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Abstract

Thispaperdescribesarobustlocalizationmethodfor an
outdoorrobot thatgivestoursof theRiceUniversitycam-
pus. The robot fusesodometryand GPSdatausing ex-
tendedKalmanfiltering. We proposeandexperimentally
testa techniquefor handlingtwo typesof non-stationarity
in GPSdataquality: abruptchangesin GPSpositionread-
ingscausedbysuddenobstructionsto line of sightaccessto
satellites,andmoregradualchangescausedby disparities
in atmosphericconditions.We constructmeasurementer-
ror covariancematricesindexedby numberof visiblesatel-
litesandswitchtheminto thelocalizationcomputationau-
tomatically. The matricesarebuilt by samplingGPSdata
repeatedlyalongtherouteandareupdatedcontinuouslyto
handledrift in GPSdataquality. We demonstratethatour
approachperformsbetterthanextendedKalmanfilters that
useonly a singleerrorcovariancematrix. With a GPSre-
ceiver thatdelivers1 meteraccuracy, we have beenableto
localizegoodto 40 cm througha challengingroutein the
EngineeringQuadrangleof RiceUniversity.

1 Introduction

Our goal is to build an autonomousmobile robot that
givestoursof the Rice University campus(seeFigure2).
While there are many successfulmobile robots that au-
tonomouslynavigateandexplore indoorenvironmentslike
museums[13, 10] andoffices[8] over extendedperiodsof
time, thereare far fewer examples1 in the outdoorarena,
most being researchprototypes[1, 3, 11, 12, 6]. There
areseveralreasonswhy thedesignof autonomousoutdoor
robots is challenging: outdoor environmentsvary more
than thoseindoors,and we do not have good characteri-
zationsfor them, and robust solutionsto the localization�
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1The new grassmowing robotsguidedby externally placedwires at
lawn boundariesandaroundobstaclesarenot consideredhere,because
they requiretheenvironmentto beinstrumentedfor them.

problemfor outdoorrobotsarestill underdevelopment.We
believe that thepursuitof theengineeringgoalof building
an autonomousoutdoortour guide for Rice University, a
tree-filled oasisin the urbanmetropolisof Houston,will
helpusmakeprogresson thescientificgoalof characteriz-
ing outdoorenvironmentsfor which reliablemobile robot
navigationalgorithmscanbedesignedandbuilt.

Thispaperdescribesthelocalizationalgorithmsusedby
our robot,their integrationwith thenavigationalgorithms,
andpresentspreliminaryexperimentalresults. An impor-
tant groundrule we followed to ensureportability of our
methodswas to allow no instrumentationor modification
of our environment. A key issuefor outdoorrobotsis the
choiceof sensorsfor performinglocalization. While in-
door robot localizationalgorithmsmake extensive useof
sonars[14, 13, 5], they are virtually uselessfor outdoor
robots, as the environmentconsistsmostly of vast open
spaceswherethesensorsreturnnovalid rangeinformation.
They are,however, useful(togetherwith bumpsensors)for
local obstacleavoidance.With a view to determiningthe
smallestsetof sensorsneededto provide robust localiza-
tion andnavigationin acampusenvironment,wehavecur-
rently limited ourselvesto datafrom odometry, which pro-
videslocationandorientationinformationrelativeto astart
position,andGPS,which providesglobalpositioningand
headingdata.Our objective is to understandexperimental
limits on theaccuracy of localizationachievableusingjust
thesetwo sourcesof information.2

Our robot needsto give toursthroughoutthedaywith-
out requiringhumanintervention. It thereforerequireslo-
calizationaccuraciesof at least40 cm at all timesduring
its entire operation. This is abouthalf the width of the
walkwaysaroundour campus.Unlike office environments
in which short term localizationerrorsaregenerallynon-
fatal, small errorscanhave catastrophicconsequencesfor
our outdoorrobot e.g., falling off of a curb or missinga
sidewalk androlling ontoabusystreet.

2Weplanto addvision to our robotto augmentodometryandGPSfor
localization.



