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ABSTRACT
Traditionally, performance analysis tools have focused on collect-
ing measurements, attributing them to program source code, and
presenting them; responsibility for analysis and interpretation of
measurement data falls to application developers. While profiles of
parallel programs can identify the presence of performance prob-
lems, often developers need to analyze execution behavior over
time to understand how and why parallel inefficiencies arise. With
the growing scale of supercomputers, such manual analysis is be-
coming increasingly difficult. In many cases, performance problems
of interest only appear at larger scales. Manual analysis of time
series data from executions on extreme-scale parallel systems is
daunting as the volume of data across processors and time makes it
difficult to assimilate. To address this problem, we have developed
an automated analysis framework that generates compact sum-
maries of time series data for parallel program executions. These
summaries provide users with high-level insight into patterns in
the performance data and can quickly direct a user’s attention to
potential performance bottlenecks. We demonstrate the effective-
ness of our framework by applying it to time-series measurements
of two scientific codes.
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1 INTRODUCTION
Parallel computing has become an indispensable tool for scientific
inquiry. Simulations of increasing ambition and analysis of data
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from high resolution instruments have propelled the construction
of parallel computers of increasing scale. While the computational
power of such systems has increased dramatically, the performance
of many applications has failed to scale proportionally.

Many factors contribute to the inefficiency of parallel applica-
tions. The need to understand application behaviors and pinpoint
causes of inefficiency has led to the development of a broad array of
tools for measuring and analyzing application performance. Well-
known parallel performance tools include HPCToolkit [1], MAP [3],
Paraver [20], Scalasca [11], TAU [21], Vampir [18], and VTune [17].
These tools measure an application’s performance and employ post-
mortem analysis to prepare measurement data for presentation.
Using such tools, experts browse through performance data and
manually identify code regions associated with inefficiencies.

While profiles of parallel program executions can identify the
presence of performance problems, often developers need to analyze
execution behavior over time to understand how and why parallel
inefficiencies arise. Figure 1 shows an annotated screenshot from
HPCToolkit’s hpctraceviewer that examines the behavior over time
of a 512-processor run of PFLOTRAN [14]—a code for massively
parallel simulation of subsurface flow and reactive transport. Each
row in the diagram represents a process; time advances from left to
right. In the figure, six phases are apparent, as noted at the bottom.
The first phase appears to have some load imbalance. The series
of vertical bands in the fifth phase suggests an iterative behavior.
Further manual analysis is needed to understand the performance
of each phase. One would need to zoom in to examine the execution
at a higher resolution and select appropriate call path depths to
derive detailed insights. For long executions involving thousands
of processes, such manual analysis is difficult if not impractical.

Automated analysis of time series data is necessary to understand
the performance of large-scale executions of parallel programs.
To automate such analysis, one must tackle the vastness of time-
series data in three dimensions – process, time, and call-path depth.
One must decide how to identify interesting features, quantify
performance losses, and report them to users.

To address these challenges, we developed a novel automated
framework that generates compact summaries from time series
data. These summaries indicate patterns in the data and direct a
developer’s attention to performance losses, which are attributed
to call paths where the losses occur. Visualization of these sum-
maries enables application developers to immediately understand
performance bottlenecks and locate causes.

This paper highlights three novel aspects of our framework.
First, we present an algorithm that identifies iterative behavior
in a time series of samples. Second, our framework computes a
set of metrics to quantify the severity of performance losses and

https://doi.org/10.1145/3205289.3205308
https://doi.org/10.1145/3205289.3205308


ICS ’18, June 12–15, 2018, Beijing, China Lai Wei and John Mellor-Crummey

Figure 1: Annotated screenshot of HPCToolkit’s hpctraceviewer examining a 512-processor execution of PFLOTRAN. Pro-
cesses are arranged along the vertical axis and time flows left to right. Each pixel in a horizontal trace line for a process shows
a procedure frame on the call path of the process at that time. Each procedure has a unique color. Depth of the frame in the
call path can be selected on the right. Six phases are readily visible in the view, as noted at the bottom of the figure.

attribute such losses to call paths where they originate. Third, our
visualization of automated summaries helps users quickly locate
causes of performance loss.

The rest of the paper is organized as follows. Section 2 describes
prior work analyzing parallel program performance and execution
traces in particular. Section 3 describes how our tool recognizes
iterative behavior in a time series of asynchronous samples and
then organizes information about iterations into a structured tree-
based representation. Section 4 describes how our tool evaluates
variation across threads and iterations, organizes them into a set
of equivalence classes, and generates summaries of potential per-
formance losses. Section 5 illustrates the utility of our automated
analysis by applying it to executions of two scientific codes. Sec-
tion 6 summarizes our work and future directions.

2 RELATEDWORK
Many tools collect and visualize time series data of parallel pro-
grams, including HPCToolkit [1], Paraver [20], Scalasca [11],
TAU [21], Vampir [18], and VTune [17]. With such tools, users
typically manually browse through measurement data to uncover
performance inefficiencies. A few of these tools automate some
kinds of analysis, but none of them offer the fully automated sup-
port users need.

In HPCToolkit, Tallent et al. [22] locate load imbalance by analyz-
ing profiles of parallel program executions. Profiles can identify the
presence of performance problems; however, it is often insufficient
for diagnosing how and why parallel inefficiencies arise.

TAU’s PerfExplorer [16] clusters threads according to metric
profiles, e.g. time spent in each function. Min, max, and average
profiles of each cluster are calculated for comparison. Since profiles

can’t explain all kinds of performance losses, clusters of profiles
can’t either.

In Paraver, Gonzalez et al. [12, 13, 19] divide an execution of a
parallel program into regions between MPI communications and
cluster these regions using their metrics, such as Instructions Per
Cycle (IPC) and cache misses. Paraver colors regions according
to their clusters in a visualization to highlight outliers. However,
manual effort is still needed to judge if these outliers are indications
of performance loss and locate the causes of any performance loss.

