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ABSTRACT
Cutting-edge science and engineering applications require
petascale computing. It is, however, a significant challenge
to use petascale computing platforms effectively. Conse-
quently, there is a critical need for performance tools that
enable scientists to understand impediments to performance
on emerging petascale systems. In this paper, we describe
HPCToolkit—a suite of multi-platform tools that sup-
ports sampling-based analysis of application performance on
emerging petascale platforms. HPCToolkit uses sampling
to pinpoint and quantify both scaling and node performance
bottlenecks. We study several emerging petascale applica-
tions on the Cray XT and IBM BlueGene/P platforms and
use HPCToolkit to identify specific source lines — in their
full calling context — associated with performance bottle-
necks in these codes. Such information is exactly what appli-
cation developers need to know to improve their applications
to take full advantage of the power of petascale systems.

Categories and Subject Descriptors
C.4 [Performance of systems]: Measurement techniques,
Performance attributes.

General Terms
Performance, Measurement, Scalability, Algorithms.

Keywords
Binary analysis, Call path profiling, Static analysis, Perfor-
mance tools, HPCToolkit.

1. INTRODUCTION
A wide range of scientific applications require petascale

computing to address problems at the frontier of computa-
tional science research. Over the past year, the first petas-
cale systems have become available. Two of the most pow-
erful “leadership computing platforms” available for open
science in the United States are Jaguar, a Cray XT4/XT5
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at the National Center for Computational Sciences and In-
trepid, an IBM BlueGene/P at the Argonne Leadership Com-
puting Facility. Each system contains over 160,000 processor
cores. Tackling grand challenge problems requires using such
platforms effectively, which requires addressing two issues.
First, an application must scale efficiently to large processor
counts. Second, an application must make efficient use of
individual processor nodes.

If an application contains significant scaling bottlenecks,
it cannot productively use the large number of cores in
leadership computing platforms. Unfortunately, it is ex-
tremely difficult for applications to effectively use comput-
ing resources at this scale because seemingly benign inef-
ficiencies emerge as major bottlenecks on a large number
of processors. Understanding why an application does not
scale can be quite difficult. To date, approaches to an-
alyze scalability on petascale systems have required labo-
rious human effort [1–3, 13, 22, 36], used instrumentation-
based measurement techniques that can significantly dilate
execution time and distort the nature of performance mea-
surements [8,14,26,35], or provide only qualitative informa-
tion [34]. Moreover, at best these approaches only identify
scaling bottlenecks at the procedure level because detailed
instrumentation at a finer level (e.g., loops) is too costly.
As a result, there is a critical need for better tools that can
accurately measure and attribute performance information
in ways that enable scientists to understand in detail how
impediments to scaling arise in parallel applications. With-
out detailed information about where scaling losses occur,
addressing their underlying causes can be difficult.

If an application loses a factor of two in node performance,
that halves the amount of science that can be accomplished
with a fixed allocation on a leadership computing platform.
Understanding node performance inefficiencies in applica-
tions at full scale may require measuring performance at
scale because it may be difficult to recreate the same condi-
tions for study on a smaller number of processors.

The HPCToolkit1 project has developed low-overhead
techniques for sampling-based performance measurement
and analysis that make it possible to precisely quantify
and attribute both scalability losses and node performance
losses. HPCToolkit can attribute both kinds of losses to
individual lines of source code, in their full static and dy-
namic contexts [7, 33]. However, HPCToolkit’s analysis
relies on the accurate collection of precise performance mea-
surements. Petascale platforms present two principal chal-
lenges to collecting such measurements.

1http://hpctoolkit.org

http://hpctoolkit.org


The first challenge is that of scale. One must take care
to ensure that measurement approaches do not overly tax
shared system resources, e.g., the network or file system.
Also, when analyzing data from many cores, reliance on se-
rial algorithms is likely to be problematic. For instance, a
measurement approach based on tracing, where performance
information is distinguished by time, faces significant chal-
lenges at scale. Collecting traces at scale can burden file
systems and interfere with application and system perfor-
mance. Even with careful design, trace files can quickly
become terabytes in size [37]. Some of these challenges are
addressed by on-line data compression, but at the expense of
coarser measurements [11]. For this reason we focus on pro-
filing, which collapses the time dimension of measurements,
as a more readily scalable approach to measurement.

There are different ways to profile. A profiler that uses
instrumentation — whether source code [26, 35], static bi-
nary [8, 14], or dynamic binary [19] — can introduce signif-
icant measurement overhead in programs with small func-
tions. For instance, a previous study [10] showed that simple
instrumentation for the gprof [12] profiler introduced over-
head with a geometric mean of 93% when monitoring the
SPEC CPU2000 [30] integer benchmarks. The TAU per-
formance tools [26] reduce instrumentation overhead at the
expense of detail through the use of throttling and selec-
tive instrumentation [25]. However, selective instrumenta-
tion can be problematic because it introduces blind spots,
often in critical places such as small, frequently executed
routines that lie on hot paths. The alternative to instrumen-
tation is statistical sampling. With an appropriate choice of
sampling frequency, sampling-based tools can deliver pre-
cise measurements with little overhead. The HPCToolkit
performance tools use event-based sampling in combination
with call stack unwinding to collect detailed call path pro-
files; experiments with the SPEC CPU2006 [29] benchmarks
show that HPCToolkit’s measurement overhead ranges
from 1-5% for reasonable sampling rates [33].