It is well known thatdead-reckoningusingpureodom-
etry is not a very robust localizationtechniquefor robots
[2, 6] thatcover long distances,andarein continuousop-
erationover extendedperiodsof time. This is becauseer-
rorsin odometryaccumulateover time dueto inaccuracies
in the kinematicmodel,precisionlimitations of encoders,
andunobservablefactorslike wheelslippagesthatarenot
accountedfor in thekinematicequations.Kalmanfiltering
of carefully calibratedodometricdatawith statemeasure-
mentsignalsprovidedby a redundantsensor(e.g.,a gyro-
scope)canprovidesignificantimprovements[6]. However,
they still cannoton their own provide localizationaccura-
ciesof 40 cm overextendedperiodsof time,asneededfor
ourproblem.

GPSis now a standardtechniquefor obtainingabsolute
position information for outdoorrobots[6, 3, 11, 1, 12].
Our GPSreceiver (an Invicta 210S)canprovide position
informationaccurateto abouta meter( �����	��
�
�
�� ). It
alsoprovidesestimationsof the currentheadingby using
the Dopplershift of the satellitesignals. The accuracy of
thisestimatedependsgreatlyonthespeedatwhichtheGPS
antennais moving, but at the top speedof our robot, we
have determinedthat ��������� ��� radians.DifferentialGPS
systemslike RTK GPScanprovide centimeterlevel reso-
lution, however they costanorderof magnitudemore,and
their performanceis very sensitive to the numberof visi-
ble satellites[3]. GPSinformationaloneis not sufficient
to achieve the localizationaccuraciesneededfor our ap-
plication,becausethe tour guide’s routeon our campusis
largelycoveredwith treesandrunsverycloseto tall build-
ings which obstructline of sight accessto the GPSsatel-
lites. Further, atmosphericconditionsdegradethe quality
of theGPSsignalsin varyingwaysat differentlocations.

In this paper, we adapt ExtendedKalman Filtering
(EKF) [7, 9] usedin [6, 3, 12] for mobilerobotlocalization
to fuseodometryandGPSdata.Our innovationis theaddi-
tion of a dynamicmechanismto handlenon-stationarities
in GPSdataquality. Becauseof the rapidchangein qual-
ity of GPSdatawhen the view of satellitesis obstructed
in anurbancampusenvironment,thestandardapproachof
usingasinglecovariancematrix to modelmeasurementer-
rors in GPSdatais not adequate.This approachnecessi-
tatesartificially increasingvariancesmorethanis usually
needed,causingslower convergenceof the Kalmanfilter.
If the data quality diminishessuddenly, the Kalman fil-
ter doesnot accountfor the reductionin quality quickly
enough,andour robotperformspoorly becauseinaccurate
GPSdatais weightedtoo heavily. Conversely, if our robot
gainsa line-of-sightpathto additionalsatellitesafterhav-
ing adaptedto a reducedquality GPSsignal,theincreased
variancescausethe Kalmanfilter to not take advantageof
the higherquality data,so control errorsin our robot ac-
crueagain.We show thatby usinga finite numberof error

covariancematricesin differentGPSqualitysituations,cre-
atingthemasneededandupdatingthemdynamically, it is
possibleto handlechangesin GPSsignalquality quickly
andeffectively.

Thepaperis organizedasfollows: In Section2, wegive
a brief descriptionof the tour guide taskaswell the me-
chanicalandsensorconfigurationof our robot. We lay out
thebasicEKF algorithmuponwhichour localizationalgo-
rithm is based.We thendescribetheextensionto theEKF
algorithmthatdynamicallyconstructserrorcovariancema-
tricesto handlenon-stationaritiesin the GPSdataquality.
Section3 containsa brief discussionof issuesin design-
ing controlalgorithmsfor navigationthatusepositionand
headingestimatesproducedby the localizationalgorithm.
In Section4, we provide detailsof our experimentsand
demonstratethat the dynamicmeasurementerror covari-
ancematrix generationhandlesrapidchangesin GPSsig-
nalquality well. We concludewith a brief summaryof our
ongoingwork in designingmethodsfor humaninteraction
with our robot.

