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Abstract

This paperdescribesrobustlocalizationmethodfor an
outdoorrobotthat givestoursof the Rice University cam-
pus. The robot fusesodometryand GPS data using ex-
tendedKalmanfiltering. We proposeand experimentally
testa techniquefor handlingtwo typesof non-stationarity
in GPSdataquality: abruptchangesn GPSpositionread-
ingscausedy sudderobstructiongo line of sightaccesso
satellites,andmore gradualchangesausedy disparities
in atmosphericonditions. We constructmeasuremengr-
ror covariancematricesndexedby numberof visible satel-
lites andswitchtheminto thelocalizationcomputatiorau-
tomatically The matricesarebuilt by samplingGPSdata
repeatedlhalongtherouteandareupdatedcontinuouslyto
handledrift in GPSdataquality. We demonstrate¢hatour
approactperformsbetterthanextendedKalmanfilters that
useonly a singleerror covariancematrix. With a GPSre-
ceiverthatdelivers1 meteraccurag, we have beenableto
localizegoodto 40 cm througha challengingroutein the
EngineeringQuadranglef Rice University.

1 Introduction

Our goalis to build an autonomousnobile robot that
givestours of the Rice University campus(seeFigure 2).
While there are mary successfuimobile robots that au-
tonomouslynavigateandexploreindoor ervironmentdike
museumg13, 10] andoffices[8] over extendedperiodsof
time, thereare far fewer examples in the outdoorarena,
most being researchprototypes[1, 3, 11, 12, 6]. There
areseveralreasonsvhy the designof autonomousutdoor
robotsis challenging: outdoor ervironmentsvary more
thanthoseindoors,and we do not have good characteri-
zationsfor them, and robust solutionsto the localization
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1The new grassmawing robotsguidedby externally placedwires at
lawn boundariesand aroundobstaclesare not considerechere,because
they requirethe environmentto beinstrumentedor them.

problemfor outdoomrobotsarestill underdevelopmentWe
believe thatthe pursuitof the engineeringgoal of building
an autonomousutdoortour guide for Rice University, a
tree-filled oasisin the urbanmetropolisof Houston,will
helpusmalke progresonthe scientificgoal of characteriz-
ing outdoorervironmentsfor which reliable mobile robot
navigationalgorithmscanbedesignedandbuilt.

This paperdescribeshelocalizationalgorithmsusedby
our robot, their integrationwith the navigationalgorithms,
andpresentgreliminary experimentalresults. An impor-
tant groundrule we followed to ensureportability of our
methodswasto allow no instrumentatioror modification
of our environment. A key issuefor outdoorrobotsis the
choiceof sensordor performinglocalization. While in-
door robot localizationalgorithmsmake extensie use of
sonarg[14, 13, 5], they are virtually uselessfor outdoor
robots, as the ervironment consistsmostly of vast open
spacesvherethesensorseturnnovalid rangeinformation.
They are,however, useful(togethemwith bumpsensorsjor
local obstacleavoidance. With a view to determiningthe
smallestsetof sensorsmeededo provide robust localiza-
tion andnavigationin acampuservironment,we have cur-
rently limited oursehesto datafrom odometrywhich pro-
videslocationandorientationinformationrelativeto a start
position,and GPS,which providesglobal positioningand
headingdata. Our objective is to understanaxperimental
limits ontheaccurag of localizationachievableusingjust
thesetwo sourcesf information?

Our robot needsto give toursthroughoutthe day with-
out requiringhumanintervention. It thereforerequireslo-
calizationaccuracie®f at least40 cm at all timesduring
its entire operation. This is abouthalf the width of the
walkwaysaroundour campus.Unlike office ervironments
in which shortterm localizationerrorsare generallynon-
fatal, small errorscanhave catastrophiconsequence®r
our outdoorrobot e.g., falling off of a curb or missinga
sidewvalk androlling ontoa busy street.

2We planto addvision to our robotto augmenbdometryandGPSfor
localization.



