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Abstract

In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for
inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage
sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the
MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-
climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the
species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree
that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer
linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP
solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas
the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other
genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from
eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that
the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus
allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick
exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show
that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in
practice, a finding that helps ameliorate the computational requirements of optimization solutions. Further, we study the
statistical consistency and convergence rate of the MDC criterion, as well as its optimality in inferring the species tree.
Finally, we show how our solutions can be used to identify potential horizontal gene transfer events that may have caused
some of the incongruence in the data, thus augmenting Maddison’s original framework. We have implemented our
solutions in the PhyloNet software package, which is freely available at: http://bioinfo.cs.rice.edu/phylonet.
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Introduction

Accurate species trees, which model the evolutionary histories of

sets of species, play a central role in comparative genomics,

conservation studies, and analyses of population divergence,

among many other applications. Traditionally, a species tree is

inferred by sequencing a single locus (gene) in a group of species,

its tree, known as the gene tree, is reconstructed using a method such

as maximum likelihood, and this tree is declared to be the species

tree. The underlying assumption is, obviously, that the gene tree

and the species tree are identical, and hence reconstructing the

former amounts to learning the latter. However, biologists have

long recognized that this assumption is not necessarily always

valid. Nevertheless, due to limitations of sequencing technologies,

this approach remained the standard method until very recently.

With the advent of whole-genome sequencing, complete

genomes of various organisms are becoming increasingly available,

and particularly important, data from multiple loci in organisms

are becoming available. The availability of such data has allowed

for analyzing multiple loci in various groups of species. These

analyses have in many cases uncovered widespread incongruence

among the gene trees of the same set of organisms. Therefore,

while reconstructing a gene tree requires considering the process of

nucleotide substitution, reconstructing a species tree requires, in

addition, considering the process that resulted in the incongruities

among the gene trees, so that the species phylogeny is inferred by

reconciling these incongruities. In this paper, we address the

problem of efficient inference of accurate species trees from

multiple loci, when the gene trees are assumed to be correct, and

their incongruence is assumed to be exclusively due to (incomplete)

lineage sorting. We also address the integration of horizontal gene

transfer, as a potential cause of gene tree incongruence, into the

framework. Let us illustrate the process of lineage sorting and the

way it causes gene tree incongruence.

From an evolutionary perspective, and barring any recombina-

tion, the evolutionary history of a set of genomes would be

depicted by a tree that is the same tree that models the evolution of

each gene in these genomes. However, events such as recombi-

nation break ‘‘linkage’’ among the different parts of the genome,

and those unlinked parts may take different paths through the

phylogeny, which results in gene trees that differ from the species

tree as well as from each other, due to lineage sorting. Widespread

gene tree incongruence due to lineage sorting has been shown

recently in several groups of closely related organisms, including
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yeast [1], Drosophila [2], Staphylococcus aureus [3], and

Apicomplexan [4]. In this case, gene trees need be reconciled within

the branches of the species tree, as shown in Figure 1.

A few methods have been introduced recently for analyzing

gene trees, reconciling their incongruities, and inferring species

trees despite these incongruities. Generally speaking, each of these

methods follows one of two approaches: the combined analysis

approach or the separate analysis approach; see Figure 2. In the

combined analysis aproach, the sequences from multiple loci are

concatenated, and the resulting ‘‘supergene’’ data set is analyzed

using traditional phylogenetic methods, such as maximum

parsimony or maximum likelihood; e.g., [1]. In the separate

analysis approach, the sequence data from each locus is first

analyzed individually, and a reconciliation of the gene trees is then

sought. One way to reconcile the gene trees is by taking their

majority consensus; e.g., [4]. Another is the ‘‘democratic vote’’

method, which entails taking the tree topology occurring with the

highest frequency among all gene trees as the species tree.

Shortcomings of these methods based on the two approaches have

been analyzed by various researchers [5,6]. Recently, Bayesian

methods following the separate analysis approach have been

developed [7,8]. While these methods have a firm statistical basis,

they are very time consuming, taking hours and days even on

moderate-size data sets, which limits their scalability (for example,

the BEST tool of [7] took 800 hours on the yeast data set of [1]).

In [9], Maddison proposed a parsimony-based approach for

inferring species trees from gene trees by minimizing the number

of extra lineages, or minimizing deep coalesces (MDC). A heuristic

for this approach was later described in [10]. In [3], Than et al.

provided a two-stage heuristic for inferring the species tree under

the MDC criterion. However, no exact solutions for computing

the MDC criterion exist. In this paper, we provide a formal

definition of the notion of extra lineages, first described in [9]. We

then present exact solutions—an integer linear programming (ILP)

algorithm and a dynamic programming (DP) algorithm—for

finding the optimal species tree topology from a set of gene tree

topologies, under the MDC criterion (see Methods). Our solutions

are based on two central observations: (1) the species tree is a

maximal clique in the compatibility graph of the set of species

clusters, and (2) quantifying the amount of incongruence between

a set of gene trees and a species tree can be obtained by a simple

counting of lineages within the branches of the species tree. The

accuracy and computational efficiency of these solutions, as we

demonstrate, allow for analysis of genome-scale data sets and

Figure 1. Lineage sorting within the branches of a species tree.
Even though C and D diverged from their most recent common
ancestor at time T1, going back in time one observes that their gene
lineage (solid lines) persisted further in the past and coalesced at time t9,
which preceded the speciation time T2. In this scenario, the gene
lineages from B and D happened to coalesce at time T2, after t9, thus
resulting in gene tree (A, (C, (B, D))) that disagrees with the species tree
(A, (B, (C, D))).
doi:10.1371/journal.pcbi.1000501.g001

Figure 2. Approaches for inferring species trees. In the combined
analysis approach (top), the sequences of the four loci are concatenat-
ed, generating one sequence data set, which is then analyzed by any of
a host of phylogenetic tree reconstruction methods. In the separate
analysis approach (bottom), a gene tree is reconstructed for each locus,
and a species tree that reconciles their incongruence is inferred.
doi:10.1371/journal.pcbi.1000501.g002

Author Summary

Inferring the evolutionary history of a set of species,
known as the species tree, is a task of utmost significance in
biology and beyond. The traditional approach to accom-
plishing this task from molecular sequences entails
sequencing a gene in the set of species under consider-
ation, reconstructing the gene’s evolutionary history, and
declaring it to be the species tree. However, recent
analyses of multiple gene data sets, made available thanks
to advances in sequencing technologies, have indicated
that gene trees in the same group of species may disagree
with each other, as well as with the species tree. Therefore,
the development of methods for inferring the species tree
despite such disagreements is imperative.