2 The Tour Guide Task and Robot

2.1 The task and the robot

The tour guidetaskrequirestheability to navigatein a
dynamic,uninstrumented,potentiallydangerous(vehicular
traffic onstreets,sharpcurbs,moving obstaclessuchasan-
imalsandpeople,etc.)urbanenvironment.In addition,the
robot needsto interactwith a tour groupin an interesting
andinformative manner. Interactionis tightly interwoven
with navigation: the robot needsto be awareof its loca-
tion so it canuseits locationcontext to answerquestions
appropriately.

Our tour guide robot is an ATRV Jr. from RWI Inc,
namedVirgil3 (Figure 1). It is a four-wheeledrobot de-
signedfor outdooruseandcomesequippedwith an array
of sonarsandodometry. We addeda GPSreceiver used
typically in marineapplicationswhich receives real-time
correctionsfrom theCoastGuardstationat Galveston.We
alsoaddedtouch-sensitive bumpersfor obstacledetection
andavoidance.The wheelson the samesideof the robot
aremechanicallycoupled.Theraw encoderinformationis
not directly available,neitherdo we haveaccessto thefull
kinematicmodelof therobotwhichis usedby theon-board
odometrycomputationto provide integratedmeasureslike
distancetraveledandchangein orientationin a givensam-
pling interval. Both odometricandGPSdataaresampled
at10Hzin our robot.

3Virgil is namedaftertheguidein Dante’s Inferno.



Figure1: Virgil: TheRicecampustourguide

2.2 Odometry

Beforeintegratingdatafrom differentsources,we cal-
ibrated the odometryusing the GPS receiver. Because
odometrymeasuresthe numberof rotationsin the wheels
ratherthanthe actualdistancetraveled,several sourcesof
error can accumulate. Largely, systematicerror is due
to tire size miscalculations:as the tires wear down, the
amountof lineardistancetraversedreducesin comparison
to thenumberof rotationsthe tires travel. In addition,be-
causethetiresareconstantlybeingworn down, this analy-
sismustbe reperformedperiodicallyto estimatenew sys-
tematicerror values. This error canbe directly compen-
satedfor by scalingthe commandsgiven to the drive sys-
tem. In addition,other sourcesof error suchasslippage
andsurfaceimperfectionsresultin a randomcomponentto
theerrorwhosevariancecanalsobeapproximatedthrough
repeatedtrials.

By traveling,accordingto odometry, in straightlinesfor
fairly largedistances(20meters),andcomparingtheodom-
etry’s resultsfor distancetraveledwith GPSdataaveraged
over 100 readings,we areable to determineapproximate
valuesfor systematicand randomerrorsin odometry. In
addition, to limit the effect of systematicinaccuraciesin
translatingGPScoordinatesinto local coordinates,weper-
formedthe testfrom many differentstartingpositionsand
headings.It is possiblethat this methodreportsa slightly
higherthanactualrandomerrorratedueto GPSinaccura-
cies. To determineturningerror, we follow a similar pro-
cedureof moving forward a distanceandusingGPSdata
at theendpointsof thatmovementto approximatethecur-
rent heading,using odometryto turn a presetangle,and
thenmove forwardagainto calculatethetrueangleturned
usingaveragedGPSdata. This is inherentlylessaccurate
thancalculatingdistanceover a straightpath,but givesa
reasonablygoodapproximationof the true errors. Again,
becauseof GPSinaccuracies,therandomcomponentin the
measurederror will likely be larger than the true random
error.

After performing these tests, we observed that our
robot’s odometry consistently under-maneuvered both

Movement SystematicError RandomError
Translational -0.0290 0.0036
Rotational -0.0492 0.0589

Table 1: Systematicerrors and randomerror variances
measuredin odometryrelatedto the two typesof motion
supported.

while travelingin straightlinesandwhile turningasaresult
of the smallerthanexpectedsizeof the worn tires. These
resultsarepresentedin Table1 asa ratio of error to dis-
tancetraveledfor 29 trials of boththetranslationalandro-
tationalmeasurementswhichapproximatestheactualerror.
Systematicerror is accountedfor directly in theodometry
system,increasingtherobot’s perceptionof how far it has
traveledby theappropriateratio, andrandomerror is han-
dledasuncertaintyin thedatafusionprocess.