It is well known thatdead-reckningusingpure odom-
etry is not a very robust localizationtechniquefor robots
[2, 6] thatcover long distancesandarein continuousop-
erationover extendedperiodsof time. This is becauser
rorsin odometryaccumulatever time dueto inaccuracies
in the kinematicmodel, precisionlimitations of encoders,
andunobserablefactorslik e wheelslippageghat are not
accountedor in the kinematicequationsKalmanfiltering
of carefully calibratedodometricdatawith statemeasure-
mentsignalsprovided by a redundansensor(e.g.,a gyro-
scopeanprovide significantimprovementg6]. However,
they still cannoton their own provide localizationaccura-
ciesof 40 cm over extendedperiodsof time, asneededor
our problem.

GPSis now a standardechniquefor obtainingabsolute
position information for outdoorrobots[6, 3, 11, 1, 12].
Our GPSrecever (an Invicta 210S)can provide position
information accurateto abouta meter(1oc = 100c¢m). It
alsoprovidesestimationsof the currentheadingby using
the Dopplershift of the satellitesignals. The accuray of
thisestimatedependgreatlyonthespeedatwhichtheGPS
antennas moving, but at the top speedof our robot, we
have determinedhat1o = 1.84 radians.Differential GPS
systemdike RTK GPScanprovide centimetelevel reso-
lution, howeverthey costanorderof magnitudemore,and
their performances very sensitve to the numberof visi-
ble satellites[3]. GPSinformationaloneis not sufficient
to achievse the localizationaccuraciemneededfor our ap-
plication, becausehe tour guide’s routeon our campusis
largely coveredwith treesandrunsvery closeto tall build-
ings which obstructline of sightaccesgo the GPSsatel-
lites. Further atmosphericconditionsdegradethe quality
of the GPSsignalsin varyingwaysat differentlocations.

In this paper we adapt ExtendedKalman Filtering
(EKF)[7, 9] usedin [6, 3, 12] for mobilerobotlocalization
to fuseodometryandGPSdata.Ourinnovationis theaddi-
tion of a dynamicmechanisnto handlenon-stationarities
in GPSdataquality. Becauseof the rapid changein qual-
ity of GPSdatawhenthe view of satellitesis obstructed
in anurbancampusenvironment the standarcapproacthof
usingasinglecovariancematrix to modelmeasuremersgr-
rorsin GPSdatais not adequate.This approachmecessi-
tatesartificially increasingvariancesmorethanis usually
needed causingslower cornvergenceof the Kalmanfilter.
If the data quality diminishessuddenly the Kalman fil-
ter doesnot accountfor the reductionin quality quickly
enoughandour robot performspoorly becausénaccurate
GPSdatais weightedtoo heavily. Corversely if our robot
gainsa line-of-sightpathto additionalsatellitesafter hav-
ing adaptedo a reducedjuality GPSsignal,theincreased
variancesausethe Kalmanfilter to not take advantageof
the higher quality data, so control errorsin our robot ac-
crueagain.We shaw thatby usinga finite numberof error

covariancematricedn differentGPSquality situationsgcre-
atingthemasneededandupdatingthemdynamically it is
possibleto handlechangesn GPSsignal quality quickly
andeffectively.

Thepaperis organizedasfollows: In Section2, we give
a brief descriptionof the tour guide task aswell the me-
chanicalandsensorconfigurationof our robot. We lay out
thebasicEKF algorithmuponwhich ourlocalizationalgo-
rithm is based.We thendescribethe extensionto the EKF
algorithmthatdynamicallyconstructsrrorcovariancema-
tricesto handlenon-stationaritie$n the GPSdataquality.
Section3 containsa brief discussionof issuesin design-
ing controlalgorithmsfor navigationthatusepositionand
headingestimategproducedby the localizationalgorithm.
In Section4, we provide detailsof our experimentsand
demonstrateghat the dynamic measuremengrror covari-
ancematrix generatiorhandlesrapid changesn GPSsig-
nal quality well. We concludewith a brief summaryof our
ongoingwork in designingmethodsfor humaninteraction
with ourrobot.