Scalasca [11] automates the analysis of traces to identify wait
states in a parallel program. Furthermore, Boehme et al. [6] employ
a delay analysis mechanism to attribute those wait states to their
root causes. Unfortunately, their analysis requires complete traces
of MPI communications that grow too quickly to be practical for
large-scale parallel applications. As a result, selective tracing to
record events only for short execution intervals is needed. Prior
manual analysis is necessary to select such intervals.

Casas et al. [7] identify phases and iterations in MPI applications.
They convert time-series data into signals and apply signal pro-
cessing algorithms to detect program structures. Aguilar et al. [2]
generate event flow graphs of MPI calls online and use these graphs
to discover nested loops in a program. These two techniques iden-
tify regular patterns in traces that contain every MPI operation and
would not apply to sampled time series data.

Bahmani and Mueller [5] employ an online clustering algorithm
for traces of MPI events that capture communication behaviors.
They apply a K-farthest clustering algorithm on a set of parameters
associated with MPI events. Only the representative processor of
each cluster records MPI events to reduce trace size. The clustering
algorithm we describe in section 4.2 applies this idea to identify
constant behaviors in time series data across threads and iterations.



Automated Analysis of Time Series Data
to Understand Parallel Program Behaviors ICS ’18, June 12–15, 2018, Beijing, China

Curtsinger et al. [9] try to estimate how the effects of optimiza-
tions would propagate along program paths with a technique that
they call causal profiling. They virtually speed up a function in
experimental runs to evaluate the benefit of optimizing it. Unfortu-
nately, evaluating a function is time-consuming and users need to
supply a small list of functions. Prior manual analysis is required
to identify a list of interesting functions.

Tallent et al. [23] propose an efficient algorithm to collect repre-
sentative paths for MPI applications. Differences between profiles
of representative paths can be used to estimate parallel performance
and locate load imbalance. However, a few representative paths
may be insufficient to pinpoint causes of performance losses and
quantify their effects over all processes.

3 ASSIMILATING TIME SERIES DATA
Prior work on automating analysis of parallel program behavior
over time has focused on analysis of traces that include every event
of interest (e.g., the beginning or end of an MPI call) during an
interval. Collecting such events can lead to very large trace files. In
this section, we describe how we collect and digest a time series
of asynchronous call path samples to prepare them for automated
analysis. We organize these samples in a tree consisting of program
constructs that include call sites, loops, and iterations.

As input to our analysis, we use a time series of asynchronous
call path samples collected using HPCToolkit [1] for each process
in a parallel program execution. To help analyze this data, we devel-
oped a static binary analyzer using Dyninst’s ParseAPI [8] to build
control flow graphs (CFGs) for every function and loop. Such CFGs
help us identify iterative patterns in HPCToolkit’s traces that result
from program loops; this information serves as input to construct
top-down summaries, described in Section 4.

3.1 Time Series Data from HPCToolkit
As a parallel program executes, HPCToolkit collects a sequence
of asynchronous call path samples for each thread. A sample for
a thread consists of a timestamp, a call path, and an LCA (Least
Common Ancestor). A call path corresponds to a program counter
(PC) followed by a sequence of return addresses that represent
each procedure frame on the thread’s stack when the sample was
recorded. An LCA associated with a call path sample for a thread
represents the lowest procedure frame that remained on the thread’s
call stack since the previous sample.

To associate samples with source code contexts, HPCToolkit
employs binary analysis to relate machine code addresses in an
executable to source lines, call sites, loops, and procedures. Given an
executable for the program in Figure 2, HPCToolkit would identify
that calls to A, B, and C on line 7 – 9 are made inside a loop. For
any call path sample containing an address in function A, B, or C,
HPCToolkit’s postmortem analysis would augment the call path
with the loop context enclosing call sites to the functions. Figure 3
illustrates what a time series of call path samples might look like
for an execution of the sequential program shown in Figure 2.

To derive the LCA for a pair of adjacent call path samples, we
leverage trampolines and mark bits inserted by HPCToolkit when
collecting a call path sample. On x86 architectures, HPCToolkit
can insert a lightweight trampoline [10] to intercept procedure

Figure 2: An example program in C.

Figure 3: An illustration of a possible time series of call path
samples that could be recorded by HPCToolkit for the pro-
gram in Figure 2. Timestamps T1–T8 are associated with the
samples above them. A call path sample consists of a se-
quence of nodes representing call sites and loops. Each call
site is tagged with name of the callee function and line num-
ber of the call. Loops are tagged with line numbers. LCAs of
neighboring samples are connectedwith red lines. PC values
at call path leaves are omitted for all call paths.

returns; HPCToolkit uses these trampolines to reduce unwinding
overhead by remembering the call path prefix in common between
two adjacent call path samples, which we refer to here as the LCA.
On Power architectures, instead of inserting a trampoline when
collecting a call path sample, HPCToolkit can mark each return
address on its call stack by setting its lowest bit [4]. This is safe
because the word-oriented Power architecture ignores the two
lowest bits in a function’s return address. HPCToolkit can detect
the call path prefix in common between two adjacent call path
samples by observing the lowest procedure frame with a marked
return address.

In Figure 3, the LCA between samples at T5 and T6 is loop@6,
because A@7 in T5 is popped from the stack when the second iter-
ation of loop@6 finishes while the third (last) iteration of loop@6
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Figure 4: A temporal context tree built from samples in Fig-
ure 3. Nodes are annotated with timestamp ranges in T1–T8.

Figure 5: Control flows for function foo and loop at line 6 of
the program in Figure 2. In the control flows for a routine
or loop, we have an entry node indicating the begin of that
routine or loop. Other nodes represents call sites and loops
within that routine or loop. Concrete lines are forward flows
while dashed lines are back edges in loops.

pushes a new instance of A@7 onto stack. HPCToolkit knows at run
time that A@7 doesn’t persist on the stack between T5 and T6 while
foo@13 is the lowest frame that persists. Our post-mortem analysis
can determine that the execution did not leave loop@6 between
these two samples and pushes the LCA one level deeper. Knowledge
of the LCA helps the iteration identification algorithm described
in Section 3.2 identify individual iterations of loops represented
by a sequence of call path samples. Without LCAs, we cannot tell
precisely when the second iteration of loop@6 finishes.