In this paper, we propose such a method, which seeks the
tree that minimizes the amount of disagreement between
the input set of gene trees and the inferred one. We have
implemented our method and studied its performance, in
terms of accuracy and computational efficiency, on two
biological data sets and a large number of simulated data
sets. Our analyses, of both the biological and synthetic
data sets, indicate high accuracy of the method, as well as
computationally efficient solutions in practice. Hence, our
method makes a good candidate for inferring accurate
species trees, despite gene tree disagreements, at a
genomic scale.

Species Tree Inference by MDC

PLoS Computational Biology | www.ploscompbiol.org 2 September 2009 | Volume 5 | Issue 9 | e1000501



analysis of large numbers of data sets, such as those involved in

simulation studies. Given that MDC is a parsimonious explanation

of the incongruence in the data, it is imperative that sub-optimal

solutions are considered. The computational efficiency of our

solutions allow for a rapid exploration of sub-optimal solutions.

Last but not least, these exact solutions allow us to empirically

study properties of MDC as an optimality criterion for inferring

the species tree. We have implemented both exact solutions in the

PhyloNet software package [11].

We reanalyze the Apicomplexan data set of [4] (268 loci from eight

species), the yeast data set of [1] (106 loci from 8 yeast species), and

a large number of synthetic data sets of species/gene trees (up to

2000 loci from 8 species) that we simulated using the Mesquite tool

of [12]. For each data set, our method computed the species tree in

at most a few seconds (in some cases, it took 0.01 seconds), and

produced very accurate species trees, as we show. In the case of the

Apicomplexan data set, we provide a tree that is slightly different

from the one proposed by the authors in [4], and discuss this tree.

For the yeast data set, we obtain a tree that is identical to the one

proposed by the authors in [1], as well as other studies, such as [7].

In addition to the quality of the species trees and efficiency with

which our method inferred them, one advantage of our method is

that it can be used in an exploratory fashion, to screen multiple

species tree candidates, and study the reconciliation scenarios

within the branches of each of them. We illustrate the utility of this

capability on the yeast and Apicomplexan data sets. Further, for the

Apicomplexan data set, we illustrate how to screen for possible

horizontal gene transfer events using the reconciliation scenarios

computed by other methods. Using the synthetic data sets, we

study the statistical consistency, as well as convergence rate, of the

MDC criterion. We also show that it may be sufficient to consider

only the set of clusters induced by the gene trees, which, in

practice, may be much smaller than the set of all clusters of species,

thus achieving further reduction in computation time. Nonethe-

less, we present an example to illustrate that, in certain cases,

focusing only on the gene tree clusters may result in a sub-optimal

species tree under MDC. The computational efficiency of our

methods, coupled with the promising properties of the MDC

criterion, makes our methods particularly applicable to large,

genome-scale data sets.

Results/Discussion

Data
In this paper, we reanalyze two biological data sets under the

MDC criterion: the Apicomplexan data set of [4] and the yeast data

set of [1]. The Apicomplexan data set contains eight species: Babesia

bovis (Bb), Cryptospordium pavum (Cp), Eimeria tenella (Et), Plasmodium

falciparum (Pf), Plasmodium vivax (Pv), Theileria annulata (Ta),

Toxoplasma gondii (Tg), and Tetrahymena thermophila (Tt). The authors

in [4] identified 268 single-copy genes suitable for phylogenetic

inference. For each gene, they reconstructed its tree using three

methods (maximum parsimony, maximum likelihood, and neigh-

bor joining). Among the 268 gene trees, there were 48 different

gene-tree topologies, the most frequent of which appears with

about 18% frequency. [4] inferred the species tree using two

different methods: the concatenation method and the majority

consensus method, both of which produced the same tree, shown

in Figure 3, which the author presented as their hypothesis for the

species tree of these eight Apicomplexan species.

The yeast data set contains seven Saccharomyces species S.

cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii

(Skud), S. bayanus (Sbay), S. castellii (Scas), S. kluyveri (Sklu), and the

outgroup fungus Candida albicans (Calb). [1] identified 106 genes,

which are distributed throughout the S. cerevisiae genome on all 16

chromosomes and comprise about 2% of predicted genes. For

each gene, they reconstructed its tree using the maximum

likelihood and maximum parsimony methods. Among the 106

trees, more than 20 different gene-tree topologies were observed.

The authors in [1] inferred the species tree using the concatena-

tion method on the the sequences of the 106 genes. The resulting

tree had 100% bootstrap support for each of its branches, and the

tree topology is shown in Figure 4.