The second challenge that petascale systems had posed
for measurement was that their compute node microker-
nels made sampling-based masurement impossible, in part
because of a concern initially raised at SuperComputing.
At SC ’03, Petrini et al. showed that for large systems,
asynchronous operating system activity, such as periodi-
cally monitoring I/O, could cause serious performance prob-
lems [13,23]. As a result, minimizing interrupts to avoid OS
“jitter”was a critical concern when designing the Catamount
microkernel for the Cray XT3 [3]. As a side effect, it was
not possible to use statistical sampling as a measurement ap-
proach on Catamount until we interceded with its develop-
ers at Sandia. In modern compute node kernels for the Cray
XT and Blue Gene/P, the intent of their developers was to
provide kernel support for sampling; however, before we ex-
ercised this capability with HPCToolkit, this support was
non-functional in both kernels. In 2008, we engaged kernel
developers at IBM and Cray to address the shortcomings of
their implementations and in early 2009, kernel versions with
working support for sampling were released and installed on
the DOE’s leadership computing platforms.

To support sampling-based peformance analysis on emerg-
ing petascale platforms, including x64-64-based systems run-
ning Linux (e.g., the Ranger system at the University of
Texas), x86-64-based Cray XT systems running Compute
Node Linux, and PowerPC-based Blue Gene/P systems run-

ning IBM’s compute node kernel, we added several new ca-
pabilities to HPCToolkit. Capabilities developed over the
last year include (1) technology for monitoring processes,
threads, and dynamic loading; (2) on-the-fly binary anal-
ysis to support call path profiling of optimized and par-
tially stripped executables; and (3) support for injecting a
monitoring library into a statically-linked executable. While
support for statically-linked binaries is needed for Cray XT
and Blue Gene/P platforms, support for dynamically-loaded
shared libraries is needed for dynamically-linked binaries,
which are typical on clusters that run more full-featured
Linux kernels, e.g., UT’s Ranger.

This paper shows that it is possible, for little measure-
ment overhead, to identify and quantify both scaling and
node performance bottlenecks on petascale systems. Us-
ing sampling-based call path profiling, we show that HPC-
Toolkit provides extremely detailed information about the
performance of several emerging petascale applications on
Cray XT and IBM BlueGene/P systems. Our tools pin-
point performance bottlenecks to source code lines, in their
full static and dynamic context. Our analyses are rapid and
their results are actionable. The effectiveness of our ap-
proach and our tools provides an argument that sampling
support is so beneficial that it should be included within
microkernels for future extreme-scale systems.

The rest of this paper is organized as follows. Section 2 de-
scribes HPCToolkit’s approach to measurement and anal-
ysis and shows how it enables costs, including scalability
bottlenecks, to be attributed to their full static and dynamic
contexts. In Section 3, we use HPCToolkit to analyze the
scaling of several applications slated for use on petascale sys-
tems. Section 4 compares our approach with related work.
Section 5 summarizes our conclusions and outlines our on-
going work.

2. MEASUREMENT AND ANALYSIS
In this section we summarize HPCToolkit’s measure-

ment and analysis capabilities and its method of pinpointing
and quantifying scalability bottlenecks.

2.1 Call path profiling
Without accurate measurement, performance analysis re-

sults may be of questionable value. As a result, a principal
focus of work on HPCToolkit has been the design and
implementation of techniques for providing accurate fine-
grain measurements of production applications running at
scale. For tools to be useful on production applications
on large-scale parallel systems, large measurement overhead
is unacceptable. For measurements to be accurate, per-
formance tools must avoid introducing measurement error.
Both source-level and binary instrumentation can distort ap-
plication performance through a variety of mechanisms [21].
In addition, source-level instrumentation can distort appli-
cation performance by interfering with inlining and tem-
plate optimization. To avoid these effects, tools such as
TAU intentionally refrain from instrumenting certain proce-
dures [25]. Ironically, the more this approach reduces over-
head, the more it introduces blind spots, i.e., portions of
unmonitored execution. For example, a common selective
instrumentation technique is to ignore small frequently exe-
cuted procedures — but these may be just the thread syn-
chronization library routines that are critical. Sometimes, a
tool unintentionally introduces a blind spot. A typical ex-



ample is that source code instrumentation necessarily intro-
duces blind spots when source code is unavailable, a common
condition for math and communication libraries.

To avoid these problems, HPCToolkit eschews instru-
mentation and favors the use of statistical sampling to mea-
sure and attribute performance metrics. During a program
execution, sample events are triggered by periodic interrupts
induced by an interval timer or overflow of hardware perfor-
mance counters. One can sample metrics that reflect work
(e.g., instructions, floating-point operations), consumption
of resources (e.g., cycles, memory bus transactions), or inef-
ficiency (e.g., stall cycles). For reasonable sampling frequen-
cies, the overhead and distortion introduced by sampling-
based measurement is typically much lower than that intro-
duced by instrumentation [10].

For all but the most trivially structured programs, it is
important to associate the costs incurred by each procedure
with the contexts in which the procedure is called. Know-
ing the context in which each cost is incurred is essential
for understanding why the code performs as it does. This is
particularly important for code based on application frame-
works and libraries. For instance, costs incurred for calls to
communication primitives (e.g., MPI_Wait) or code that re-
sults from instantiating C++ templates for data structures
can vary widely depending how they are used in a partic-
ular context. Because there are often layered implementa-
tions within applications and libraries, it is insufficient either
to insert instrumentation at any one level or to distinguish
costs based only upon the immediate caller. For this reason,
HPCToolkit uses call path profiling to attribute costs to
the full calling contexts in which they are incurred.