To facilitate top-down analysis of a series of call path samples,
our tool builds a tree-based representation of a series of call path
samples by merging common prefixes of temporally-adjacent sam-
ples. This representation, which we call a temporal context tree, has
nodes representing call sites and loops annotated with ranges of
timestamps. A temporal context tree built from the sequence of
samples in Figure 3 is shown in Figure 4. Children of a node in
the tree are ordered from left to right by their timestamps. Notice
that A@7 T4-T5 is not merged with A@7 T6-T7 as the LCA at T6
indicates that A@7 is not a common prefix of samples at T5 and T6.

3.2 Identifying Iterations
Our framework divides execution of a loop into iteration-based
segments to enable automated analysis of time series data at a
fine granularity. Compared to analysis of loop profiles, analyzing a

Algorithm 1: Tag children of a loop with iteration identifiers.
Data: a loop node L in the temporal context tree; a graph G = (V , E)

containing a set of control flow edges where both the source
and sink node of an edge are within the loop L.

Result: all children of L tagged with an iteration identifier.
1 G′← (V , E′) be a subgraph of G without back edges;
2 for v ∈ V do
3 successor [v] ← all nodes reachable from v in G′

4 children[] ← all children of L ordered by timestamps;
5 iter ← 0;
6 prev ← entry node in V ;
7 for k ∈ {0, . . . , |children|-1} do

// дetCFNode(N ) returns the node in V that

represents the call site or loop N .

8 current ← дetCFNode(children[k ]);
9 if current not in successor [prev] then

// A back edge in G must have been taken. Assign

a new iteration identifier.

10 iter ← iter + 1;

11 tag children[k ] with iter ;
12 prev ← current ;

Figure 6: A loop node with explicit iterations after iteration
identification using the temporal context tree in Figure 4
and the control flows in Figure 5

sequence of loop iterations can identifymore patterns that represent
potential bottlenecks. Our analysis transforms the temporal context
subtree rooted at loop@6 in Figure 4 into Figure 6 by interposing a
sequence of nodes between loop@6 and its children to partition the
sequence of samples it represents into a sequence of loop iterations.

Dyninst’s ParseAPI library analyzes binaries and computes a
control flow graph (CFG) for each routine. It also identifies loops
and loop nests in each CFG. We use CFGs from ParseAPI to derive
control flows between call sites and loops within a routine or loop.
An example of such flows for the code in Figure 2 is shown in
Figure 5. For each routine or loop, besides control flows between
nodes representing call sites and loops within it, we have an entry
node indicating the begin of the routine or loop.

Algorithm 1 uses control flows between call sites and loops to
separate iterations of a loop. With results of this analysis, our tool
transforms a temporal context tree by adding a layer of iterations
between each loop and its children as shown in Figure 6. Our al-
gorithm separates iterations when back edges in control flows are
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taken. Children tagged with different identifiers must belong to
different iterations. However, the opposite is not guaranteed when
applied to a time series of samples; children with the same identifier
may belong to different iterations in the execution. To understand
why, imagine that the execution time of a loop iteration in Figure 2
is smaller than the sampling period. In this case, HPCToolkit may
record a sample in A in the first iteration, followed by a sample
in C in the third iteration. Despite the fact that A and C are not
called in the same iteration, our algorithm would tag them with the
same identifier because it cannot prove that they must have been
recorded in different iterations.

Fortunately, when the sampling period is not short enough to
resolve iterative behavior, identifiers would only be tagged to a
few children that last a few samples – in the above example, the
identifier is applied to two call frames each lasting one sampling
period. To determine if children with the same identifier belong to
a same iteration in the execution, our analysis framework runs the
algorithm and tests every identifier against the following criteria:

• for an identifier, if the number of children being tagged is
≥ CHILD_NUM_ACC , this identifier is accepted;
• the identifier is also accepted if the duration of any tagged
child is ≥ CHILD_DUR_ACC;
• otherwise, the identifier is rejected.

An identifier is accepted when we are confident that all its tagged
children belong to the same iteration in the execution. Our case
studies show that lots of assignments to those two parameters
yield good results. We currently use CHILD_NUM_ACC = 5 and
CHILD_DUR_ACC = 5 × samplinд period .

All children tagged with rejected identifiers are merged to form
a set of profile nodes. Profile nodes are different from regular ones
as they only have their durations accumulated instead of recording
the range of timestamps for each individual instance. When the
duration of children tagged with rejected identifiers are dominant
in a loop – greater than half the duration of the loop, we find it less
beneficial to keep detailed records of accepted identifiers. In such
cases, the entire loop node will be transformed into a profile node.

In our experiments, most identifiers are accepted for loops where
iterations run a sufficient amount of time, which enables further it-
eration analysis on these loops. For loops with very short iterations,
users are unlikely to devote interest to the behavior of each iteration
and a profile node that summaries all iterations is sufficient.

So far, we have described how we ingest a sequence of call path
samples from HPCToolkit, assemble them into a temporal context
tree, and use control flow information extracted from the applica-
tion binary using Dyninst’s ParseAPI to group samples into itera-
tions. Loops in the temporal context tree either have their iterations
identified or have their children merged into profile nodes.

4 GENERATING TOP-DOWN SUMMARIES
Often, time series data contains multiple instances of similar be-
haviors. Iterations in a loop may be comparable and threads may
perform similar work. Rather than presenting users with time series
data that shows thousands of threads running millions of iterations
each, our framework generates concise summaries of these behav-
iors and highlights interesting features of the data.

Figure 7: Comparison betweenN0 andN1: two temporal con-
text subtree roots. Only one tree is shown as both nodes
share the same sequence of children. To aid in comparing
the temporal sequences represented by N0 and N1, we con-
vert the sequence of their children into a sequence of bars
that shows the sequence of states representing each sub-
tree. Gray bars represent exclusive running time ofN0 orN1,
which means that a sample was recorded at an instruction
in the root node, not in a child call site or a loop.

One interesting feature is variation across threads and iterations.
When threads and iterations have different behaviors, investigating
variation can reveal performance bottlenecks. In our work, we seek
to provide answers to the following questions. Is there any signif-
icant variation? How large is it? Where does the variation arise?
Answers to these questions can provide insight into performance
loss and help users devise optimizations.