Further, to study various properties of the MDC criterion and

our exact solutions, we ran the methods on synthetic data. To

generate those data, we used the Mesquite [12] ‘‘Uniform

Speciation’’ (Yule) module to generate 30 species trees, each with

8 taxa and total depth of 1,000,000 generations. Next, within the

branches of each of these 30 species trees, 2000 gene trees were

simulated under the colaescent process by using the Mesquite

module ‘‘Coalescence Contained within Current Tree’’. The

effective population size Ne is 100,000. These were the parameters

also recommended by [10]. Finally, to enable studying the

statistical consistency of methods, we simulated sampling of gene

trees as follows: for each set of 2000 genes trees simulated within

the branches of a species tree, we created random samples of 5, 10,

Figure 3. The species tree for the Apicomplexan data as inferred
using the majority consensus method and reported in [4]. The
species Tt (Tetrahymena thermophila) is the outgroup. The numbers on
the tree branches are bootstrap support values based on maximum
likelihood, maximum parsimony and neighbor joining methods,
respectively.
doi:10.1371/journal.pcbi.1000501.g003

Figure 4. The species tree for the yeast data set as inferred
using the concatenation method and reported in [1]. All
branches in the tree have 100% bootstrap support values.
doi:10.1371/journal.pcbi.1000501.g004

Species Tree Inference by MDC
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25, 50, 100, 250, 500, 1000, 1500 and 2000 trees; to obtain

statistically significant results, we created 30 data sets for each

sample size and averaged the results. It is worth mentioning that

the parameters we used here, following [10], produced a

considerable amount of gene tree incongruence that was similar

to the patterns we observed in the two biological data sets.

We have implemented our methods in the PhyloNet software

package [11] and analyzed the biological and synthetic data

described above by inferring the species tree from the gene trees.

In the case of the biological data, and since the ‘‘true’’ species tree

is unknown, we compared the species tree inferred by our method

to that hypothesized by the authors. We compared the species tree

inferred by our method to the one reported in [4] and shown in

Figure 3 in the case of the Apicomplexan data set, and to the one

reported in [1] and shown in Figure 4 for the yeast data set. It is

worth mentioning that the species tree inferred by Rokas et al. for

the yeast data set was also inferred by the BEST Bayesian method

[8] and reported in [7].

Since the species tree is known for the synthetic data, we

studied the performance of methods by comparing the species

tree they inferred against the true species tree. For this

comparison, we used the normalized Robinson-Foulds (RF)

measure [13], which quantifies the average proportion of

branches present in one, but not both, of the trees. A value of 0

for the RF distance indicates the two trees are identical, and a

value of 1 indicates the two trees and completely different (they

disagree on every branch).

Analysis of the Apicomplexan Data Set
Applying our method to the Apicomplexan data set, by using the

268 gene trees reported by [4], there was a single optimal tree,

which is shown in Figure 5A. The inferred tree requires in total

440 extra lineages to reconcile all 268 gene trees. This tree differs

from the tree reported in [4], and shown in Figure 3, with respect

to only the single clade (Cp, (Et, Tg)). As Figure 3 shows, the tree

reported by Kuo et al. places Cp as a sibling of the clade ((Et, Tg),

((Pf, Pv), (Bb, Ta))). However, it is important to note that as the

authors reported, this placement of Cp has very low bootstrap

support values of 38, 42, and 40 based on maximum likelihood,

maximum parsimony and neighbor joining methods, respectively.

Therefore, this grouping is not well-supported, even though both

the concatenation and majority consensus methods compute it.

Our method differed by placing Cp as a sibling of the clade (Et, Tg).

In fact, this grouping was advocated by [14].

To investigate this data set further, and particularly the

placement of Cp, we employed our method in an exploratory

mode: the method identified all maximal cliques in the

compatibility graph of this data set, and for each maximal clique

it computed the optimal fitting of all gene trees by minimizing the

deep coalescences. The compatibility graph has 37 vertices (which

means there are 37 different clusters induced by all gene trees) and

297 edges. In this graph, there are 247 maximal cliques, all of

which have 6 vertices. This allows us to construct 247 fully binary

species tree candidates. Figure 6 plots the number of extra lineages

for all 247 species tree candidates, sorted from the lowest (which is

the optimal one with 440 extra lineages) to the least optimal, which

is a maximal clique requiring about 2200 extra lineages to

reconcile all gene trees.

We observed that next to the optimal maximal clique with 440

extra lineages, the next two sub-optimal maximal cliques within

100 lineage counts from the optimal one had 469 and 542 extra

Figure 5. Optimal and sub-optimal trees inferred under the MDC criterion for the Apicomplexan data set. A The optimal (species) tree
inferred by our method for the Apicomplexan data set; this tree requires 440 deep coalescences to reconcile all 268 gene trees. The two sub-optimal
species trees with 469 and 542 deep coalescences are shown in B and C, respectively. The value on each branch is the numbers of extra lineages
within that branch, when reconciling all 268 gene trees.
doi:10.1371/journal.pcbi.1000501.g005

Figure 6. Plot of the number of extra lineages for each of the
binary (fully resolved) 247 species tree candidates identified as
maximal cliques in the compatibility graph of the gene tree
clusters. The first three lowest values are 440, 469 and 542. The trees
corresponding to these numbers are shown in Figure 5, respectively.
doi:10.1371/journal.pcbi.1000501.g006

Species Tree Inference by MDC
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lineages, respectively. In other words, in addition to the optimal

maximal clique, whose corresponding species tree is shown in

Figure 5A, there were two additional trees very close in terms of

the optimality of MDC. These two trees are shown in Figure 5B

and 5C. It is worth noting that the tree in Figure 5B is exactly the

tree reported in [4], and that the tree in Figure 5C is the third way

to group Cp, (Et, Tb) and ((Bb, Ta), (Pf, Pv)). In other words, while

our method identified a single optimal tree, this tree along with the

two close sub-optimal trees differ from each other by the

placement of Cp. This fact is already reflected in the community

by having two different hypotheses about this placement reported

by Levine [14] and Kuo et al. [4]. The MDC criterion, however,

supports Levine’s hypothesis of the species tree, which has 29

fewer deep coalescence events than that proposed by Kuo et al.

Beside the biological significance of the results, this analysis

highlights several strengths of our method. It is very fast, and it can

be run in an exploratory way, which allows the biologist to

investigate multiple hypotheses that, while not all optimal, are very

close in terms of the optimality criterion. Our method took a few

seconds to compute all the values reported in Figure 6. In other

words, the method took a few seconds for 247 inferences of species

tree candidates, each inference entailing the analysis of 268 gene

trees. Second, while the majority consensus method reports a

single tree, our method, when run in an exploratory manner,

allows for exploring the ‘‘landscape’’ of the different tree

topologies that could be species tree candidates. Third, the

computation carried out very efficiently using our formulation

allows us to explore the number of extra lineages on each of the

branches of the inferred species tree, or any candidate tree that the

biologist may wish to explore. For example, these numbers for the

top three trees are shown on the branches of the trees in Figure 5.