HPCToolkit’s hpcrun call path profiler uses call stack
unwinding to attribute execution costs of optimized executa-
bles to the full calling context in which they occur. Un-
like other tools, to support asynchronous call stack unwind-
ing during execution of optimized code, hpcrun uses on-line
binary analysis to locate procedure bounds and compute
an unwind recipe for each code range within each proce-
dure [33]. These analyses enable hpcrun to unwind call
stacks for optimized code with little or no information other
than an application’s machine code.

2.2 Recovering static program structure
To enable effective analysis, call path profiles for execu-

tions of optimized programs must be correlated with im-
portant source code abstractions. Since measurements refer
only to instruction addresses within an executable, it is nec-
essary to map measurements back to the program source.
To associate measurement data with the static structure of
fully-optimized executables, we need a mapping between ob-
ject code and its associated source code structure.2 HPC-
Toolkit constructs this mapping using binary analysis; we
call this process “recovering program structure” [33].

HPCToolkit focuses its efforts on recovering procedures
and loop nests, the most important elements of source code
structure. To recover program structure, HPCToolkit’s
hpcstruct utility parses a load module’s machine instruc-
tions, reconstructs a control flow graph, combines line map
information with interval analysis on the control flow graph
in a way that enables it to identify transformations to pro-

2This object to source code mapping should be contrasted
with the binary’s line map, which (if present) is typically
fundamentally line based.

cedures such as inlining and account for loop transforma-
tions [33].

Two important benefits naturally accrue from this ap-
proach. First, HPCToolkit can expose the structure of
and assign metrics to what is actually executed, even if
source code is unavailable. For example, hpcstruct’s pro-
gram structure naturally reveals transformations such as
loop fusion and scalarized loops that arise from compilation
of Fortran 90 array notation. Similarly, it exposes calls to
compiler support routines and wait loops in communication
libraries of which one would otherwise be unaware. Sec-
ond, we combine (post-mortem) the recovered static pro-
gram structure with dynamic call paths to expose inlined
frames and loop nests. This enables us to attribute the per-
formance of samples in their full static and dynamic context
and correlate it with source code.

2.3 Pinpointing scaling losses
To pinpoint and quantify scalability bottlenecks in con-

text, we compute a metric that quantifyies scaling loss by
scaling and differencing call path profiles from a pair of ex-
ecutions [7].

Consider two parallel executions of an application, one
executed on p processors and the second executed on q > p
processors. In a weak scaling scenario, processors in each
execution compute on the same size data. If the applica-
tion exhibits perfect weak scaling, then the execution times
should be identical on both q and p processors. In fact,
if every part of the application scales uniformly, then this
equality should hold in each scope of the application.

Using HPCToolkit, we collect call path profiles on each
of p and q processors to measure the cost associated with
each calling context in each execution. HPCToolkit’s
hpcrun profiler uses a data structure called a calling con-
text tree (CCT) to record a call path profile. Each node
in a CCT is identified by a code address. In a CCT, the
path from any node to the root represents a calling context.
Each node has a weight w ≥ 0 indicating the exclusive cost
attributed to the path from that node to the root. Given
a pair of CCTs, one collected on p processors and another
collected on q processors, with perfect weak scaling, the cost
attributed to all pairs of corresponding CCT nodes3 should
be identical. Any additional cost for a CCT node on q pro-
cessors when compared to its counterpart in a CCT for an an
execution on p processors represents excess work. This pro-
cess is shown pictorially in Figure 1. The fraction of excess
work, i.e., the amount of excess work in a calling context in a
q process execution divided by the total amount of work in a
q process execution represents the scalability loss attributed
to that calling context. By scaling the costs attributed in a
CCT before differencing them to compute excess work, one
can also use this strategy to pinpoint and quantify strong
scalability losses [7]. As long as the CCT’s are expected
to be similar, this analysis strategy is independent of the
programming model and bottleneck cause.

Above, we described applying our scalability analysis tech-
nique across nodes in a cluster. This technique can also be
used to pinpoint scaling bottlenecks within multicore nodes.
For instance, one might want to understand how perfor-

3A node i in one CCT corresponds to a node j in a different
CCT if the sequence of nodes along the path from i to root
and the sequence of nodes from j to root are labeled with
the same sequence of code addresses.



Figure 1: A pictorial representation of differencing
call path profiles to pinpoint (weak) scaling bottle-
necks.

mance scales when using all of the cores in a node with
multicore processors instead of just a single core. This can
be accomplished by measuring an execution on a single core,
measuring an execution on all cores, and then comparing
the costs incurred by a core in each of the executions using
the strategy described above for analysis of weak scaling.
We have used this strategy to pinpoint and quantify scaling
bottlenecks on multicore nodes at the loop level [31]. Mea-
surements of L2 cache misses showed that contention in the
memory hierarchy was the problem.

Our analysis is able to distinguish between different
causes. For example, an analysis using standard time-based
sampling is sufficient to precisely distinguish MPI commu-
nication bottlenecks from computational bottlenecks. With
hardware performance counters, one can distinguish between
different architectural bottlenecks such as floating point
pipeline stalls, memory bandwidth, or memory latency.