In the next section, we discuss quantifying pairwise differences.
In Section 4.2, we use this as a building block for clustering, which
identifies repetitive behaviors in time series data. In Section 4.3, we
discuss how we compute and keep track of the source of variation,
providing answers to the aforementioned three questions.

4.1 Quantifying Pairwise Differences
To cluster time series data, we need to quantify the differences
between pairs of temporal context tree nodes. In this section, we
describe how our framework quantifies such differences.

Figure 7 shows a pair of temporal context tree nodes N0 and N1
with some differences. We define their difference diff (N0,N1) as the
minimum number of additions or deletions needed to make them
equivalent. With V as the sampling period, difference between N0
and N1 is 2 × V as we can turn N0 into N1 by extending the run
time of A by V and cutting the run time of D by V.

Besides using diff (N0,N1) to denote the difference between two
temporal context tree nodes, we also define diffRatio(N0,N1) to
quantify the difference relative to the duration of both tree nodes.
We have

diffRatio(N0,N1) =
diff (N0,N1)

duration(N0) + duration(N1)
As of Figure 7, we have diffRatio(N0,N1) = 2/14 = 14.3%.

Algorithm 2 computes the difference between two regular tempo-
ral context tree nodes N0 and N1, denoted as diff (N0,N1). At line 8,
the algorithm accumulates difference between matched children of
N0 and N1 that refer to the same call site or loop. At line 13, control
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Algorithm 2: computes the difference in run time between two regular
temporal context tree nodes that refer to the same call site.
Data: sampling period V ; a pair of regular temporal context tree node

N0 and N1 refering to the same call site S ; the set of control
flow edges CF where both the source and sink node of an edge
are within S .

Result: difference in execution time between N0 and N1.
1 Function diff(N0, N1):
2 sum← 0;

// For simplicity, we use N [i] to denote the ith
child of node N (children are ordered by
timestamps); S [N ] to denote the start time of node
N ; and E[N ] to denote the end time of node N .

// Gaps are used to count differences in gray bars in
Figure 7. S [N [i]] returns E[N ] if
i = numChild (N ).

3 Gap0 ← S[N0[0]] − S[N0]; Gap1 ← S[N1[0]] − S[N1];
4 C0 ← 0; C1 ← 0;
5 while C0 < numChild (N0) and C1 < numChild (N1) do
6 if N0[C0] and N1[C1] refer to the same call site or loop then
7 sum← sum + diffGap(Gap0, Gap1);
8 sum← sum + diff (N0[C0], N1[C1]);
9 Gap0 ← S[N0[C0 + 1]] − E[N0[C0]];

10 Gap1 ← S[N1[C1 + 1]] − E[N1[C1]];
11 C0 ← C0 + 1; C1 ← C1 + 1;

12 else
13 if N0[C0] is a successor of N1[C1] in CF then

// Increment C1 as a later child of N1 may

match N0[C0] at line 6.

// dummy(N ) generates a copy of N with

no child and zero execution time.

14 sum← sum + diff (N1[C1], dummy(N1[C1]));
15 Gap1 ← Gap1 + S[N1[C1 + 1]] − E[N1[C1]];
16 C1 ← C1 + 1;

17 else
18 sum← sum + diff (N0[C0], dummy(N0[C0]));
19 Gap0 ← Gap0 + S[N0[C0 + 1]] − E[N0[C0]];
20 C0 ← C0 + 1;

21 while C0 < numChild (N0) do
// Same as line 18 - 20

22 while C1 < numChild (N1) do
// Same as line 14 - 16

23 sum← sum + diffGap(Gap0, Gap1);
24 return sum;

25 Function diffGap(Gap0, Gap1):
26 if |Gap0 −Gap1 | > 2 ×V then
27 return |Gap0 −Gap1 | − 2 ×V ;

28 return 0;

flows are used to determine which child to process first when chil-
dren of N0 and N1 don’t match. The algorithm builds dummy nodes
for unmatched children and accumulates the difference at line 14
and 18. At line 7 and 23, it accumulates difference between exclusive
run time of N0 and N1 (gray bars in Figure 7). The algorithm runs
recursively at line 8, 14, and 18 until it hits leaf nodes in the tree.

Figure 8: Comparison between two leaf nodes Z0 and Z1. We
use V to denote the sampling period, S[Z] to denote the start
time of Z, and E[Z] to denote the end time of Z. While Z0
and Z1 are not exactly the same, a perfect match is possible
when we take the sampling period into account.

Difference between profile nodes can be computed in a similar way.
Computation of difference between regular temporal context tree
nodes that refer to the same loop is covered in Section 4.2.1.

In the implementation of diffGap at line 25 of Algorithm 2, we
deduct two times the sampling period from the actual difference.
The reason is illustrated by Figure 8. With a sampling period of V,
a node Z could have started anytime between S[Z ] −V and S[Z ]
and ended anytime between E[Z ] and E[Z ] + V . As a result, Z0
and Z1 in Figure 8 can have a perfect match even if they are not
exactly the same. In our experiments, we find it essential to take
the sampling period into account when computing diffGap. If not,
the result becomes useless as the true variation will be dominated
by noise that arises from not accounting for the sampling period
properly. In practice, we also notice that the sampling period is not
constant over all samples – it varies to some degree. Algorithm 2
was designed with such variation in mind.

4.2 Clustering
Clustering iterations or threads in the time series data brings sev-
eral benefits. First, it saves space and time spent in analysis by
condensing many instances into a few equivalence classes. Second,
it reduces analysis effort by summarizing thousands of instances
with one representative. Third, it directs attention to variation
among distinct clusters which may be the source of performance
losses.

Algorithm 3 employs the K-farthest clustering algorithm pro-
posed by Bahmani et al. [5] to cluster iterations and threads. We
choose this algorithm because it has a low time complexity and is
easy to parallelize (discussed in Section 4.2.2). The algorithm uses
a divide-and-conquer method to return no more than K clusters
representing all instances. Computing the difference between a
pair of clusters at line 13 and 24 of Algorithm 3 takes O(G) time,
where G is the size of the temporal context tree. Those functions
are called O(K2) times bymerдeClusterSet ; as a result, time com-
plexity formerдeClusterSet is O(K2G). FunctionmerдeClusterSet
is called O(M/K) times by дetClusterSet , where M is the number
of instances in node N. Therefore, the overall time complexity is
O(MKG). We currently set K = O(log2M).