Notice that across all three trees, only the number on one branch

changes, and that is affected by the placement of Cp. These

numbers may be useful in a further analysis aimed at estimating

divergence times or population sizes, since these two parameters

affect the number of extra lineages.

Horizontal gene transfer or error in the gene trees?. In

our paper, we consider the problem of species tree inference when

species/gene tree incongruence is due to incomplete lineage

sorting. However, gene trees can also differ from their containing

species tree because of horizontal gene transfer (HGT). The

phylogeny-based approach to detecting HGT is to reconcile the

topological incongruence between a pair of species and gene trees.

Here, we argue that we can also make HGT inference based on

the number of extra lineages in each branch of the inferred species

tree.

Suppose the number of extra lineages in branch e = (u, v) of the

species tree T9 is small, relative to the size of cluster CT9(v). This

implies that for most gene trees, lineages in CT9(v) coalesce at

branch e or at branches below e. For a few remaining gene trees,

there exist extra lineages in e that coalesce deeper with other

lineages outside CT9(v). Given the fact that the deeper a coalescence

event, the less likely it will occur [9], we can be more inclined to

claim that for those gene trees, their incongruence with the species

tree T9 on the cluster CT9(v) is due to HGT.

In Figure 5A, the number of extra lineages in the branch that

induces (Pv, Pf) is 2. This data set has 268 genes, and this means

that 266 genes coalesced on the branch incoming into the most

recent common ancestor (MRCA) of (Pv, Pf), while only two gene

trees give rise to deep coalescences of the genes in Pv and Pf. The

amount of deep coalescences persisting through a species tree

branch may give an indication as to the length (time) and width

(population size) of that branch. In this case, having only two out

of 268 genes fail to coalesce indicate that the branch incoming into

the MRCA of (Pv, Pf) in the species tree is very long so that the

probability of two genes from Pv and Pf failing to coalesce is small.

Therefore, one can zoom in on those two genes and try to

understand why they failed to coalesce. The two gene trees are

depicted within the branches of the species tree in Figure 7.

While deep coalescence may still be a possibility, though one with

low probability, two other factors could have given rise to this

scenario. One scenario is that in these two gene trees, Pf and Pv were

grouped incorrectly; that is, the gene trees are incorrect. This is an

illustration of how simultaneous reconstruction of the species and

gene trees may help identify more accurate gene trees. The second

scenario involves horizontal gene transfer. In this case, the two gene

trees can be reanalyzed, after the species tree has been inferred, so as

to reconcile them with the species tree, assuming HGT as a cause of

the incongruence. Figure 8 shows the results of such an analysis

using the RIATA-HGT method [15] as implemented in PhyloNet

[11]. In other words, using this exploratory analysis, which can be

rapidly carried out given our method’s efficiency, three hypotheses

can be generated: one involving deep coalscences, one involving

inaccuracy in the gene trees, and a third involving HGT. While tests

such as bootstrapping can help assess, to some degree, the support of

gene tree branches, some preliminary work has been done on

Figure 7. The only two gene trees of the Apicomplexan data set that do not have the cluster (Pv, Pf). A The coalescence process, as
inferred by MDC, for gene tree (((Ta, Bb), ((((Tg, Et), Cp), Pv), Pf)), Tt). B The coalescence process, as inferred by MDC, for gene tree ((((((Ta, Bb), (Tg, Et)),
Cp), Pv), Pf), Tt).
doi:10.1371/journal.pcbi.1000501.g007

Species Tree Inference by MDC
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stochastically distinguishing between lineage sorting and horizontal

gene transfer (or reticulate evolution in general) as possible causes of

incongruence [16,17].

Analysis of the Yeast Data Set
The yeast data set contains 106 genes from eight species, with

massive discordance among the gene trees, as reported in [1]. The

authors concatenated all gene sequences and used maximum

likelihood and maximum parsimony methods to reconstruct the

species tree, and produced a species tree all of whose branches had

100% bootstrap support; this tree is shown in Figure 4.

For our analysis, we reconstructed the gene trees using a

maximum parsimony heuristic, and used our method to infer the

species tree. There was a single optimal tree found by our method,

which is shown in Figure 9A. Clearly, the tree is identical to the

one reported by [1]. This tree requires 127 extra lineages to

reconcile all 106 gene trees. Edwards et. al. [7] also reported the

same species tree using their Bayesian tool, BEST [8]. However,

while our method took a fraction of a second to infer this species

tree, the BEST tool took 800 hours.

As we did with the Apicomplexan data set, we also generated all

species tree candidates from the compatibility graph built from gene

trees (see Methods). The compatibility graph for this yeast data has

17 vertices and 94 edges. We then built 48 binary trees from the 48

maximal cliques in the compatibility graph, and scored the

minimum number of deep coalescences required to reconcile all

gene trees with each of the trees; these values are shown in Figure 9B.

The majority of those species tree candidates require more than 200

extra lineages. The first seven best trees have 127, 134, 163, 170,

186, 191 and 193, respectively. The best tree (the one with 127 extra

lineages) is the one shown in Figure 9A, while the other six are shown

in Figure 10. A very important point to make here is that these seven

trees, while produced by our non-parametric method, include all six

maximum posterior probability trees found by BEST in [7]. As

before, this exploratory nature of our method allows us to investigate

all seven of these trees, not only in terms of their topological

differences, but also the implications that selecting one of them has

on the reconciliation scenarios of the gene trees in the data set.

Analysis of the Synthetic Data
The simulated data allowed us to investigate other aspects of the

performance of our method, since the true species tree is known

and we could compare the inferences made by our method against

the true trees.