2 TheTour Guide Task and Robot
2.1 Thetask and therobot

Thetour guidetaskrequiresthe ability to navigatein a
dynamic,uninstrumentedyotentiallydangerougvehicular
traffic on streetssharpcurbs,moving obstaclesuchasan-
imalsandpeoplegetc.) urbanervironment.In addition,the
robot needsto interactwith atour groupin aninteresting
andinformative manner Interactionis tightly interwoven
with navigation: the robot needsto be aware of its loca-
tion so it canuseits location contect to answerquestions
appropriately

Our tour guiderobotis an ATRV Jr. from RWI Inc,
namedVirgil® (Figure 1). It is a four-wheeledrobot de-
signedfor outdooruseand comesequippedwith anarray
of sonarsand odometry We addeda GPSrecever used
typically in marine applicationswhich receves real-time
correctiondrom the CoastGuardstationat Galveston.We
alsoaddedtouch-sensitie bumpersfor obstacledetection
andavoidance. The wheelson the sameside of the robot
aremechanicallycoupled.Theraw encodetinformationis
notdirectly available,neitherdo we have accesgo thefull
kinematicmodelof therobotwhichis usedby theon-board
odometrycomputationto provide integratedmeasureik e
distanceraveledandchangen orientationin a givensam-
pling interval. Both odometricand GPSdataare sampled
at10Hzin ourrobot.

3Virgil is namedafterthe guidein Dantes Inferna



Figurel: Virgil: TheRicecampugourguide

2.2 Odometry

Beforeintegratingdatafrom differentsourceswe cal-
ibrated the odometry using the GPS receiver. Because
odometrymeasureshe numberof rotationsin the wheels
ratherthanthe actualdistancetraveled, several sourceof
error can accumulate. Largely, systematicerror is due
to tire size miscalculations:as the tires wear down, the
amountof lineardistanceraversedreducesn comparison
to the numberof rotationsthetirestravel. In addition,be-
causehetiresareconstantlybeingworn down, this analy-
sismustbe reperformedperiodicallyto estimatenew sys-
tematicerror values. This error can be directly compen-
satedfor by scalingthe commandsgyivento the drive sys-
tem. In addition, other sourcesof error suchas slippage
andsurfaceimperfectiongesultin arandomcomponento
theerrorwhosevariancecanalsobeapproximatedhrough
repeatedrials.

By traveling,accordingo odometryin straightlinesfor
fairly largedistance$20 meters)andcomparingheodom-
etry's resultsfor distancetraveledwith GPSdataaveraged
over 100 readingswe are ableto determineapproximate
valuesfor systematicand randomerrorsin odometry In
addition, to limit the effect of systematidnaccuraciesn
translatingGPScoordinatesnto local coordinateswe per
formedthe testfrom mary differentstartingpositionsand
headings.It is possiblethatthis methodreportsa slightly
higherthanactualrandomerrorratedueto GPSinaccura-
cies. To determineturning error, we follow a similar pro-
cedureof moving forward a distanceand using GPSdata
atthe endpointsof thatmovementto approximatehe cur
rent heading,using odometryto turn a presetangle,and
thenmove forward againto calculatethetrueangleturned
usingaveragedGPSdata. This is inherentlylessaccurate
than calculatingdistanceover a straightpath, but givesa
reasonablygoodapproximationof the true errors. Again,
becaus®f GPSinaccuraciesherandomcomponenin the
measurecerror will likely be larger thanthe true random
error.

After performing thesetests, we obsened that our
robot’s odometry consistently undermaneuered both

Movement | Systematicrror | RandomError
Translational -0.0290 0.0036
Rotational -0.0492 0.0589

Table 1: Systematicerrors and randomerror variances
measuredn odometryrelatedto the two typesof motion
supported.

while travelingin straightlinesandwhile turningasaresult
of the smallerthanexpectedsize of theworn tires. These
resultsare presentedn Table 1 asa ratio of error to dis-

tancetraveledfor 29 trials of boththetranslationabndro-

tationalmeasurementshich approximatesheactualerror.