In our implementation, a representative is associated with each
cluster, which is the average of all instances in that cluster. For a clus-
ter with one instance, its representative is that instance. For a cluster
with more than one instance, a representative is computed when
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Algorithm 3: K-farthest clustering for temporal context tree.
Data: a temporal context tree node N which is a loop node with

iterations or a root node with threads; h and e represent the
start and end index of the instances to be clustered; K indicates
the maximum number of clusters.

// For simplicity, we use N [i] to denote the ith
iteration or thread of N .

// Return a set of clusters representing instances from

N [h] to N [e − 1].
1 Function getClusteSet(N , h, e , K):
2 if e − h ≤ K then
3 for i ∈ {h, . . . ,e-1} do
4 clusters[i − h] ← N[h] ;

5 return clusters ;

6 mid ← (h + e)/2 ;
7 S0 ← дetClusterSet (N , h,mid, K ) ;
8 S1 ← дetClusterSet (N ,mid, e, K ) ;
9 clusters ←merдeClusterSet (S0, S1, K ) ;

10 return clusters ;

// Merge two sets of clusters to one containing no more

than K clusters.

11 Function mergeClusterSet(S0, S1, K):
12 Copy S0 and S1 to S ;
13 Compute pairwise diffRatio for clusters in S ;
14 (C0,C1)← the pair of clusters in S with lowest diffRatio;
15 min← the lowest diffRatio computed;
16 max ← the highest diffRatio computed;
17 M← number of clusters in S;
18 while ((min < Ratiomin ) // continue when min is below

a threshold

19 or (min/max < Ratior el ) // or when min is small

compared to max

20 or (M > K )) // or when M exceeds K

21 do
22 C ←merдe(C0, C1) ;
23 Insert C into S and delete C0 and C1 from S ;
24 Compute diffRatio between C and other clusters;
25 Update C0, C1,min,max , and M as line 14–17;

26 return S;

merдe(C0,C1) is called at line 22 of Algorithm 3. The implementa-
tion ofmerдe(C0,C1) is very similar to diff (N0,N1) in Algorithm 2,
where we would substitute recursive calls to diff (N0,N1) with calls
tomerдe(C0,C1) that computes weighted average of input nodes.

Two values are configurable in Algorithm 3. Ratiomin is a thresh-
old such that all cluster pairs (C0,C1) satisfying diffRatio(C0,C1) <
Ratiomin would always be merged, which avoids dividing similar
instances into different clusters. Ratior el instructs the algorithm to
merge cluster pairs when their diffRatio is insignificant compared
to other pairs, which serves to keep only the clusters with signif-
icant variances. Through several experiments, we set Ratiomin =
0.02 and Ratior el = 0.25.

Clusters generated by our algorithm serve as summaries of the
corresponding loop or a parallel program.When behavior is regular,
time series data for a loop or an entire parallel program can be

replaced with a few iteration or thread clusters that emphasize the
most distinct equivalent classes.

4.2.1 Multi-level Clustering. Our clustering algorithm supports
multi-level clustering and is applied in a bottom-up fashion: inner
loops are clustered before outer loops; loops in individual threads
are processed before the entire execution.

To extend Algorithm 3 to support multi-level clustering, we
implement diff (S0, S1), which can be called at line 13 and 24 in
Algorithm 3, to compute the difference in run time between two
sets of clusters that are originally loops. We define diff (S0, S1) to be
the sum of differences in execution time across every matching pair
of iterations. In our implementation of diff (S0, S1), we compute the
difference in a few groups by utilizing clustering result.

4.2.2 Parallelization of Clustering. Clustering in parallel is nec-
essary to uncover performance insights within a reasonable amount
of time. Currently, we employ a shared memory parallelization.

Our framework begins by processing the temporal context tree
of every thread to cluster all loops. We parallelize this step by
assigning each analysis process a set of thread trees. Next, our
framework clusters the entire execution. We employ two kinds of
parallelism in this step: (1) task parallelism within the divide-and-
conquer implementation of дetClusterSet in Algorithm 3, and (2)
data parallelism when computing pairwise diffRatio at line 13 and
24 in Algorithm 3.

4.3 Identifying Performance Losses
Variation across threads and iterations provides clues to perfor-
mance loss. In this section, we describe how we quantify and at-
tribute variations across threads to locate potential performance
losses.

4.3.1 Quantifying Imbalance and Waiting. To optimize a serial
program, one typically identifies functions and loops that take a
significant amount of time and optimizes them to improve the over-
all performance. For parallel programs, identifying work imbalance
and unnecessary waiting is typically the first step.

We compute twometrics to quantify performance loss fromwork
imbalance and unnecessary waiting respectively. We define imb(N )
as the projected run time reduction if work imbalance in node N is
fixed; andwait(N ) as the projected run time reduction if balanced
wait in node N is eliminated. To compute these two metrics, we
attach three extra metrics to every node in the temporal context
tree. We define avд(N ) as the average run time of node N across all
processes and threads. Similarly, we definemin(N ) andmax(N ) as
the minimum and maximum run time of N. These three metrics can
be easily calculated during clustering.

We divide nodes in the temporal context tree into three semantic
categories – computation, waiting, and synchronization – based
on several heuristics. User-level functions and loops are consid-
ered as computation; functions involving synchronization, such
as MPI_Barrier and the OpenMP barrier pragma, are classified as
synchronization; functions involving waiting, such as MPI_Send
and omp_set_lock, are treated as waiting.

We compute imb(N ) and wait(N ) for a node according to its
semantic category, as shown in Table 1. Explanation for formulas in
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Table 1: Computing imb(N) and wait(N). imb(N) quantifies
performance loss due to load imbalance while wait(N) quan-
tifies performance loss due to waiting.