Figure 8. Reconciliations of the two gene trees in Figure 7 and the species tree in Figure 5A assuming HGT as the source of
incongruence. A The reconciliation scenario for the gene tree (((Ta, Bb), ((((Tg, Et), Cp), Pv), Pf)), Tt). B The reconciliation for the gene tree ((((((Ta, Bb),
(Tg, Et)), Cp), Pv), Pf), Tt).
doi:10.1371/journal.pcbi.1000501.g008

Figure 9. The species tree inferred by our method for the yeast data set. A The tree topology and the number of extra lineages, under the
optimal reconciliation, for each of its branches. B Plot of the number of extra lineages for all 48 species tree candidates.
doi:10.1371/journal.pcbi.1000501.g009

Species Tree Inference by MDC
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One of the questions we sought to investigate is whether we

need to use the compatibility graph of all species clusters or

whether it is sufficient to focus on the compatibility graph of the

gene trees. For n taxa, there are 2n21 clusters (including clusters

that have a single taxon and the cluster that contains all taxa, but

excluding the ‘‘empty cluster’’); hence, the compatibility graph of

all clusters will have 2n21 clusters, which becomes prohibitive for

large values of n. The number of clusters exhibited by the gene

trees, on the other hand, may be much smaller than 2n21 in

practice. Indeed, this is what we observed in the case of the

Apicomplexian and yeast data sets. For both data sets, we have n = 8

(the number of species), which means the number of all species

clusters is 2821 = 255. However, the numbers of clusters exhibited

by the gene trees were 37 and 17, for the Apicomplexan and yeast

data sets, respectively. This led to drastic reductions in actual

running times. Further, this reduction was achieved without

compromising the accuracy, as the optimal trees for both data sets

were found in the compatibility graphs of the gene trees. To

investigate this question further, we analyzed the synthetic data

sets with respect to varying the sizes of gene tree samples (see

section Data above). For each sample of gene trees, we built the

compatibility graph and tested whether the species tree is one of

the maximal cliques in the graph. However, rather than the binary

question of existence/non-existence, we quantified the proportion

of branches in the true species tree that are missing from the

closest maximal clique in the graph. If this proportion is zero, then

the species tree is one of the maximal cliques. Figure 11A shows

the results for this analysis. The results show that when only 25

gene trees are sampled, the compatibility graph provides good

‘‘coverage’’ that the true species tree is already one of the maximal

cliques. Even for sample sizes 5 and 10, the proportion of true

species tree branches missing from the best maximal clique are

0.02 and 0.004, respectively. These are negligible error rates.

Two important observations are in order. First, these results are

well-supported under the experimental conditions we used, which

are the parameters used by [10]. Investigations of this question

under a richer set of parameters is currently under way. In fact, it

is safe to state that there will be points in the parameter space

Figure 10. The six best sub-optimal trees for the yeast data set. These trees, from left to right and top down, have in total 134, 163, 170, 186,
191 and 193 extra lineages. The values on the branches are the numbers of extra lineages within them.
doi:10.1371/journal.pcbi.1000501.g010

Figure 11. Analysis of the synthetic data sets. A The average percentage of clusters induced by species trees that are not found in the set of
clusters induced by gene trees. The x-axis indicates the number of sampled gene trees. The results are based on the simulated data. B The
performance of our method on the simulated data. The x-axis indicates the number of sampled gene trees. The y-axis is the average Robinson-Foulds
distance between the species tree and the tree inferred by our method. C The difference in the number of extra lineages of the true species tree and
that number for the inferred optimal tree.
doi:10.1371/journal.pcbi.1000501.g011
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under which the species tree may not be a maximal clique, or even

a subgraph, of the compatibility graph. Such a scenario occurs, for

example, in the ‘‘anomaly zone’’ [5], which is a setting of specific

branch lengths under which the most likely gene tree may be

different from the species tree. Second, even though under these

parameters the true species tree is one of the maximal cliques in

the compatibility graph, this does not imply that optimizing the

MDC criterion will correctly identify the species tree. To

investigate this issue, we ran our method on the data and

compared the optimal tree under MDC with the true species tree.

The results are shown in Figure 11B.

In phylogenetics, two of the desirable properties of a

phylogenetic method are statistical consistency and fast convergence. A

method is statistically consistent if the error rate in its inference

converges to 0 as the amount of data increases. In our case, a

method is statistically consistent if the RF distance between the

tree it infers and the true tree converges to 0 as more genes are

sampled. Fast convergence means that not only does the method

converge, but it does so ‘‘fast’’, where ‘‘fast’’ here means ‘‘from

small sample size of the data.’’ The results in Figure 11 show that

the MDC criterion has very low error rate. It is important to note

that while the average RF distance for our method does not go

down to zero, even when 2000 gene trees are used, the RF

distance is negligible (about 0.04, which virtually amounts to zero

wrong branches in the inferred tree). Yet, the interesting

observation here is that combining the results of Figures 11A

and 11B, we drew the conclusion that the species tree is one of the

maximal cliques in the compatibility graph (particularly for

samples of size at least 25), yet it is not the one with the minimum

number of extra lineages. Figure 11C shows the difference

between the number of extra lineages in the true species tree

and that number in the tree inferred by our method. Since our

method is guaranteed to find the optimal tree in terms of the

number of deep coalescens, this difference (when subtracting the

latter number from the former) is non-negative. The results in the

figure confirmed our hypothesis: in a few cases, the tree that

minimizes the number of deep coalescences is not necessarily the

true species tree. Instead, in this case, the species tree is sometimes

a sub-optimal one. We observed this same issue even with the two

biological data sets, particularly the Apicomplexan one. We then

investigated how sub-optimal the species tree may be. In all cases

when the species tree was not the optimal tree, it was either the

first or second sub-optimal one. Once again, this matches results of

the analysis of the two biological data sets.