2.3 Extended Kalman Filter

Kalmanfiltering is awell known techniquefor stateand
parameterestimation[7, 9]. ThestandardKalmanfilter as-
sumesthat the controlledprocessis governedby a linear
stochasticdifferenceequation. An extendedKalman fil-
ter handlesnon-linearstochasticprocessesby linearizing
aboutthecurrentmeanandcovariance.

In the 2D outdoorrobot localizationproblem,the state
of therobotis its positionandorientation����������� � in afixed
frameof reference.Thestate(0,0,0)is thegeographiccen-
ter of the Rice campus(Baker Fountain). All �!�"�#�$� posi-
tionsaremeasuredin centimetersnorthandeastrelative to
this location, and the orientation � is the anglefrom due
north.

Therobot’sstateevolvesaccordingto thefollowing sys-
temof non-linearstochasticdifferenceequations.Thestate
of thesystemat time % is ����&$�#��& ���'&'� . Thewheelencoders
yield, ateachsamplingperiodthetranslation(*)!& alongthe
heading�'& anda rotation (,+�- . Theseequationsrelatethe
stateat time %/.0� to thestateat time % , andtheinternally
sensedtranslation(*)!& in thedirection �'& androtation (�+#-
in theinterval betweentimes % and %1.�� . Thezeromean
vector 23&4�657�!
98;:/&<� represents(normally distributed)
noisein thestateevolutionprocess.��&�=�>?� �*&3.@
BA'C��'&D(*)!&E.723&�F��&�=�>G� ��&H.ICKJML,�'&�(*)!&E.723&�N� &�=�> � � & .7( +�- .72 &K+
Theseequationscanbe summarizedasfollows, where C�&
is thestateof thesystemat time % and (,&O�P��(*)!& ��(,+�-<� is
thevectorobtainedfrom the encodersfor the periodfrom
time % to time %Q.R� .CD&�=S>T� UV�WCD& ��(,& ��23&��



WeusetheGPSsignalto determinethemeasurementerror
betweenthe actualstateandthe internally computedstate
above. We modelthemeasurementprocessasfollowsX &Y� CD&3.7Z�&
whereX & is themeasurementof theactualstateC & attime % ,Z & �[57�\
]8;^ & � is a zeromeanmeasurementnoisevector.
Themeasurementandprocessnoisevectorsareassumedto
be independentof oneanother, andto have normalproba-
bility distributionsrepresentedby thevectors: & and ^ & of
variancesfor thethreestatecomponents� , � and � . There
is an importantsubtletyherecausedby the fact that the
GPSdatais in a differentcoordinatesystemfrom the one
maintainedby our robot. We usethe equationsin [4] to
convertglobalGPScoordinatesinto local (Baker Fountain
relative) coordinates.Theseequationsperformvery accu-
ratetranslationstakingthecurvatureof theearth’s surface
into account,andarein wide usein theagriculturalworld.
As aresult,wedonotobservethelossof precisionin trans-
latingbetweenlocalandglobalcoordinatesnotedin [6].

We now show the prediction and updatestepsin the
EKF which combinesinternalstate(odometric)andexter-
nalmeasurement(GPS)data.Theequationsfor thepredic-
tion stepare:

C &�=�>#_`& � UV�WC &B_`& ��(,& �#
 �a &�=�>#_`& � bc& a &B_`& bd&'ef.@:/&g &�=�>#_`& standsfor ourpredictionof thestatevectorfor time%O.h� given internalsensorinformation from time % and
knowledgeof the stateat time % .

a &�=�>#_`& is the a priori
estimateof the errorcovariance,i.e. thecovarianceof the
differencebetweenthe actualstateandthe statepredicted
on the basisof measurementstill time % . bc& is the Ja-
cobianof the processUV�i�j� with respectto the statevectorg �k�!�"�����#��� . By differentiatingthe stateevolution equa-
tion with respectto C , we obtainthefollowing matrix:

bd&Y�
lm �n
 oH(p)!&<C�JMLq���'&<�
 �n(p)!&D
KA'C��!�'&��
r
 �

st

Notethat : & is theprocesserrorcovariancematrixfor time% . For our robot,thepredictionequationsreduceto:g &�=S>�_`& � UV� g &K_;& �#uV&v�#
 �a &�=�>#_`& � b & a &B_`& b e & .@: &
Essentially, thesetwo predictionequationsprojectthestate
andcovarianceestimatesfrom timestep % to %Q.R� .