Node category imb(N) wait(N)

Computation (C) max (C) − avд(C) 0

Wait (W) max (W ) − avд(W ) avд(W )
Synchronization (S) avд(S ) −min(S ) min(S )

Figure 9: Example estimation of performance improvement.
Time series data of P0 – P2 are visualized in the same way
as Figure 7. Run time of each region is tagged. Assuming X
as computation, Y and Z as synchronization, the bottom bar
shows the time series data of all processes if load-imbalance
in X is fixed, leading to an improvement of 4s.

Table 1 are as follows. Assume the absence of region Y and Z in Fig-
ure 9, if region X is computation, the execution time will be reduced
frommax(X ) to avд(X ) by balancing the work in X. Therefore, we
have imb(X ) = max(X ) − avд(X ) and wait(X ) = 0. Similarly, if
region X is waiting, the execution time will be reduced bymax(X )
if waiting in X is fully eliminated. The reduction has two sources:
max(X )−avд(X ) from balancing the wait and avд(X ) from eliminat-
ing the balanced wait. imb(S) of a synchronization node is defined
in a slightly different way, as the projected run time reduction if
imbalance between the previous synchronization node and the cur-
rent one is fixed. In Figure 9, if region X is computation and region Y
is synchronization, we have imb(Y ) = imb(X ) =max(X ) −avд(X ) =
(lenдth(X+Y )−min(Y ))−(lenдth(X+Y )−avд(Y )) =avд(Y )−min(Y ).
After X is balanced, eliminating waiting in Y would bring an extra
run time reduction ofmin(Y ); therefore, we havewait(Y ) =min(Y ).

4.3.2 Attributing Performance Loss to Significant Call Paths. In
this section, we attribute performance losses to call paths. We iden-
tify call path depths where losses arise and pick significant call
paths that are major contributors to the overall inefficiency.

We define sumImb(N ) as the sum of imbalance in all children of
a temporal context tree node N, which is computed as follows:

sumImb(N ) =
{
imb(N ) child(N ) = ∅∑
M ∈child (N ) sumImb(M) child(N ) , ∅

Figure 10 shows an example on the value of imb(N ) and sumImb(N )
in a temporal context tree.

With imb(N ) and sumImb(N ), we are able to identify call path
depths where imbalance arise and pick call paths that are significant
contributors to the overall imbalance. Figure 11 shows an example

Figure 10: Example of imbalance metrics in the tree assum-
ing that X, Y, and Z in Figure 9 are computation nodes called
by A. Two values are shown for each node. The first value is
imb(N) and the second value is sumImb(N).

Figure 11: Example of imbalance attribution. Imbalance is
shown in percentileswith respect to the total execution time.
Two percentiles are shown for each node. The first one is
imb(N) and the second one is sumImb(N). Out of all call
paths, two are highlighted with appropriate depth selected.

on highlighting major sources of imbalance. All highlighted call
paths ending with node N must meet the following two criteria:

• imb(N )/RunTime > siдni f icanceRatio so that the imbal-
ance is significant compared to execution time;
• imb(N )/sumImb(N ) > oriдinDepthRatio such that node N
can explain imbalance originated from its subtree.

significanceRatio prunes call paths with little imbalance. origin-
DepthRatio helps select call path depths where imbalance arise and
avoid reporting too many children of N with diluted imbalance.
In our experiments, lots of assignments for the two parameters
work well and we currently pick significanceRatio = 0.1% and origin-
DepthRatio = 70%. Note that while significanceRatio is small, the
sum of several call paths in an inefficient segment (discussed in the
next section) can become significant.

To highlight sources of waiting, our tool employs a similar strat-
egy based on the approach described above. We computewait(N )
and sumWait(N ) and use significanceRatio and originDepthRatio to
select call paths that are significant contributors to wait time. In
this way, our framework highlights call paths that are significant
sources of performance loss and identifies call path depths where
losses arise.
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Table 2: Performance Diagnosis of Inefficient Execution Segments

imb(S)
∑
imb(N)

∑
wait(N) Explanations and further investigation steps

#1 Low Low High Lots of waiting. Investigate contributers of wait to identify unnecessary waiting.

#2 Low High Low Locate contributers of imbalance. Make sure they have correct semantic classifications and
their imbalances trade off when added up. Good performance if so; otherwise, significant imbalance.

#3 High High Low Load imbalance. Locate causes of the imbalance by investigating contributers of imbalance.

#4 Low High High First, follow steps in the 2nd row. If imbalance in computation call paths trade off with imbalance in waiting,
investigate if those computation call paths are the causing the wait. If not, follow steps in the 1st row.

#5 High High High Can be a mix of the above performance inefficiencies. Follow steps in the 1st and 3rd row first.
If no clues are found, follow steps in the 4th row.

4.3.3 Dividing Execution into Inefficient Segments. Execution of
a parallel program can be divided into phases between synchroniza-
tions. Similarly, our automated framework divides an execution into
inefficient segments based on significant call paths. Each segment
contains multiple significant call paths and ends in synchronization.
For example, the execution in Figure 9 would be divided into two
segments of (X,Y) and (Z), assuming X as computation and Y and
Z as synchronization.

For each inefficient segment, we can diagnose its performance
according to Table 2. In the table, we have imb(S), imbalance of
the synchronization call path; we sum up imb(N ) of all significant
call paths except imb(S); and we also sum upwait(N ) of these call
paths. As an example, for Figure 9 where X is computation while Y
is synchronization, the user should follow instructions in the 3rd
row of the diagnosis table. Under another scenario, assuming X
and Y are computation while Z is synchronization, the user would
follow steps in the 2nd row.

To summarize, our clustering algorithm divides threads and itera-
tions into a few equivalence classes to generate compact summaries.
Furthermore, our framework computes metrics to quantify perfor-
mance losses, which it attributes to call paths, and identifies call
path depths where losses arise.

5 EVALUATION
We evaluate the capabilities of our analysis framework by applying
it to executions of two scientific codes on the Titan supercomputer
at ORNL (Table 3). For both executions, we useHPCToolkit to collect
a series of call path samples for each process in the execution. We
then employ our automated framework to analyze the sequence
of call path samples collected. We present analysis results using a
version of HPCToolkit’s hpctraceviewer modified to render novel
views that simultaneously highlight multiple bottlenecks that arise
at different call path depths.