It is important to note that in practice only gene sequences are

given and gene trees need to be inferred. Error in the inferred gene

trees may affect the performance of the method negatively. Under

the MDC criterion, error in the inferred gene trees may

masquerade as deep coalescence events, but also may ‘‘cancel

out’’ some of the incongruence truly caused by deep coalescence.

Therefore, extending the simulation study to include inference of

the gene trees, rather than assume they are given, is a task we

identify for immediate future research. Nonetheless, the analysis of

the two biological data sets above includes the inference of the

gene trees themselves, and in these two cases, the MDC criterion

provides accurate results.

We finish by showing an example of three gene trees for which

the tree that minimizes their deep coalescences is not one of the

maximal cliques in the compatibility graph of these three gene

trees. Consider the three trees in Figure 12. The compatibility

graph that is built from their induced clusters is shown in Figure 13.

A minimum vertex-weighted clique of the graph is highlighted

with thick lines. Its weight is 1+2+4 = 7, and it corresponds to the

leftmost tree in Figure 12. This means that this tree requires seven

extra lineages to reconcile the three trees in Figure 12. However,

the tree in Figure 14 requires only six extra lineages to reconcile all

those three trees. We note that it induces cluster {a, b, c, e} that

does not appear in any of the three gene trees. This illustrates that

in theory the optimal tree under the MDC criterion may not be

found in the compatibility graph of the clusters induced by the

gene trees.

Methods

In this section, we describe in detail two methods for

reconstructing species trees from multiple gene trees using the

MDC criterion. We first introduce notations and definitions

necessary for their description.

Figure 12. A case in which the optimal tree under the MDC criterion contains at least one cluster that does not occur in any of the
input gene trees. Three gene trees over the taxon-set {a, b, c, d, e}. The tree that minimizes the total number of extra lineages and that consists of
only clusters induced by those three trees is the leftmost one. It requires seven extra lineages to reconcile all three gene trees.
doi:10.1371/journal.pcbi.1000501.g012

Figure 13. The compatibility graph that is built from clusters
induced by the gene trees in Figure 12. Each vertex of the graph
corresponds to a cluster (a string next to it), and two vertices are
adjacent if the two clusters they represent are compatible. The number
following ‘/’ in a vertex label is the total number of extra lineages
contributed by the cluster corresponding to that vertex.
doi:10.1371/journal.pcbi.1000501.g013
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Notations
Let X be a set of taxa. A phylogenetic tree T = (V, E), where V and

E are its nodes and edges, is a tree with a bijection from X to its leaf

set L Tð Þ. Tree T is said to be rooted if the edges in E are directed

and there is a single internal node r with in-degree 0. Except when

explicitly stated, in this paper trees are assumed to be rooted and

binary. For a node vMV, we denote by T(v) the clade, or subtree of T,

rooted at v. The set of leaf labels of T(v) is called a cluster, denoted by

CT(v). Cluster X and single-element clusters are called trivial. For a

cluster A, we denote by MRCAT (A) the most recent common ancestor

(also known as the least common ancestor) of taxa in A in tree T. For two

clusters A, B, we say that they are compatible if either A#B, B#A or

A>B = Ø. Informally, it means that there exists a rooted tree that

induces, or contains, both A and B. A collection of pairwise

compatible clusters uniquely defines a rooted tree [18].

Counting the Number of Extra Lineages
In [9], Maddison introduced the concept of extra lineages and a

parsimony approach, which we call the ‘‘minimize deep coales-

cences’’ approach, for species tree inference based on minimizing

the number of extra lineages. We first define a mapping between a

species tree and gene tree which allows for a precise definition of the

number of extra lineages. We then prove that this number can be

computed independently for each cluster in the species tree.

Suppose we are given a gene tree T and a species tree T9 on the

same taxon set X. We fit tree T into T9 by mapping each node v of

T according to three rules below:

1. Each taxon (leaf) in T is mapped to the corresponding taxon in

T9.

2. Let v9 = MRCAT9(CT(v)), and let u9 be the parent node of v9.

Then, v is mapped to any point pv, excluding node u9, in the

branch (u9, v9) in T9.

3. If w is a proper descendant of v, and w, v are mapped to pw, pv in

T9, then pw must also be a proper descendant of pv.

Figure 15 shows an example of such a mapping. In this figure,

we can see that for branch (u9,v9) there are two lineages, one being

the lineage of the common ancestor of species A, B, C, and one

being lineage D. In the case where T and T9 are identical

topologically, then we can easily see that there is only one lineage

in (u9, v9), that is one lineage for the common ancestor of A, B, C

and D. Therefore, for the branch (u9, v9) in Figure 15, the number

of extra lineages is 221 = 1. Formally, we define the number of

extra lineages in a branch of T9 as the number of lineages exiting it

minus 1, and the number of extra lineages for T9 as the sum of

those numbers in all of its branches.

Each pv in T9 that is the image of the mapping of an internal node

v in T is a coalescence event. In Figure 15, there are two coalescence

events in branch (v9, w9), but there are no coalescent events in

branch (u9, v9). We can establish a relationship between the number

of extra lineages and the number of coalescence events as follows.

Consider a branch (u9, v9) of T9. There are exactly |CT9 (v9)| species

in the subtree T9(v9). If there were no coalescence among those

species, then there would be |CT9(v9)| lineages exiting (u9, v9).

However, each coalescence event merges two lineages into one, and

we note that under the mapping’s conditions whenever there is a

coalescence among lineages from species in CT9(v9), it must occur

either in a branch of T9(v9) or in (u9, v9). Therefore, the actual

number of lineages exiting (u9, v9) is equal to |CT9(v9)| minus the total

number of coalescence events among species in T9(v9). We have the

following lemma.

Lemma 1. Let n(v9) be the number of coalescence events occurring among

species in CT9(v9). Then, the number of extra lineages in branch (u9,v9) is

CT ’ v’ð Þj j{n v’ð Þ{1: ð1Þ

We note that this lemma may not be true without the conditions of

the mapping defined above. If we do not have Conditions 2 and 3,

then lineages A, B, and C in Figure 15, for example, need not

coalesce in branch (v9, w9). They can coalesce at a branch above u9,

and in this case there are four lineages (and therefore, three extra

ones instead of one) in (u9, v9).

