask, int var, int laneMask, int width) {

228 extern device = device builtin__ unsigned _ nvvm shfl bfly sync(unsigned mask, unsigned a, unsigned b, unsigned c);
229 int ret;

230 int ¢ = ((warpSize-width) << 8) Ox1T;

231 ret = nvvm shfl bfly sync(mask, var, laneMask, c);

232 return ret;

233}

234

235 SM 30 INTRINSICS DECL unsigned int shfl xor(unsigned int var, int laneMask, int width) {

236 return (unsigned int) shfl xor((int)var, laneMask, width);

237}

238

239 SM 30 INTRINSICS DECL__ unsigned int _ shfl xor sync(unsigned mask, unsigned int var, int laneMask, int width) {
240 return (unsigned int) _ shfl xor_sync(mask, (int)var, laneMask, width);

241%

242

243 SM 30 INTRINSICS DECL _ float _ shfl(float var, int srclLane, int width) {

244 float ret;
245 int c;

246 ¢ = ((warpSize-width) << 8) | 0x1f;
247M asm volatile ("shfl.idx.b32 %0, %1, %2, %3;" : "=f"(ret) : "f"(var), "r"(srcLane), "r"(c));
% Calling Context View = =~ Callers View = Flat View
8GR W FA |
Scope - GPU_ISAMP[0,0] (1) |
-»390: rajaperf::KernelBase::execute(rajaperf::VariantiD) 6.40e+06 97.4%
- & /2: rajaperf.:stream::DOT::runKernel(rajaperf::VariantiD) 6.40e+06 97.4%
-»167: void RAJA::policy::cuda::forall_impl<RAJA::TypedRangeSegment<long, long>, nv_dl wrapper t< nv_dl tag<void (rajaperf::stream::DOT::*)(rajaperf::VariantID), &rajaperf::stream::DOT::runCudaVariant, 1u>, R/ 5.61e+06 85.4%
-®190: cudaLaunchKernel<char> 5.6let06 85.4%
-»195: cudaLaunchKernel 5.61e+06 85.4%
- »RAJA::policy::cuda::impl::forall_cuda_kernel<256ul, RAJA::Iterators::numeric_iterator<long, long, long*>, rajaperf::stream::DOT::runCudaVariant(rajaperf::VariantiD)::{lambda(long)#1}, long> 5.6le+t06 85.4%
-»151: RAJA::internal::Privatizer<rajapertf::stream::DOT::runCudaVariant(rajaperf::VariantID):: {lambda(long)#1} >::~Privatizer 4.78e+06 72.7%
-e54: rajaperf::stream::DOT::runCudaVariant Template GPU 4.69e+06 71.3%
-»129: RAJA::ReduceSum<RAJA::policy::cuda::cuda_reduce<256ul, false, false>, double>::~ReduceSum Procedures above 4.61e+06 70.1%
- 190: RAJA::cuda::Reduce<false, RAJA::reduce::sum<double>, double, false>::~Reduce Actual Kemel Code 4.53e+06 68.9%
-#848: RAJA::cuda::Reduce<false, RAJA::reduce::sum<double>, double, false>::~Reduce 4.45e+06 67.7%
-#843: RAJA::cuda::Reduce_Data<false, RAJA::reduce::sum<double>, double>::grid_reduce 4.32e+06 65.8%
= [I] inlined from reduce.hpp: 203 3.19e+06 48.5%
- loop at reduce.hpp: 203 1.18e+06 17.9%
- loop at reduce.hpp: 203 6.40e+05 9.7%
-2205: INTERNAL 43 _tmpxft_000022eb_00000000_6 DOT_Cuda_cppl_ii_a3c0234b::_ shfl xor_sync 4.41e+05 6.7%
-#402: INTERNAL 43 _tmpxft 000022eb_00000000_6_DOT_Cuda_cppl _ii_a3c0234b::_ shfl_xor_sync 1.21e+05 1.8%

sm_30_intrinsics.hpp: 227 5.50e+04 0.8%
sm_30_intrinsics.hpp: 232 4.08e+04 0.6%

Next Steps

Currently, nvvp takes multiple phases to collect kernel performance, data movement, compute
utilization, and PC sampling information because of limitations in the CUPTI API, which allows
neither PC sampling information to be collected with memory activities nor activity records to

be collected with event records. We have devised an innovative method to measure parallel efli-
ciency with only sampling information. In this way, we can collect a few activity records that are
compatible with PC sampling and gather all the necessary performance information in a single
phase.

We plan to enhance our graphical interface to facilitate hierarchical analysis of multiple metrics.
Also, we want to augment the information we present with GPU parallelism metrics and gain
experience analyzing MPI-based HPC applications.