3. APPLICATION STUDIES
To demonstrate the utility of HPCToolkit for perfor-

mance analysis of applications on emerging petascale appli-
cations, we apply it to study the performance of three codes:
PFLOTRAN, FLASH, and MILC. We studied these appli-
cations on core counts up to 8192.4 Our performance studies
were performed on two systems: Jaguar — a Cray XT sys-
tem at Oak Ridge National Laboratory’s National Center
for the Computational Sciences — and Intrepid — a Blue
Gene/P at Argonne National Laboratory’s Leadership Com-
puting Facility. We describe these machines as they exist in
spring 2009.

Jaguar consists of 84 Cray XT4 racks and 200 Cray XT5
racks linked together. There are 7,832 XT4 compute nodes
and 18,772 XT5 compute nodes for a total of 181,504 cores.
Each XT4 node contains a quad-core 2.1 GHz Opteron
(Budapest), 8 GB memory and a SeaStar2 network in-
terface card; each XT5 node contains two quad-core 2.3
GHz Opterons (Barcelona), twice the memory and twice the
memory bandwidth, but with one SeaStar2+ interface card.

4We could have used larger core counts for our study, but
opted to limit the scale of our executions to limit our re-
source consumption.

Nodes in the system are arranged in a 3-D torus topology.
Compute nodes run Cray’s Compute Node Linux (CNL) mi-
crokernel. In early February 2009, CNL version 2.1 was in-
stalled which corrects bugs that inhibited sampling in prior
versions.

Intrepid is a BlueGene/P system with 163,840 compute
cores divided into 40 racks. Each rack consists of 1024 com-
pute nodes (and is thus more densely popluated than a Cray
XT). Each node is a custom system-on-a-chip design that
contains four 850 MHz PowerPC 450 cores, each with a dual
floating point unit, and 2 GB of off-chip shared memory.
Multiple networks connect each node by attaching directly
to the SoC, including a 3-D torus, a global collective net-
work (for broadcasts and reductions), and a global barrier
network. Compute nodes run IBM’s Compute Node Kernel
for BG/P. In late January 2009, patches were installed to
correct bugs in kernel version V1R3M0 that inhibited sam-
pling.

We collected Jaguar data on XT4 nodes in which an MPI
process was assigned to each core. Similarly, we collected
BG/P data using ‘virtual node’ mode in which an MPI pro-
cess was assigned to each core.

3.1 PFLOTRAN
PFLOTRAN is a code for modeling multi-phase, multi-

component subsurface flow and reactive transport using
massively parallel computers [16, 20]. The code is de-
signed to predict the migration of contaminants under-
ground. “PFLOTRAN solves a coupled system of mass and
energy conservation equations for multiple compounds and
phases including H2O, supercritical CO2, black oil, and a
gaseous phase” [20]. With support from the DOE SciDAC
program, the authors of PFLOTRAN plan to use it to un-
derstand radionuclide migration at the DOE Hanford facility
and model sequestration of CO2 in deep geologic formations.
Typical simulations involve massive computation due to ten
or more chemical degrees of freedom on a grid of millions of
nodes. PFLOTRAN employs the PETSc library’s Newton-
Krylov solver framework.

In this study, we use HPCToolkit to examine study
the performance of PFLOTRAN when strong scaling from
512 to 8192 cores of a Cray XT4. (A strong scaling study
employs different numbers of cores on the same test prob-
lem.) The test problem used for this study is a steady-state
groundwater flow problem in heterogeneous porous media on
a 5123 element discretization. It uses PETSc’s IBCGS (Im-
proved Stabilized version of BiConjugate Gradient Squared)
solver [24,38] to solve for flow.

Figure 2 shows a screen snapshot from HPCToolkit’s
hpcviewer user interface displaying a top-down calling con-
text view of how PFLOTRAN spends its time on 512 proces-
sors. The view has three main components. The navigation
pane (lower left sub-pane) shows a top-down view of the
calling context tree, partially expanded. One can see sev-
eral procedure instances along the call paths in the calling
context tree. Each entry in the navigation pane is asso-
ciated with metric values in the metric pane to its right.
The line selected in the navigation pane is displayed in the
source pane (top sub-pane). For the steady state flow prob-
lem measured, on 512 processors the selected line shows that
PFLOTRAN spends 98% of its time (measured as inclusive
processor cycles using the PAPI [5] interface to hardware
counters) inside PETsc’s SNESolve procedure, called from



Figure 2: A calling context tree view of costs for
PFLOTRAN on a Cray XT4.

PFLOTRAN’s StepperSolveFlowSteadyState procedure in
module Timestepper_module. Comparing the cycles spent
in SNESolve with the floating point operations performed
(shown in the rightmost column), we see that the solver
executes only one floating point operation about every 11
cycles. This low performance bears further investigation.