5.1 Case Study: Analysis of PFLOTRAN
PFLOTRAN [14] is a code for massively parallel simulation of sub-
surface flow and reactive transport. We study the 100_10_10 ex-
ample problem on 512 cores using 32 nodes with 16 cores per node.

Table 4 shows our iteration identification results for the top
three loops (ranked by loop duration) in PFLOTRAN. We divide
the average loop duration across all processes by execution time to
produce the percentiles in the second column. The first loop covers
phase #5 and #6 in Figure 1 – iterative behaviors are seen in phase
#5 while phase #6 belongs to the last iteration of the loop. With

Table 3: Titan HW and SW Configurations

Core AMD Opteron Processor 6274

Clock frequency 2.2GHz

# sockets per node 2

# cores per socket 8

# threads per core 1

Operating system Linux 3.0.101

Compiler gcc 4.9.3

MPI implementation cray-mpich 7.5.2

Table 4: Iteration Identification Result for Selected Loops in
PFLOTRAN.

Loop
Average

Duration

# Accepted

Identifiers

# Rejected

Identifiers

# Actual

Iterations

Phase #5 and
#6 in Figure 1

51.8% 23 0 23

Line 3 in
Algorithm 4

15.4% 3 0 3

Line 3 in
Algorithm 4

14.7% 3 0 3

Table 5: Six Inefficient Execution Segments for PFLOTRAN.

imb(S)
∑
imb(N)

∑
wait(N) Phase of Figure 1

S1 2.01% 61.6% 0% #1

S2 8.80% 8.80% 0% #2

S3 0.20% 11.3% 5.20% #3

S4 0.13% 33.4% 16.6% #4

S5 0.20% 30.3% 14.8% first half of #6

S6 0.20% 33.3% 16.6% second half of #6

plenty of time-series data for each iteration, our framework is able
to identify and accept 23 identifiers, which matches the number
of actual iterations. Our framework also yields the correct result
for two instances of the loop at line 3 in Algorithm 4, which is
discussed later in this section.
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(a) Annotated screenshot showing the full execution of PFLO-
TRAN. Segment (as of Table 5) and phase (as of Figure 1) num-
bers are noted at the bottom.

(b) Expanded and annotated view of segment S4 in (a).

Figure 12: Annotated screenshots from our revised version
of HPCToolkit’s hpctraceviewer rendering automated sum-
maries of the same PFLOTRAN run shown in Figure 1. Pro-
cesses are arranged first by clusters and then by MPI rank.
Each pixel in a horizontal trace line for a process shows
the call path of the process at that time. The depth of each
call path displayed is selected based on the automatic sum-
maries we compute. Significant call paths are assigned col-
ors according to their semantic category: computation in
red, yellow, or brown,wait in green or blue, and synchroniza-
tion in purple. Insignificant call paths are colored in gray.
Functionality of call paths are labeledwhere possible in (b).1

Our framework identifies six inefficient segments in the PFLO-
TRAN execution as shown in Table 5. We divide the actual metric
values by total execution time to produce the percentiles in the ta-
ble. Besides the metrics, relationships between these segments and
phases in Figure 1 are specified. Applying our clustering algorithm
to time series data from 512 processes yields 3 clusters:
• cluster #0 contains 1 process: P0;
• cluster #1 contains 15 processes: P4, P8, P12, ..., P60;
• cluster #2 contains the remaining 496 processes.

Figure 12a shows the reorganized time series data of all processes
for the same PFLOTRAN execution as in Figure 1. The revised
hpctraceviewer arranges processes according to the automated
clustering result. Processes are ordered first by clusters and then by
MPI rank. The height of each cluster is proportional to log2(size+1)
so that processes with distinct behaviors stand out. At each pixel,
instead of showing a procedure frame on the call path at some
depth manually selected by the user, the revised hpctraceviewer

Algorithm 4: Sketch of PFLOTRAN serialized I/O.
Data: Each process has a total of three local arrays, donated as A[0],

A[1], and A[2].
1 if I’m P0 then
2 Write the global grid to visualization file ;

3 for k ∈ {0, 1, 2} do
4 MPI_Alltoall A[k] within local MPI group, turning A[k] from a

3D local partition to several contiguous rows in the grid;
5 if I’m not P0 then
6 MPI_Send A[k] to P0;

7 else
8 Write A[k] to visualization file;
9 for i ∈ {1, . . . , numProc − 1} do

10 MPI_Recv temp from Pi;
11 Write temp to visualization file;

12 MPI_Barrier across all processes;

selects the depth based on automated summaries. Significant call
paths are assigned colors according to their semantic category:
computation in red, yellow, or brown, wait in green or blue, and
synchronization in purple. Insignificant call paths are colored in
gray. This coloring scheme directs attention to performance issues
worth understanding and highlights imbalances and waiting that
cause inefficiencies.

Figure 12b shows an expanded view of S4 from Figure 12a. The
view is manually annotated with significant call frames.1 Serial-
ization is obvious in the figure. In cluster #2, processes execute an
MPI_Send and retire in order as P0 receives their data and writes a
visualization file. This highlights that having P0 perform all I/O is
a bottleneck.

Significant call paths in S4 identify less than ten functions of in-
terest out of 300K lines of code. Our investigation into the functions
highlighted by our automated analysis revealed the nature of the
I/O serialization. Algorithm 4 sketches how PFLOTRAN performs
I/O. The computation is serialized at line 10, where P0 receives data
from other processes in order. P0 is responsible for all file writes
at line 2, 8, and 11, which is the root cause of waiting by other
processes. Processes in cluster #1 are in the same local MPI group
as P0; therefore, they spend more time waiting at line 4 whereas
processes in cluster #2 wait at line 6.

Our investigation into S5 and S6 in Table 5 shows they are ex-
plained by the same piece of code, except that the code is called from
different contexts and writes distinct visualization files. S2 and S3
can also be explained by Algorithm 4, where a call to MPI_Barrier
takes place between line 2 and 3, cutting the code into two halves.
The first half explains S2 while the second half explains S3. Inves-
tigation into S1 reveals work imbalance when processes write an
output data file in parallel. Multiple call paths contributed to the
total imbalance. Work in every call path is imbalanced but they
are almost balanced when added up. That’s why we see a big total
imbalance but a modest imb(S) in S1.