Systematicerroris accountedor directly in the odometry
system,increasinghe robot’s perceptiorof how far it has
traveledby the appropriateratio, andrandomerroris han-
dledasuncertaintyin thedatafusionprocess.

2.3 Extended Kalman Filter

Kalmanfiltering is awell known techniqueor stateand
parameteestimation7, 9]. The standardkalmanfilter as-
sumesthat the controlledprocesss governedby a linear
stochastiadifferenceequation. An extendedKalman fil-
ter handlesnon-linearstochasticprocesse$y linearizing
aboutthe currentmeanandcovariance.

In the 2D outdoorrobotlocalizationproblem,the state
of therobotis its positionandorientation(z, y, ) in afixed
frameof referenceThe state(0,0,0)is the geographicen-
ter of the Rice campus(Baker Fountain). All (z,y) posi-
tionsaremeasuredn centimetersiorthandeastrelative to
this location, and the orientationd is the anglefrom due
north.

Therobot’s stateevolvesaccordingo thefollowing sys-
temof non-linearstochastidifferenceesquationsThestate
of thesystemattime k is (z, yx, 0% ). Thewheelencoders
yield, ateachsamplingperiodthetranslationu; alongthe
headingd;, andarotationug, . Theseequationselatethe
stateattime k£ + 1 to the stateattime k, andtheinternally
sensedranslationu, in the directiond, androtationug,
in theinterval betweertimesk andk + 1. Thezeromean
vectorw, = N(0; Q) representgnormally distributed)
noisein the stateevolution process.

Tpt1 = X+ cosOpug, + Wiy
Ykl = Yr + Sinbpusr + Wiy
0k+1 = Oy + Ug, + Wgo

Theseequationscanbe summarizedasfollows, where sy,
is the stateof the systemattime & anduy, = (usx,us, ) iS
the vectorobtainedfrom the encoderdor the periodfrom
timektotimek + 1.

Ske1 = J(Sk,ur, w)



We usethe GPSsignalto determinghe measuremergrror
betweerthe actualstateandthe internally computedstate
above. We modelthe measuremergrocessasfollows

2y = Sk + v

wherez;, isthemeasuremertf theactualstates;, attimek,
v, = N(0; Ry) is azeromeanmeasurementoisevector
Themeasuremerandprocessoisevectorsareassumedo
be independenbf oneanothey andto have normalproba-
bility distributionsrepresentetly thevectors);, andRy, of
variancedor thethreestatecomponentg;, y andf. There
is an importantsubtlety here causedby the fact that the
GPSdatais in a differentcoordinatesystemfrom the one
maintainedby our robot. We usethe equationsin [4] to
convertglobal GPScoordinatesnto local (Baker Fountain
relative) coordinates.Theseequationgerformvery accu-
ratetranslationgaking the curvatureof the earths surface
into accountandarein wide usein the agriculturalworld.
As aresult,we donotobsenrethelossof precisionin trans-
lating betweerocal andglobalcoordinatesiotedin [6].

We now shav the prediction and updatestepsin the
EKF which combinesnternalstate(odometric)andexter-
nal measuremer(GPS)data. Theequationgor thepredic-
tion stepare:

Sk1/k T (8k/k> ur,0)
Popik = AxPiiAr” + Qi

sk+1, Standgfor our predictionof thestatevectorfor time
k + 1 given internal sensorinformation from time £ and
knowledgeof the stateat time k. P/, is the a priori

estimateof the error covariancej.e. the covarianceof the
differencebetweenthe actualstateandthe statepredicted
on the basisof measurementsll time k. Aj is the Ja-
cobianof the processf(.) with respecto the statevector
s = (z,y,6). By differentiatingthe stateevolution equa-
tion with respecto s, we obtainthe following matrix:

1 0 —usin(O)
0 1 wuycos(O)
0 01

A, =

Notethat@}, is theprocessrrorcovariancematrixfor time
k. For ourrobot,thepredictionequationseduceto:

Sk+1/k F(sk/k,ux,0)
Pk = AcPunAf + Qx

Essentiallythesetwo predictionequationgprojectthe state
andcovarianceestimategrom time stepk to k + 1.