The updateequationscorrect the stateand covariance
estimateswith the measurementX & . �w& is the GPSread-
ing at time % convertedinto thelocalcoordinatesystemfor
the robot. We computethe Kalmangain x anduseit to

correct C and
a

asfollows. ^ & is the measurementnoise
covariancematrix.

x � a &�=�>#_`& � a &�=�>#_`& .I^c&<�By >C &�=S>�_`&�=�> � C &�=�>#_`& .7xI���z&do{C &�=�>#_`& �a &�=�>#_`&�=�> � �\|/o{x�� a &�=�>#_`&
x is theweightallocatedto thestateanderrorcovariance
correction. The accuracy of ^ & determinesthe effective-
nessof theEKF, andbecausetheaccuracy of theGPSmea-
surementchangesbasedon a variety of factors,a single
predetermined̂ & in many casesdoesnotachievegoodlo-
calizationaccuracy. Furthermore,becausetheaccuracy of
theGPSreceivercanchangealmostinstantaneouslyasthe
robot Virgil passesbelow a tree or neara building when
oneor moresatellitesareobstructedfrom view, slowly up-
datingmeasurementerrorvarianceusingnew datapointsis
noteffective. If wedonotmodelthetemporalvariationsin
themeasurementerror ^}& correctly, thenthefilter will be
unableto respondquickly enoughto suddendeterioration
or suddenimprovementin GPSdataquality.

2.4 Handling non-stationarity in ~��
Therearetwo kindsof changesof ^}& in time, thuswe

havedevelopedtwo schemesto handlethesechanges.One
changeoccursabruptlyandis causedby thenumberof vis-
ible satelliteschanging;theotheris moregradualandrep-
resentsa drift asatmosphericconditionsandotherfactors
affect signals.By analyzingtheGPGGANMEA stringre-
turnedby the receiver, we candeterminewhenadditional
satellitesare acquiredor lost, andkeepa distinct ^}& for
eachnumberof satellites. Over time, eachof theseval-
uesis updateddynamicallybasedon new data.We switch
betweenthese ^}& ’s asdeterminedby the numberof vis-
ible satellitesand are able to obtain much fasterconver-
genceto the true statethan by using a single measure-
menterror vectorwhich averagesthemall. In additionto
theGPGGAstring,theGPSreceiversuppliestheGPRMC
messagewhich providesthe currentdirectionof travel of
the robot, but the accuracy of this valuevariesdepending
on thespeedof the robot. We attackthis problemusinga
similar methodof swapping ^ & ’s dependingon rangesof
speed,almostcompletelyignoringdatathat is readat very
low speed.

To handlethe secondkind of change,we examinethe
evolutionof theerrorterm ���z&VofC &�=�>#_`& �B�!�w&do�C &B=�>�_`& � e
over 5 timesteps,andcorrect̂}& to approachtheaveraged
error term measuredover the 5 time steps.This process
tracksthe drift in ^}& andyields betterconvergenceprop-
ertiesfor theextendedKalmanfilter, asdocumentedin our
experimentalsection.



3 Integration of localization with navigation

Ourlocalizationalgorithmprovidesestimatesof thecur-
rentpositionandorientationof therobotin thecampusco-
ordinateframecenteredat Baker Fountain.We specifythe
tourasa list of waypointsin this referenceframe.Wehave
built a simpleproportionalcontrollerthatdrivesthe robot
from thestartpoint throughtheway pointsin orderof oc-
currence.This controllerservoson thedifferencebetween
thecurrentanddesiredpositionandorientation.Low level
obstacledetectionandavoidanceis performedwith sonars
andtwo bumpsensors.