1Each manual annotation highlights the key frame from call paths associated with
a region. The tool provides the complete call path associated with each pixel in the
visualization in another pane that is not shown.
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Original Time Estimated Time Optimized Time
(Serialized I/O) (No Serialization) (Parallel I/O)

178s 66s 70s

Figure 13: Comparison of PFLOTRAN execution times.

Figure 14: Annotated screenshot fromhpctraceviewer exam-
ining automated summaries on AMG2013. The view is orga-
nized in the same way as Figure 12 except that processes are
solely arranged by MPI rank.

Table 6: Two Inefficient Execution Segments for AMG2013.

imb(S)
∑
imb(N)

∑
wait(N)

S1 0.11% 19.6% 5.40%

S2 0.24% 2.01% 1.54%

Table 7: Iteration Identification Result for Selected Loops in
AMG2013.

Loop
Average

Duration

# Accepted

Identifiers

# Rejected

Identifiers

# Actual

Iterations

Loop in S1 48.6% 8 1 9

Loop in S2 32.2% 11 0 11

If the serialization in Algorithm 4 is eliminated and the work on
writing files is evenly distributed, imb(S) and total wait of S2 – S6
would disappear, suggesting a 63% reduction of execution time. We
expect an extra 2% reduction if work in S1 can be balanced.

Based on these insights, we replaced the serialized writes shown
in Algorithm 4 with MPI parallel I/O. As shown in Figure 13, the
optimized code is 61% faster than the original. Performance of
optimized code is consistent with the estimation: the extra 4s cor-
responds to the overhead of using MPI parallel I/O and MPI_Scan
to calculate offsets for file writes.

5.2 Case Study: Analysis of AMG2013
Algebraic MultiGrid (AMG) 2013 [15] is a parallel iterative solver
of unstructured linear systems. We run the default solver on an
8×8×8 processor grid using 32 nodes with 16 cores per node.

Our framework identifies two inefficient segments in the
AMG2013 execution as shown in Table 6. Figure 14 shows the
visualization of the execution from our revised hpctraceviewer. The

view is organized in the same way as the PFLOTRAN example in
Figure 12 except that we choose to arrange processes by MPI rank
to highlight the distribution of imbalance across processes.

One can easily identify load imbalance in segment S1 of Fig-
ure 14. Processes with fewer neighbors on the 8×8×8 processor
grid have less work in call paths colored in gold and orange when
the application coarsens the data grid. These processes spend more
time waiting in MPI communications colored in green. By adding
up the imbalance metric of the two computation call paths colored
in gold and orange, we conclude that balancing the work could
lead to a 3% performance improvement. An extra 2% is possible
if certain waits in MPI communications of S1 can be eliminated.
A quick examination of S2 shows the imbalance in S2 has little
influence on the overall performance.

Table 7 highlights the iterative behaviors in S1 and S2. Our
framework identifies 9 iterations for the loop in S1, where duration
of each iteration decreases over time. The last iteration is rejected
as its duration is smaller than twice the sampling period (less than
0.02% of execution time). Nonetheless, our framework is still able
to apply further analysis to the first 8 iterations that are accepted.
Iterations of loop in S2 have constant durations and our framework
identifies and accepts all 11 iterations.

Our automated framework groups processes into four clusters:

• cluster #0 has 122 processes that are the first and last 8 pro-
cesses of every group of 64 processes (but with 6 exceptions);
• cluster #1 has 384 processes that are the middle 48 processes
of every group of 64 processes;
• cluster #2 contains 4 processes: P56, P120, P184, and P455;
• cluster #3 contains 2 processes: P327 and P391.

Processes in cluster #2 and #3 are separated from ones in #0
as they spent more time waiting in PMPI_Recv for messages from
neighbors rather than a combination of some other MPI commu-
nications that function as global synchronization in S1. Such a
difference in the distribution of waiting time doesn’t challenge our
conclusion of load imbalance in S1.

With all these insights, one may decide to optimize AMG2013 to
achieve estimated performance improvement or choose to verify
the effect of the imbalance in S1 on other input problems before
further actions. After a quick investigation, we concluded that the
small potential improvement doesn’t worth the effort to gather
more detailed information about the bottleneck and implement
optimizations to address the load imbalance.

With PFLOTRAN and AMG2013 as examples, we demonstrate
how users can employ our analysis framework to quickly locate
potential performance bottlenecks and reason about causes of per-
formance losses. We demonstrated the utility of our findings and
the accuracy of our tool’s estimates of possible improvement by
fixing the serialization bottleneck in PFLOTRAN to achieve con-
siderable performance improvement. Manually exploring the time
series data for these codes to understand the causes of performance
losses using the original version of HPCToolkit’s hpctraceviewer
requires considerably significantly more effort than our automated
analysis.
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6 CONCLUSIONS AND FUTUREWORK
This paper describes an automated analysis framework that gen-
erates compact summaries of a time series of asynchronous call
path samples. These summaries highlight patterns in the data and
can quickly direct a user’s attention to potential performance bot-
tlenecks. Case studies of PFLOTRAN and AMG2013 executions
demonstrate the effectiveness of our approach.

We are pursuing several extensions to our work on automated
time series data analysis. First, we aim to further revise hpctrace-
viewer for more effective exploration of automated summaries. We
envision additional views that (1) highlight inefficient execution
segments and their associated metrics and (2) visualize summarized
iterative behaviors over time. Second, we want to exploit semantic
information in our analysis. Our framework only works on SPMD
programs where processes run the same code. To extend our analy-
sis to MPMD programs, semantic information is required to build a
map between processes running different code. Semantic informa-
tion can also help our framework derive more accurate diagnosis.
Third, we want to automatically derive causes for performance
losses highlighted in the summary. By matching behaviors of ineffi-
cient execution segments with certain patterns, we may be able to
determine the nature of performance loss, such as load-imbalance
and serialization, as well as provide suggestions on optimizing the
code.
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