As we have seen, the number of extra lineages reflects the

amount of incongruence between two trees. It is small if two trees

are quite similar, and in fact zero if they are identical topologically.

Given a set of gene trees, one approach to inferring the species tree

is to minimize the number of extra lineages:

Problem 1 (Species Tree Inference Using the MDC Criterion).

Input: A set of gene trees G.

Figure 14. A tree that requires six extra lineages to reconcile
the three gene trees in Figure 12.
doi:10.1371/journal.pcbi.1000501.g014

Figure 15. Fitting a gene tree T into a species tree T9. Here, only mappings of internal nodes of T are shown.
doi:10.1371/journal.pcbi.1000501.g015
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Output: A tree T such that the total number of extra lineages required to

reconcile all gene trees of G within T is minimized.

Let T be a gene tree and T9 be a species tree. It seems that the

number of extra lineages in a branch (u9, v9) of T9 depends on both

T and T9. The following theorem shows it depends only on the

gene tree T and on the cluster CT9(v9). Because of its independence

on T9, we can denote it by a(CT9(v9),T).

Theorem 2. Let T be a gene tree and T9 be a species tree. Let (u9, v9) be

a branch of the species tree T9. Denote by t1, …, tk all the maximal clades of

T such that L tið Þ( CT ’ v’ð Þ for 1#i#k. Then, the number of extra

lineages in (u9, v9) is

a CT ’ v’ð Þ,Tð Þ~k{1: ð2Þ

Proof. Consider a clade ti, 1#i#k. First of all, because ti is clade of

T all species in ti must coalesce into a single lineage (and they must

coalesce either in a branch of T9 (v9) or (u9, v9) under the mapping’s

conditions defined above). Second, because ti is a maximal clade

such that L tið Þ( CT ’ v’ð Þ, that lineage will not coalesce with any

other lineages in T9(v9) or in branch (u9, v9) (for otherwise, we will

obtain a bigger clade in T whose leaf set is still a subset of CT9(v9), a

contradiction). By Lemma 1, the number of coalescence events

occurring among species of ti is L tið Þj j{1. We also note that

|k
i~1L tið Þ~CT ’ v’ð Þ. So, by applying this lemma again, we obtain

CT ’ v’ð Þ, Tð Þ~ CT ’ v’ð Þj j{
Xk

i~1

L tið Þj j{1ð Þ{1

~k{1:

As an example, consider trees T and T9 in Figure 15. From the figure,

we see that there are no extra lineages in branch (v9, w9). The cluster

under w9 is {A, B, C}. The clade (A, (B, C)) is a maximal clade of T

with only species from {A, B, C}. Therefore, the number of extra

lineages is 121 = 0. On the other hand, consider branch (u9, v9).

There are two maximal clades in T with species from {A, B, C, D}: (A,

(B, C)) and D. So, the number of extra lineages in (u9, v9) is 221 = 1.

Integer-Linear Programming Method
Linear programming (LP) is an algorithmic technique for

optimizing a linear objective function, cx, where c is a vector of

coefficients and x is a vector of variables, subject to a set of linear

constraints Ax#b, where A is a matrix of coefficients and b is a

vector of coefficients. This is usually written in the form

maximize cx

Subject to Axƒb:

When the variables x are required to be integers, the problem

becomes an integer linear programming (ILP). Solving an ILP problem

is NP-hard in general. Nonetheless, software tools for efficiently

solving large and hard instances in practice have been developed.

One such (commercial) tool is CPLEX, which was developed by

the company ILOG (http://www.ilog.com/). In this section, we

show how to use ILP to optimize the MDC criterion.

Using Theorem 2, it is possible to compute the number of extra

lineages contributed by each individual cluster without the need of

prior knowledge of the species tree. We can therefore solve

Problem 1 exactly by seeking a maximal set of compatible clusters

whose total number of extra lineages is minimum. Based on our

empirical observation, we find that the species tree is almost always

an agglomeration of compatible clusters, each of which appears in

at least one of the input gene trees (see Results and Discussion).

Based on these two observations, we propose the following method

to approximately solve Problem 1:

1. Given a collection G of gene trees, compute the set of nontrivial

clusters C induced by trees in G;

2. Construct a vertex-weighted compatibility graph G based on

the set C; and

3. Find a maximal clique of G that minimizes the number of extra

lineages, and reconstruct the species tree based on clusters in

this clique.

We now give the details of the method, using the illustration in

Figure 16 as the running example.

Constructing the weighted compatibility graph. Given

that a collection of pairwise compatible clusters uniquely defines a

tree [18], we construct the compatibility graph G of all clusters and

focus on the cliques in this graph. Let C be the collection of all

nontrivial clusters of a set G. of gene trees. The vertex set of G

represents clusters in C. Two vertices are adjacent if the two

corresponding clusters are compatible. Since we seek the clique

that is simultaneously maximal in terms of size and minimizes the

amount of deep coalescence events, we assign weights to the

vertices of G in a special way. Let v be a vertex in the graph G and

let A be the cluster it represents. For each gene tree T[G., we count

the number of extra lineages contributed by A as in Eq. (2). In

total, cluster A contributes
P

T [G
a A, Tð Þ extra lineages. Let m be the

maximum value of
P

T [G
a A, Tð Þ over all A [ C. In the example of

Figure 16, we have m = 2. We assign vertex v the weight

w vð Þ~mz1{
X
T [G

a(A,T): ð3Þ

The reason we define w(v) in this manner, instead of
P

T [G
a A, Tð Þ,

will be clear next, where we describe an efficient ILP formulation for

identifying the clique in the compatibility graph that corresponds to

a tree that minimizes the total number of deep coalescence events.