Figure 3 shows a flat view of the most costly proce-
dure, PETSc’s MatSolve_SeqAIJ_NaturalOrdering, where
the 512 processor execution of PFLOTRAN spent 44.8% of
the total execution time when executing the steady state
flow problem. A strength of HPCToolkit is that it at-
tributes costs not only at the routine level, but at the loop
level too. The second line of the metric pane shows the most
costly loop in the aforementioned routine: a forward solve
of a lower triangular matrix, which accounts for 23.1% of
the total cycles during execution. Almost all of the loop’s
costs are attributed to line 949 of file aijfact.c since the
PGI compiler only associates one source line number with
each basic block. By comparing the cycles with the sec-
ond column, floating point operations, we see that the loop
executes only about one floating point operation every 20 cy-
cles. The fact that we can pinpoint and quantify the nature
of this performance loss shows off HPCToolkit’s abilities
for locating node performance bottlenecks.

In the loop highlighted in Figure 3, L2 misses (elided in the
figure) are lower than average: the loop accounts for only
8.0% of the L2 misses even though it accounts for 23.1%
of the cycles. Execution time for the loop correlates more
closely with TLB misses: 19.1% of TLB misses and 23.1% of
the program cycles. Comparing the number of TLB misses
to the number of floating point operations shows that there
is a TLB miss for every 239 floating point operations. These

Figure 3: A flat view of costs for PFLOTRAN on a
Cray XT4.

measurements suggest that the performance on the Opteron
architecture might be improved by reducing TLB misses.
To reduce the TLB miss rate, we tried using 2MB jumbo
pages; however, we found that this change had little effect
on overall runtime. This suggests that we should use other
hardware counters to further investigate the reason for the
low performance.

Figure 4 shows a bottom-up caller’s view of the losses
when scaling from solving the test problem on 512 cores
to 8192 cores (strong scaling). The caller’s view appor-
tions the cost of a procedure (in context) to each call site in
each of its callers. For inclusive costs (as shown in this fig-
ure), hpcviewer’s bottom-up view attributes costs incurred
within. For each calling context c in the program executions
in this scaling study, we compute the percent of scaling losses
as 100(16 Tc,8192−Tc,512)/(16 Tr,8192), where r is the root of
the calling context tree, and Ti,n represents the time spent
in context i in an n core execution. In English, the quan-
tity (16 Tc,8192−Tc,512) calculates the difference in parallel
work performed by the executions on 512 and 8192 cores for
a particular calling context c. The factor of 16 arises because
when strong scaling from 512 to 8192 processors, the amount
of work per processor is a factor of 16 smaller on the larger
number of processors. We divide through by 16 Tr,8192, the
total amount of work performed on 8192 cores, to compute
the relative fraction of the execution that corresponds to
parallel overhead. We multiply through by 100 to express
this number in percent. In Figure 4, the percent relative
scaling loss in the 8192-core execution is represented using
scientific notation. The percentages shown in that column
show the percentage of the total scaling loss that is associ-
ated with each line in the display.

Figure 4 shows that 112.2% of the scaling loss in the ap-
plication is attributed to the routine MPIDI_CRAY_Progress_



Figure 4: A caller’s view of scaling losses for PFLO-
TRAN on a Cray XT4.

wait and the routines that it calls. Percentage losses in any
individual context are relative to total losses in the execu-
tion. While a scaling loss greater than 100% for a particu-
lar context might seem odd, it just means that there were
scaling gains elsewhere in the execution that offset losses
here. By looking up the call chain to see what calling
sequence caused the program to incur scalability losses in
MPIDI_CRAY_Progress_wait, we see that 80.6% of the scal-
ing losses in the application can be traced to the use of
MPI_AllReduce. Looking at the number of cycles spent in
MPI_AllReduce in the 512 core and 8192 core executions,
the poor scalability is clear: the 8192 core execution spends
more time in MPI_AllReduce than in the 512-core execution.

Our bottom-up caller’s view enables us to identify how
losses associated with MPI_AllReduce are apportioned across
various calling contexts that use this primitive. Looking two
levels further up the call chain, we see that 28.1% of the total
scaling losses come from the use of MPI_AllReduce on behalf
of VecAssemblyBegin (a PETSc routine), which in turn was
called to create a distributed vector out of an array read
from an HDF5 file. In this case, the losses seem unavoid-
able and represent a fundamental limit to strong scalability.
Other lines in the display show the breakdown of other scal-
ing losses due calls to MPI_AllReduce from other contexts.
Here, we have shown that HPCToolkit’s sampling-based
measurements provide quantitative information about scal-
ing losses and enable attribution of these losses to the full
calling contexts in which they occur. Understanding scala-
bility losses at this level of precision is essential if one’s aim
is to ameliorate them so that a code can scale well to full
configurations of petascale systems.

3.2 FLASH
Next we consider FLASH [9], a code for modeling astro-

physical thermonuclear flashes. We performed a weak scal-
ing study of a white dwarf explosion by executing 256-core

and 8192-core simulations on both Jaguar (Cray XT) and
Intrepid (IBM BlueGene/P). Both the input and the num-
ber of cores are 32x larger for the 8192-core execution. With
perfect scaling, we would expect identical run times and call
path profiles for both configurations.

A glance at the calling context view (top-down) for
each scaling study (not shown) quickly reveals some
differences between application scaling on the two sys-
tems. On BG/P there was a 24.4% loss of parallel effi-
ciency (AKA, scaling loss), whereas on the XT4 the loss
was larger, 32.5%. An execution of FLASH is divided
into three phases, initialization (Driver_initFlash), sim-
ulation (Driver_evolveFlash), and finalization (Driver_
finalizeFlash). In our benchmark runs, on BG/P 42.9%
of the scaling loss (10.5% of the run time) came from initial-
ization while the remaining 57.1% of the scaling loss (13.9%
of the run time) came from simulation. In contrast, on the
XT4, the initialization and simulation phases account for
54% and 46% of the scaling loss (about 17.6% and 15% of
the run time), respectively. We consider the differences be-
tween the BG/P and XT4 in turn.