Thecontrol correctionchoicewe explore is whetherto
turn in place(forward-speed= 0) to achievea headingcor-
rection,or whetherto turn andmove forwardat the same
time. The correctionfrequency controlsthe rate or con-
ditionsunderwhich corrective motorcommands(turn and
speed)areissued.All of ourcontrollersmakeactiveuseof
the stability of the Kalmanfilter stateestimatesto decide
whento issuecorrective actions. They wait for the confi-
dencein the stateestimatesto achieve a certainthreshold
(measuredby thedifferencein successiveKalmanfilter es-
timates)beforechangingturnandspeed.

Thefirst controllerwe built attemptsto simultaneously
reduceposition and headingdifferences,and therefore
turnsas fastaspossibleto reducethe differencebetween
currentanddesiredheadingwithout changingthe forward
speed.This controlleris very sensitive to choiceof theac-
tion confidencethreshold. If it is set too high, the robot
continuesto move forwardat its currentspeedin the cur-
rentdirectionfor a longerperiodof time. If therobotis off
courseto begin with, it movesfartherfrom the approved
path before correcting,and the correctionturn is larger.
Loweringtheconfidencethresholdresultsin agreaternum-
berof incorrectturnscausingsmallmovementsaway from
thedesiredpath,with therobotdrunkenlyweaving around
thedesiredpath.

To correct this problem, we built a secondcontroller
identical to the first except that it cuts forward speedto
zerowhile turning.For asettime interval (half asecond)it
turnstowardthegoal,reducingthedifferencebetweencur-
rentanddesiredheading.It interleavesforwardmotion(to
reducedifferencebetween �!�"���]� locations)with in-place
turns (to reduceheadingdifferences). The advantageof
eliminating forward motion during turns is that our skid-
steerrobot turns more accuratelyand stayscloserto the
plannedroute. However, the jerkinessof consecutive turn
andforwardmotionphasesproveddistractingfor peoplein
tourgroups.

In our final and most successfulattempt,we returned
to making coursecorrectionsduring forward movement.
However, insteadof attemptingto reducethedifferencebe-
tweencurrentandgoalheadingassoonaspossible,we re-

Distance Heading �9�E�i�B�`���<�
UncorrectedGPS 1.16 1.69 1.58
EKF: Static ^c& 1.33 2.05 1.64
EKF: Dynamic ^c& 1.08 1.33 1.54

Table 2: For each data fusion algorithm used, this ta-
ble presentsthe ratio of the distancetraveled to the total
straightline distanceof thetour aswell astheaverageand
standarddeviationof thedifferencebetweentheheadingof
the straightline pathandthe headingchosenby the robot
controller.

ducethe headingdifferenceslowly, causingthe robot to
gently arc its way to the goal state. By approachingthe
goal headingslowly, we reduceour relianceon knowing
theexactdifferencebetweenthecurrentandgoalheadings;
knowing thesignandorderof magnitudeof thedifference
suffices. This causesdrifts and over-correctionsto dras-
tically reduceandresultsin smoothandfluid motion be-
tweenwaypointson thetour.

4 Experimental Results

Theway pointsin thetour of theEngineeringQuadran-
gle areshown in Figure2. This is a challengingroutethat
runscloseto severaltall buildings,largegranitesculptures
andseveral rows of trees.In our experimentswe compare
the behavior of (1) a dual controller that usesGPSwhen
available,andodometrywhenit is not, (2) an EKF based
controllerthat fusesodometryandGPSdatawithout con-
sideringnon-stationaritiesin the measurementerrors,(3)
ourEKF basedcontrollerthattracksandupdatesmeasure-
menterrorcovariancesin time.

At particularlytroublingtimesfor theGPSreceiver, the
first methodfalls backentirelyto odometry, until GPSand
odometrycanbe resynchronizedaccordingto averageve-
locity readings.The resultof this is that the robot some-
times travels without any GPSdatafor extendedperiods
of time, andlocalizationerrorsaccumulateuntil it is com-
pletely off course. The secondmethodworks well when
many satellitesarevisible andthequality of theGPSdata
isgood.However, whensatellitesarelost,whichoftenhap-
pensin thelaststretchof thetour, therobot’sability to lo-
calize correctlydegradessignificantly. Trackingchanges
in themeasurementerrorcovariancematricesdramatically
improves localization accuracy, becauseinaccurateGPS
datais weightedlessheavily with respectto odometry, and
their combinationprovidesinformationthatis ableto keep
therobotwithin 40cm of thedesiredroute.