The updateequationscorrectthe stateand covariance
estimatesvith the measurement;,. m;, is the GPSread-
ing attime k£ corvertedinto thelocal coordinatesystemfor
the robot. We computethe Kalmangain K anduseit to

corrects and P asfollows. R;, is the measurememoise
covariancematrix.

K Piyi/k(Pryr/e + Rp)~!
Sk4i/k+1l = Skyi/k + K (M — Spy1/k)
(I = K) Py i

Pk+1/k+1 =

K is theweightallocatedto the stateanderror covariance
correction. The accurag of Ry determineghe effective-

nessof theEKF, andbecaus¢heaccuray of theGPSmea-
surementchangeshasedon a variety of factors,a single
predetermined;, in mary casesloesnotachieve goodlo-

calizationaccurag. Furthermorepecausehe accuray of

the GPSrecever canchangealmostinstantaneouslgsthe
robot Virgil passedelow a tree or neara building when
oneor moresatellitesareobstructedrom view, slowly up-

datingmeasuremerdrrorvarianceusingnew datapointsis

noteffective. If we do notmodelthetemporalvariationsin

the measuremengrror Ry, correctly thenthefilter will be
unableto respondquickly enoughto suddendeterioration
or suddenmprovementin GPSdataquality.

2.4 Handling non-stationarity in Ry,

Therearetwo kinds of changef Ry in time, thuswe
have developediwo schemeso handlethesechangesOne
changeoccursabruptlyandis causedy thenumberof vis-
ible satelliteschangingthe otheris moregradualandrep-
resentsa drift asatmosphericonditionsandotherfactors
affect signals.By analyzingthe GPGGANMEA stringre-
turnedby the recever, we candeterminewhenadditional
satellitesare acquiredor lost, and keepa distinct Ry, for
eachnumberof satellites. Over time, eachof theseval-
uesis updateddynamicallybasedon new data. We switch
betweentheseRy's as determinedby the numberof vis-
ible satellitesand are able to obtain much fastercorver-
genceto the true statethan by using a single measure-
menterror vectorwhich averageshemall. In additionto
the GPGGAstring,the GPSrecever supplieshe GPRMC
messageavhich providesthe currentdirection of travel of
the robot, but the accurag of this value variesdepending
on the speedof therobot. We attackthis problemusinga
similar methodof swapping R,’s dependingon rangesof
speedalmostcompletelyignoring datathatis readat very
low speed.

To handlethe secondkind of change we examinethe
evolutionof theerrorterm (my — sp41 /1) (Mg — skH/k)T
over N time stepsandcorrectRy, to approacttheaveraged
errorterm measuredver the N time steps. This process
tracksthe drift in Ry andyields bettercorvergenceprop-
ertiesfor the extendedKalmanfilter, asdocumentedn our
experimentakection.



3 Integration of localization with navigation

Ourlocalizationalgorithmprovidesestimatesf thecur
rentpositionandorientationof therobotin the campusco-
ordinateframecenterecht Baker Fountain.We specifythe
tourasalist of way pointsin thisreferencdrame.We have
built a simple proportionalcontrollerthat drivesthe robot
from the startpoint throughthe way pointsin orderof oc-
currence.This controllersenos on the differencebetween
the currentanddesiredpositionandorientation.Low level
obstacledetectionandavoidanceis performedwith sonars
andtwo bumpsensors.

The control correctionchoicewe explore is whetherto
turnin place(forward-speed- 0) to achieve a headingcor-
rection, or whetherto turn and move forward at the same
time. The correctionfrequeng controlsthe rate or con-
ditionsunderwhich correctve motor commandgturn and
speedpreissued.All of our controllersmale active useof
the stability of the Kalmanfilter stateestimatedo decide
whento issuecorrective actions. They wait for the confi-
dencein the stateestimatedo achiese a certainthreshold
(measuredby thedifferencean successie Kalmanfilter es-
timates)beforechangingturn andspeed.