Finding the tree in the compatibility graph. A clique in

the compatibility graph G defines a tree, and we seek a clique in G

such that, on one hand, it has as many vertices as possible (to obtain

maximal resolution of the species tree), and on the other hand, the

number of extra lineages contributed by its vertices, as defined above,

is as small as possible. The way we assign weights to vertices of the

compatibility graph G allows us to achieve both goals simultaneously.

In the compatibility graph G, we will find a maximum vertex-

weighted clique. This clique is clearly a maximal one, because each

vertex is assigned a positive weight by function w(v) in Eq. (3), which

will guarantee having the maximal number possible of compatible

clusters in the species tree. Moreover, because we maximize the

clique weight, by the definition of function w(v), we in fact minimize

the total number of extra lineages (among all cliques of the same size).

Finding a maximal vertex-weighted clique in a graph can be

converted to a linear programming formulation [19]:

max
P

v[V Gð Þ
w vð Þxv,

s:t: xuzxvƒ1, V u, vð Þ=[E G:ð Þ
xv[ 0, 1f g, Vv[V Gð Þ:

ð4Þ

This formulation allows us to solve our problem by using CPLEX.

From empirical observations, we find that the compatibility graph

G is often very sparse. Therefore, the above formulation results in

Species Tree Inference by MDC
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a very large number of constraints xu+xv#1. The following method

can reduce the number of constraints to exactly |V(G)|. For a

vertex uMV(G), let N(u) be the set of vertices that are adjacent to u.

The constraint

V Gð Þ\N uð Þj j|xuz
X

v=[N uð Þ
xvƒ V Gð Þ\N uð Þj j

means that if u is included in the clique (i.e, xu = 1), then no vertices

in G that are not adjacent to u are included in the clique (all xv’s not

in N(u) are 0), and that if any of those vertices is included in the

clique, then u cannot be in the clique (i.e., xu must be 0). Therefore,

the above linear programming formulation is equivalent to

max
P

v[V Gð Þ
w vð Þxv,

s:t: V Gð Þ\N uð Þj j|xuz
P

v=[N uð Þ
xvƒ V Gð Þ\N uð Þj j, Vu[V Gð Þ,

xv[ 0, 1f g, Vv[V Gð Þ:

ð5Þ

Dynamic Programming Method
We can find the optimal species tree without the need to find a

maximum vertex-weighted clique in the compatibility graph G by

employing dynamic programming. Dynamic programming (DP) is

a divide-and-conquer algorithmic technique that breaks a problem

into sub-problems, solves the sub-problems, and then uses those

solutions in an efficient way to form the solution to the main

problem. For a problem to be amenable to a DP solution, it has to

exhibit certain properties. For more details, the reader is referred

to any standard textbook on algorithms; e.g., [20]. We now

describe how to solve the MDC optimization problem using a DP

algorithm.

Let t9 be a rooted binary phylogenetic tree on a fixed taxon

subset A~L t’ð Þ of X. Given a collection G of gene trees, let us

denote l t’,Gð Þ the sum of
P

T [G
a A, Tð Þ for all clusters B in t9,

including A. Further, let l� A,Gð Þ be the minimum value of

l t’,Gð Þ over all possible binary trees t9 on A. If t’1 and t’2 are the

two subtrees whose roots are the children of t9, then clearly we

have

Figure 16. Illustration of our method. A A weighted compatibility graph is constructed from the clusters of the input gene trees (T1, T2, and T3).
Shown at the bottom are all maximal cliques, along with their weights (the sum of weights of their vertices), of which the three heaviest maximal
cliques are highlighted. B A table showing the calculation of the weight of each vertex in the compatibility graph, where in each row v is the vertex
that corresponds to the cluster in that row, and w(v) = m+12(a(C, T1)+a(C,T2)+a(C,T3)) (m = 2 in this case).
doi:10.1371/journal.pcbi.1000501.g016
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l t’, Gð Þ~l t’1, Gð Þ~l t’2, Gð Þz
P
T[G

a(A,T):

The quantity
P

T [G
a A, Tð Þ is fixed for each A, and therefore, if

t9 is an optimal tree on A such that l t’,Gð Þ is minimum, then

l t’1, Gð Þ and l t’2, Gð Þ must also be minimum. This allows us to

compute l� A,Gð Þ recursively as follows.

1. Let C be a collection of nontrivial clusters induced by trees in G
plus cluster X and all single-element clusters. We partition C
into subsets C1, . . . ,C Xj j, where Ci, 1#i#|X|, is the collection

of all clusters of size i in C.
2. For every A [ C1, l� A,Gð Þ~0, and for A [ C2, l� A, Gð Þ

~
P

T [G
a A, Tð Þ.

3. For A [ Ci, 3#i#|X|,

l� A, Gð Þ~min l� A1,Gð Þzl� A2,Gð Þ:A1\A2~1and A~A1|A2f g

z
X
T[G

a A, Tð Þ:

4. Return l� X ,Gð Þ.

Although the algorithm described above only returns the

number of extra lineages, we can easily modify it so that we can

actually reconstruct the optimal species tree. For each i, 3#i#|X|,

in Step 3, we also record two pointers to optimal subclusters A1

and A2. By backtracking those pointers starting with cluster X, we

can obtain the optimal set of compatible clusters.

Any tree T[G induces exactly |X|22 nontrivial clusters.

Therefore, Cj j~O Gj j: Xj j{2ð Þð Þ. For every A#X, there are at

most C subsets of A to look at, and hence Step 3 is executed at

most Cj j2 times. The running time of the algorithm is then

O Gj j2: Xj j{2ð Þ2
� �

.

The collection C described in the algorithm only contains

clusters induced by gene trees in G. However, we can replace it by

the collection of all nonempty subsets of X (there are 2|X|21 such

subsets). In this case, the running time of the algorithm is bounded

by
P Xj j

i~0

Xj j
i

� �
2i~3 Xj j. Although it is exponential, it is

significantly better than a brute-force approach that examines all

(2|X|23)!! binary rooted phylogenetic trees on X.
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