IBM BG/P.
To quickly understand where the scaling losses for the ini-

tialization and simulation phases are aggregated, we turn
to the bottom-up callers view. Recall that the caller’s view
apportions the cost of a procedure (in context) to its callers.
We sort the callers view by the exclusive scaling loss metric,
thus highlighting the scaling loss for each procedure in the
application, exclusive of callees. Two routines in the BG/P
communication library immediately emerge as responsible
for the bulk of the scaling loss: TreeAllreduce::advance

and globalBarrierQueryDone.5 To determine how these li-
brary calls relate to user-level code, we look up their call
chains; the result is shown in Figure 5. When we look up
the first call chain, we find calls to MPI_Allreduce. The
first call, which accounts for 57% of the scaling loss (14.1%
of run time), is highlighted in blue; the others, which are in-
consequential, are hidden by an image overlay indicated by
the thick horizontal black line. As the corresponding source
code shows, this call to MPI_Allreduce is a global max re-
duce for a scalar that occurs in code managing the adaptive
mesh. HPCToolkit is uniquely able to pinpoint this one
crucial call to MPI_Allreduce and distinguish it from several
others that occur in the application.

Next, we peer up the globalBarrierQueryDone call chain.
The “Hot path” button automatically expands the unam-
biguous portion of the hot path. By expanding this hot path
automatically, we hone in on the one call to MPI_Barrier

that disproportionately affects scaling. The call site is within
Grid_fillGuardCells and is visible at the bottom of Fig-
ure 5; it accounts for 13.6% of the scaling loss (or 3.31% of
the run time).

HPCToolkit enables us to quickly pinpoint exactly two
calls that account for about 70% of FLASH’s scaling loss on
BG/P. It is interesting to note that the these two calls relate
to two of BG/P specialized networks: the MPI_Allreduce

to the global collective network and the MPI_Barrier to the
global barrier network.

5The full names are DCMF::Protocol::MultiSend::
TreeAllreduceShortRecvPostMessage::advance and
DCMF::BGPLockManager::globalBarrierQueryDone.



Figure 5: A Caller’s (bottom-up) view of scaling loss
(wallclock) for FLASH on an IBM BG/P.

Cray XT.
In Figure 6, we turn to the same bottom-up callers view

that we used to analyze scaling losses on BG/P. We first
sort by the exclusive scaling loss metric. However, be-
cause losses are more finely distributed than on BG/P, we
sort by inclusive losses, which includes losses for callees.
Since 100% of the scaling loss occurs in or below FLASH’s
“main” routine, it appears at the top. The next procedure,
MPIDI_CRAY_Progress_Wait, accounts for 84.1% of the scal-
ing loss, is related to MPI communication, is shown in Fig-
ure 6. By inspecting the callers of this procedure, we see the
breakdown of scaling losses among different types of commu-
nication. When using the hpcviewer interface interactively,
one can expand the tree further to show the full context in
the user program where these losses originate.

By inspecting the callers of MPIC_Sendrecv, one can
see that 27.5% of the losses are due to barrier synchro-
nization. Exploring a few levels deeper in the sub-tree
rooted at MPIR_Barrier, we find that 12.1% of the scal-
ing losses are due to barrier synchronization in the routine
amr_setup_runtime_parameters. This routine contains a
loop that iterates over each of the processor IDs. On each
iteration of the loop, the processor whose ID is equal to the
loop induction variable opens the input file, reads a set of
program input parameters, and then closes the file. All pro-
cessors meet at the bottom of the loop at a barrier. This
represents a scaling bottleneck whose severity increases with
the number of processors. Fortunately, it has a remedy: one
processor can open the input file and broadcast its contents
to the rest of the processors; this change transforms the op-
eration from O(p) time to O(log p) time. Implementing and
testing this solution on the Cray XT reduced the scaling
loss due to amr_setup_runtime_parameters on 8192 cores
to almost zero.

Figure 6: A Callers (bottom-up) view of scaling loss
(cycles) for FLASH on a Cray XT4.

The highlighted line in Figure 6 shows one of two call
sites for local_tree_build. This routine is part of the
PARAMESH library [17] used by Flash. Together, the func-
tion’s two call sites account for 26.5% of the scaling losses
and 8.62% of execution time on 8192 processors. This func-
tion builds an oct-tree as part of the structured adaptive
mesh refinement. It scales poorly as the number of proces-
sors is increased. local_tree_build uses a communication
pattern known as a digital orrery, in which all-to-all com-
munication is implemented by circulating content from each
processor around a ring of all processors. The communi-
cation phase takes O(p) time. By consulting the calling
context view (not shown) we found that local_tree_build

is called both within FLASH’s initialization and simulation
phases. In the initialization phase it accounts for 18.5% of
the scaling loss; in simulation it accounts for about 7.9%.
We have had preliminary discussions with the FLASH team
about how to improve the scaling of local_tree_build.