Thefirst controllerwe built attemptsto simultaneously
reduce position and heading differences,and therefore
turnsasfastas possibleto reducethe differencebetween
currentanddesiredheadingwithout changingthe forward
speed.This controlleris very sensitve to choiceof theac-
tion confidencethreshold. If it is settoo high, the robot
continuesto move forward at its currentspeedn the cur-
rentdirectionfor alongerperiodof time. If therobotis off
courseto begin with, it movesfartherfrom the approved
path before correcting, and the correctionturn is larger.
Loweringtheconfidencahresholdresultsin agreatemum-
berof incorrectturnscausingsmallmovementsaway from
the desiredpath,with therobotdrunkenly weaving around
thedesiredpath.

To correctthis problem, we built a secondcontroller
identical to the first exceptthat it cuts forward speedto
zerowhile turning. For asettime intenval (half a second)t
turnstowardthe goal,reducingthedifferencebetweercur-
rentanddesiredheading.lt interleavesforwardmotion (to
reducedifferencebetween(z,y) locations)with in-place
turns (to reduceheadingdifferences). The advantageof
eliminating forward motion during turnsis that our skid-
steerrobot turns more accuratelyand stayscloserto the
plannedroute. However, the jerkinessof consecutie turn
andforwardmotionphasegroveddistractingfor peoplein
tour groups.

In our final and most successfulttempt,we returned
to making coursecorrectionsduring forward movement.
However, insteadof attemptingo reducethedifferencebe-
tweencurrentandgoal headingassoonaspossiblewe re-

Distance| Heading| ocading
UncorrectedsPS 1.16 1.69 1.58
EKF: Static Ry, 1.33 2.05 1.64
EKF: DynamicRy, 1.08 1.33 1.54

Table 2: For eachdata fusion algorithm used, this ta-
ble presentshe ratio of the distancetraveledto the total
straightline distanceof thetour aswell asthe averageand
standardleviation of thedifferencebetweerthe headingof
the straightline pathandthe headingchosenby the robot
controller

ducethe headingdifferenceslowly, causingthe robot to

gently arc its way to the goal state. By approachinghe

goal headingslowly, we reduceour relianceon knowing

theexactdifferencebetweerthecurrentandgoalheadings;
knowing the signandorderof magnitudeof the difference
suffices. This causedrifts and over-correctionsto dras-
tically reduceandresultsin smoothand fluid motion be-
tweenway pointson thetour.

4 Experimental Results

Theway pointsin thetour of the EngineeringQuadran-
gleareshawn in Figure2. Thisis a challengingroutethat
runscloseto severaltall buildings,large granitesculptures
andseveral rows of trees.In our experimentsve compare
the behavior of (1) a dual controllerthat usesGPSwhen
available,andodometrywhenit is not, (2) an EKF based
controllerthat fusesodometryand GPSdatawithout con-
sidering non-stationaritiesn the measuremengrrors, (3)
our EKF baseccontrollerthattracksandupdatesneasure-
menterrorcovariancesn time.

At particularlytroublingtimesfor the GPSrecever, the
first methodfalls backentirelyto odometry until GPSand
odometrycanbe resynchronizecccordingto averageve-
locity readings. The resultof this is that the robot some-
times travels without any GPSdatafor extendedperiods
of time, andlocalizationerrorsaccumulateuntil it is com-
pletely off course. The secondmethodworks well when
mary satellitesarevisible andthe quality of the GPSdata
is good.However, whensatellitesarelost, which oftenhap-
pensin thelaststretchof the tour, the robot’s ability to lo-
calize correctly degradessignificantly Tracking changes
in the measuremergrror covariancematricesdramatically
improves localization accuray, becausenaccurateGPS
datais weightedlessheavily with respecto odometryand
their combinationprovidesinformationthatis ableto keep
therobotwithin 40 cm of thedesiredroute.