Table2 presentsresultsaveragedover threerunsof the
threemethods. For eachmethodwe measurethe devia-
tion from a straight line pathbetweenthe way pointson
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Figure2: A top view of Rice’s EngineeringQuadrangle.
Thesculpturesin thegrassycentersaregiantgranitemono-
liths called45, 90, and180,correspondingto their angles
of inclination. The tour pathis givenby points � through�
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the tour. We take the ratio of the lengthof the actualpath
coveredto thelengthof theshortestpathbetweentheway
points.Wealsoprovidethemeanandstandarddeviationof
the differencesin heading(sampledat 10Hz) betweenthe
trueheadingbetweentwo waypointsandtheorientationof
the robot betweenthosetwo way points. Thesetwo mea-
suresgive us a senseof the accuracy of localizationand
thesmoothnessof thecontrolpoliciesthatusethelocaliza-
tion measures.Figures3 and 4 show theactualtrajectories
of the robot over the above threerunswith staticanddy-
namic ^c& ’s. Theserunsweregatheredwhenthevariability
in theGPSdataquality wasnot ashigh, so the difference
betweenthetwo approachessurfacesin theconsistency of
thetrajectoriesgeneratedwith dynamic ^c& ’s.

It shouldbe noted,however, that in areaswith fairly
steepor inconsistentinclines,our robot’s odometryis in-
capableof determiningtheangleof theinclineatwhichthe
robotis traveling,andthuscannotdeterminethehorizontal
speedof travel. Furthermore,this informationis difficult to
deducefrom theGPSreadings;while altitudecanbedeter-
minedfrom GPS,thevalueis significantlylessreliablethan
latitudeandlongitudereadings.To compensatefor thisun-
certainty, thevariancesassociatedwith odometrywouldin-
creasegreatly. It is conceivablethatundertheseconditions
the extendedKalmanfilter even with the mechanismsfor
handlingnon-stationarityin GPSsignalquality will beun-
ableto convergeon thecorrectlocationandheadingof the
robot. However, theadditionof an inertial navigationsys-
tem (INS) with six degreesof freedomwould aid in cor-
recting theseerrors. We would needto constructa new
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Figure3: Trajectorieswith EKF fusionof GPSandodom-
etryusingstatic ^c& .
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Figure4: Trajectorieswith EKF fusionof GPSandodom-
etry usingdynamic ^ & thataccountsfor non-stationarities
in GPSdataquality.

EKF thatfusesodometry, GPSandINS dataappropriately.
Sincethe Rice campusis relatively flat, our experimental
resultsdo not reflectthis problem.

5 Discussion and Conclusions

Our work builds on several existing piecesof work in
designingmechanismsfor fusing odometryandGPSdata
for localizing outdoormobile robots. The idea of using
shorttermlocalizationbasedondeadreckoningwhenGPS
datais availablein severalpapersincluding[6, 1, 12]. The
useof extendedKalmanfiltering is proposedin [6]. How-
ever, they advocatetheuseof adualcontrollerwhereatany
giventime, oneof a pureGPSlocalizeror a Kalmanfilter
that fusesgyro andodometrydatais used. For our prob-
lem, combiningtheGPSdatawith odometryusingdiffer-
ent measurementerror covariancematricesthat track the



non-stationaritiesin the quality of the GPSsignalproved
to be the more effective technique. The useof differen-
tial GPS(RTK GPS)is advocatedin [3]; we believe their
techniquecanalsobenefitfrom our schemesfor handling
non-stationaritiesin theGPSsignalquality.

Our currentwork is in extendingthe rangeof the tour
to go beyondtheEngineeringQuadrangleto cover therest
of theRiceUniversitycampus.Thenew routewill require
the robot to crossa busy campusstreetandwe arework-
ing on mechanismsto ensureour robot’ssafetyduringthis
crossing.We arealsoincorporatingvoicerecognitionwith
dynamicgrammarsto enableour robot to recognizeques-
tionsput to it by membersof tourgroupsandto respondin
a location-awaremannerto suchquestions.
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