Figure 6 shows that 21.3% of the scaling loss results from
MPI_Recv. Expanding the sub-tree rooted at that point,
one discovers that almost all of these costs are due to calls
to MPI_AllReduce. 15.5% of the total scaling loss is for
MPI_AllReduce calls that are used to exchange information
about blocks to set up communication prior to guard cell
filling and flux conservation. In contrast, the same max
reduction on BG/P accounts for 40.6% of the scaling loss.

Summary.
In the span of minutes, we have used HPCToolkit to

pinpoint and quantify the scaling losses in each system de-
riving from just a few crucial call sites. HPCToolkit en-
ables us to focus on the key areas and ignore the other losses,
which are more finely distributed. Moreover, HPCToolkit



Figure 7: A calling context view of scaling (cycles)
loss for MILC on a BG/P.

obtains accurate call paths and precise measurements de-
spite several layers of communication library calls for which
no source code is available to application developers. The
static program structure information computed by HPC-
Toolkit even reports inlining within these layers.

3.3 MILC
The third application we analyze is a lattice quantum

chronodynamics (QCD) simultation with dynamical Kogut-
Susskind fermions from MILC, or MIMD Lattice Compu-
tation package [4]. MILC is a Lattice Quantum Chromo-
dynamics code that is one of six application benchmarks in
a suite used to evaluate bids for an NSF-funded petascale
computer. We performed a weak scaling study by profiling
512-core and 8192-core simulations on both Jaguar (Cray
XT) and Intrepid (IBM Blue Gene/P). To keep execution
time for the scaling study reasonable, we altered the default
NSF problem size by decreasing the number of trajectories.
In our scaling study, the input data and the number of cores
are scaled by a factor of 16 so if scaling is ideal we should

Figure 8: A closer look at scaling losses for MILC
on a BG/P.

expect identical run times and call path profiles for both
core counts.

Figures 7 and 8 respectively focus on the breakdown of
execution time and scaling losses (relative to a 512-core exe-
cution) for MILC in an 8192-core execution on a BG/P. The
most time-consuming part of the code is the lattice update.
In Figure 7, we can see that this phase accounts for 76.3%
of the time on BG/P in an 8192-core execution; in an exe-
cution on a Cray XT, this phase accounted for 83.3% of the
execution time. Within the update phase, execution time is
distributed among routines called from the loop on line 32
in update and routines they call.

The total inclusive scaling loss for the application is shown
in the yellow highlighted line as a percentage written in sci-
entific notation. As shown in both figures, MILC has 18.3%
total scaling loss on a BG/P. The lattice update phase scales
relatively well and only has a 6.2% scaling loss. Most of the
scaling losses in the update phase are due to waiting for
scatter-gatter communication to complete. For the short
execution studied, Figure 8 shows that MILC’s setup phase
accounts for most of the scaling losses.

In Figure 8, the highlighted loop on line 35 in make_

lattice accounts for 83.4% of the scaling loss and 16.3%
of the run time. The reason that this loop causes a scaling
loss is that it initializes local data for an MPI process by
having each processor iterate over the entire lattice (all pos-
sible x, y, z, and t values), test each lattice point to see if
it belongs to the current process, and then perform initial-
ization only when the test succeeds. To avoid this kind of
scaling loss, the application would need to be reworked to
iterate only over a process’s local lattice points rather than
over the entire domain. Without a deeper understanding of



the application, it is unclear whether this is feasible. Fur-
thermore, it is not clear that losses due to initialization will
be significant for production executions. The point of this
example is not to focus on a shortcoming of the MILC code;
rather, it is to show that HPCToolkit is capable of pin-
pointing and quantifying losses of this nature. Scaling losses
need not be caused by communication.

4. RELATED WORK
Most studies of application scaling on petascale systems

have relied on manual analysis rather than sophisticated
performance tools to understand scalability [1–3, 13]. Usu-
ally the analysis consists of 1) measuring key system perfor-
mance characteristics using micro-benchmarks; 2) isolating
scaling bottlenecks by creating scaling curves for different
phases or procedures within the application; and 3) deter-
mining causes of bottlenecks by comparing an application’s
expected performance with its actual performance. Oliker et
al. performed an early and insightful evaluation of appli-
cation scaling on candidate petascale systems [22]. Even
though they invested considerable effort in manual analysis,
they had difficulty pinpointing and quantifying bottlenecks,
and were only able to offer educated guesses such as “[the
scalability loss] is probably due to the increase in [Allreduce
operations].” HPCToolkit could could directly pinpoint
which operations were problematic and quantify the scaling
loss for each. While the focus of these prior studies was
to characterize system performance rather than advocate a
method for pinpointing scaling bottlenecks, it was still nec-
essary to understand such bottlenecks as part of their work.

Current performance tools for petascale systems identify
scaling bottlenecks at the procedure level at best. The most
important reason for this is that it is not feasible to make
fine-grained measurements using instrumentation. More-
over, most of these tools require additional effort to an-
alyze scaling. For example, Wright et al. used IPM [27]
to distinguish between scaling bottlenecks in the commu-
nication or computation portions of an application [36]. To
achieve low overhead (<5%), they collected profiles of instru-
mented MPI routines. These coarse measurements — only
at the (MPI) procedure level, and without calling context
— resulted in two deficiencies. First, because the applica-
tion’s computational component was not directly measured,
the authors had to manually correct for communication-
computation overlap to understand computational scaling.
Second, to achieve further insight, the authors supplemented
the measurements with labor-intensive analytical analysis.

mpiP [34] synchronously monitors MPI routines and col-
lects a stack trace for each call. It qualitatively evaluates
MPI scaling problems by using a rank-based correlation
strategy. Because of this selective instrumentation, it in-
curs low overhead. However, it misses scaling problems in
computational and non-MPI code.