Table 2 presentsesultsaveragedover threerunsof the
three methods. For eachmethodwe measurethe devia-
tion from a straightline path betweenthe way pointson



Figure 2: A top view of Rice’s EngineeringQuadrangle.

Thesculpturesn thegrassycentersaregiantgranitemono-
liths called45, 90, and 180, correspondingo their angles
of inclination. The tour pathis given by pointsa through
h.

thetour. We take the ratio of the lengthof the actualpath
coveredto thelengthof the shortespathbetweertheway

points.We alsoprovidethe meanandstandardieviation of

the differencedn heading(sampledat 10Hz) betweernthe

trueheadindoetweertwo way pointsandthe orientationof

the robot betweenthosetwo way points. Thesetwo mea-
suresgive us a senseof the accurayg of localizationand
thesmoothnessf the controlpoliciesthatusethelocaliza-
tion measureskigures3 and 4 shav theactualtrajectories
of the robot over the above threerunswith staticand dy-

namicRy’'s. Theserunsweregatheredvhenthevariability

in the GPSdataquality wasnot ashigh, sothe difference
betweerthe two approachesurfacesin the consisteng of

thetrajectorieggeneratedvith dynamicRy,’s.

It should be noted, however, that in areaswith fairly
steepor inconsisteninclines, our robot’s odometryis in-
capableof determiningheangleof theincline atwhichthe
robotis traveling,andthuscannotdeterminghehorizontal
speedf travel. Furthermorethisinformationis difficult to
deducdrom the GPSreadingswhile altitudecanbedeter
minedfrom GPS thevalueis significantlylessreliablethan
latitudeandlongitudereadings.To compensatéor thisun-
certainty thevariancesssociateavith odometrywouldin-
creasayreatly It is concevablethatundertheseconditions
the extendedKalmanfilter even with the mechanismdor
handlingnon-stationarityn GPSsignalquality will beun-
ableto corvergeonthe correctlocationandheadingof the
robot. However, the additionof aninertial navigationsys-
tem (INS) with six degreesof freedomwould aid in cor
recting theseerrors. We would needto constructa new
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Figure3: Trajectorieswith EKF fusionof GPSandodom-
etry usingstatic Ry,.
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Figure4: Trajectoriesvith EKF fusion of GPSandodom-
etry usingdynamicR;, thataccountdor non-stationarities
in GPSdataquality.

EKF thatfusesodometry GPSandINS dataappropriately
Sincethe Rice campusis relatively flat, our experimental
resultsdo notreflectthis problem.

5 Discussion and Conclusions

Our work builds on several existing piecesof work in
designingmechanismgor fusing odometryand GPSdata
for localizing outdoor mobile robots. The idea of using
shorttermlocalizationbasen deadreckoningwhenGPS
datais availablein severalpapersncluding[6, 1, 12]. The
useof extendedKalmanfiltering is proposedn [6]. How-
ever, they adwocatetheuseof adualcontrollerwhereatary
giventime, oneof a pure GPSlocalizeror a Kalmanfilter
that fusesgyro and odometrydatais used. For our prob-
lem, combiningthe GPSdatawith odometryusingdiffer-
ent measuremengrror covariancematricesthat track the



non-stationaritiesn the quality of the GPSsignal proved
to be the more effective technique. The use of differen-
tial GPS(RTK GPS)is adwcatedin [3]; we believe their
techniquecanalsobenefitfrom our schemegor handling
non-stationaritiein the GPSsignalquality.

Our currentwork is in extendingthe rangeof the tour
to go beyondthe EngineeringQuadrangldo covertherest
of the Rice Universitycampus.The new routewill require
the robotto crossa busy campusstreetand we are work-
ing on mechanism$o ensureour robot’s safetyduringthis
crossing.We arealsoincorporatingvoice recognitionwith
dynamicgrammargo enableour robotto recognizeques-
tionsputto it by membersf tour groupsandto respondn
alocation-avaremannetto suchquestions.
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