Although other tools measure more comprehensively than
IPM and mpiP, their measurements are still relatively
coarse, typically at the procedure level. For example, tools
such as Tau [18, 26], SCALASCA [35, 37], Cray’s Cray-
PAT [8] and IBM’s HPC Toolkit [14] collect the calling con-
text of procedures rather than of statements. Because these
tools collect calling context information using procedure-
level instrumentation, their measurements are subject to
distortion from measurement overhead associated with small
procedures. By using sampling, HPCToolkit is able to at-

tribute costs to their full static and dynamic context with
only about 1-5% overhead [33], which in most cases is signifi-
cantly less than procedure-level instrumentation [10]. HPC-
Toolkit has the ability to collect the full calling context of
any sample point, even exposing layers of calls in communi-
cation and math libraries for which source code is unavail-
able.

HPCToolkit’s approach to computing scalability losses
is similar to differential profiling support in other systems,
e.g. [28]. However HPCToolkit is unique in its capability
to attribute scalability losses to their full calling context,
including inlined functions, loops and even individual state-
ments. Furthermore, by providing top-down, bottom-up,
and flat views of scalability losses in context, HPCToolkit
offers several different ways of analyzing the data. Different
views provide different perspectives on bottlenecks that can
make them easier to understand.

Although application traces can be very valuable (e.g.,
for identifying load imbalance), the volume of trace infor-
mation makes scaling difficult. SCALASCA [37] selectively
traces based on information from a prior profile. Others
have explored (manual) selective tracing based on applica-
tion characteristics [6]. Gamblin et al. developed a technique
for compressing trace information on-the-fly [11]. They re-
port impressively low overheads, but by using selective in-
strumentation that results in coarse measurements.

The STAT tool has been used on BG/L to sample call
paths to aid parallel debugging at scale [15]. This tool uses
third-party sampling mechanism that relies on daemons,
running on I/O nodes, to periodically collect trace samples.
In contrast, we use first-party sampling (in which the ap-
plication samples itself), which requires no communication
and permits much higher sampling rates.

5. CONCLUSIONS AND FUTURE WORK
The key metric for parallel performance is scalability, ei-

ther weak or strong. This is especially true at the petas-
cale. Consequently, there is an acute need for application
scientists to understand and address scaling bottlenecks in
codes targeted for petascale systems. We have shown that it
is possible, for minimal overhead, to pinpoint and quantify
scaling bottlenecks on petascale systems to source code lines,
in their full static and dynamic context using HPCToolkit.
The analysis is rapid and its results are actionable.

Our work depends upon accurate and precise sampling-
based measurement — a form of measurement that until
now has been unavailable on petascale systems. This mea-
surement both grounds and enables our powerful and ele-
gant method for rapidly pinpointing and quantifying scaling
bottlenecks. Past scaling analyses are either laborious, in-
accurate (with respect to measurement) or imprecise (with
respect to bottleneck detection).

It is a truism that a microkernel for a petascale platform
should include what is necessary but dispense with excess:
“just enough, but not too much”! The difficulty is in deciding
what actually is necessary. We believe our results provide
strong evidence that sampling-based performance analysis
is so useful on these systems, that future microkernels for
large-scale parallel systems should find a way to support it.
Because petascale systems are designed for performance, it
makes little sense to invest in computing resources that are
powerful on paper but that cannot be exploited in practice.

HPCToolkit’s support for sample-based performance



analysis can provide insight into scalability and performance
problems both within and across nodes. Gaining insight into
node performance bottlenecks on large-scale parallel systems
is a problem of growing importance. Today, parallel systems
typically have between 4-16 cores per node. In emerging
systems, we expect the core count per node to be higher.
By sampling on hardware performance counters, one can
distinguish between node performance bottlenecks caused
by a variety of factors including inadequate instruction-level
parallelism, memory latency, memory bandwidth, and con-
tention.

Ongoing work in the HPCToolkit project spans a range
of topics. First, we have been developing methods to gain
higher-level insight into the performance of multithreaded
node programs including analysis of performance losses due
to load imbalance in computations based on work steal-
ing [32] and serialization due to lock contention. Second,
we are working to combine information from profiles gath-
ered on each node to produce summary statistics that will
provide a means for assessing similarities and differences in
performance across the nodes in a parallel system. For ma-
chines at the scale of the leadership computing platforms,
it will be necessary to perform this analysis in parallel. We
aim to rework our tools to provide not only summary statis-
tics for overall system performance, but also to preserve the
ability to drill down into the details of performance on indi-
vidual nodes. To work with measurement data from large-
scale parallel systems, our presentation tools will need to
manage data out-of-core. Finally, we are developing a new
user interface to visualize how execution behavior unfolds
over time. While there are similarities between this work
and tools that use space-time diagrams to analyze the per-
formance of MPI programs, a fundamental difference is that
our data is based on traces of call stack samples rather than
traces of instrumented operations. Our traces are compact
(just 12 bytes per entry) and by carefully choosing the sam-
pling frequency, we can reduce the data rate for traces to a
level that will make it possible to use this strategy on very
large scale executions.
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