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Extended Abstract

Since Luca Cardelli wrote a seminal paper [3] on the semantics of inheritance in 1984, program-

ming language researchers have constructed a variety of structural models of object-oriented

programming (OOP) founded on Cardelli’s work. Since Cardelli approached OOP from the

perspective of functional programming, he identified inheritance with record subtyping—an el-

egant choice in this context. Although Cardelli did not formally define inheritance, he equated

it with record extension and proved that for a small functional language with records, variants,

and function types–but no recursive record types–that syntactic and semantic record subtyping

were equivalent. William Cook et al [4] subsequently added ThisType and recursive record

types, narrowing the typing of this in inherited methods, and reached a profoundly different

conclusion: inheritance is not subtyping.

Meanwhile, object-oriented (OO) program design emerged as an active area of research

within software engineering, spawning class-based OO languages like C++, Java, and C#,

which strictly define inheritance in terms of class hierarchies. In these languages, subtyping is

identified with inheritance. In contrast to Cardelli’s expansive formulation of inheritance based

solely on record interfaces (sets of member-name interface pairs)1, these languages define the

type associated with a class C as the set of all instances of C and all instances of explicitly

declared subclasses of C. Simply matching the signatures of the members of C–as in record

subtyping–is insufficient.

It is easy to show that record subtyping is too weak to capture the notion of inheritance

in nominally typed OO languages. Consider classes Set and MultiSet intended to represent

mathematical sets and multi-sets respectively. They can easily have exactly the same visible

members with exactly the same types. Assume that Set and MultiSet are defined indepen-

dently but have exactly the same visible members. If objects simply denote records, then each

class is a subtype of the other, but in a nominal OO language, no such subtyping relationship

exists between the two classes. In nominal OO languages, objects are more than mere records.

1Since Cardelli excluded recursive types, every interface in his language can be expressed purely in terms of

type constructors applied to primitive types.
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In Cardelli’s semantics and its successors based on functional programming models, the

meaning of a class only depends on the members of the class (including inherited members),

not on the inheritance hierarchy used to define the class. This paper dicusses the implications

of a new approach to defining the semantics of OO languages that embeds in each object the

signature of the inheritance hierarchy above it. In contrast to record-based semantics, our new

approach completely reconciles inheritance and subtyping among classes: a class B is a subtype

of a class A iff B inherits from A.

In statically-typed functional languages based on the simply typed lambda-calculus, the

issue of subtyping does not arise: every data value belongs to a unique type. Even when such

a language is generalized to support parametric polymorphism [9], every value belongs to a

unique monotype (unquantified type).

Object-oriented languages introduce the idea that composite values (often called records

or structures in functional languages) can belong to multiple monotypes. For example, a

ColorPoint object with fields x: Number, y: Number, color: Color can have type Point

which omits the color field as well as type ColorPoint. In structural OO languages, object

types are based simply on the interfaces of objects: the names and types of their visible record

members. Hence, ColorPoint is a subtype of Point even when it is separately defined without

use of inheritance. In nominal OO languages, object types are based strictly on the inheritance

structure specified in the program: the type associated with class B is a subtype of the type

associated with class A iff the definition of B explicitly inherits from the definition of A. If object

values do not include inheritance information, this restricted definition of subtyping appears

capricious. But OO software developers think of an object in the context of its class hierarchy

and the contracts associated with its class members, which are inherited along with the corre-

sponding class members. For example, in Java, the interface Comparable<T>, consisting only

of the method int compareTo(T t), has a contract asserting that compareTo defines a total

ordering on T; an arbitrary class with a method int compareTo(T t) generally does not obey

this contract. When a programmer asserts that a class C implements Comparable<C>, he is

asserting that the compareTo defines a total ordering on T.

In mainstream OO design, subtyping conforms to the Contract Presevation (CP) property:

types are characterized by behavioral contracts and every subtype B of a type A obeys the

contracts of the parent type A. The earliest formulation of this principle, proposed by Liskov in

1988 [7], was expressed in terms of the substitutability of objects, which was technically prob-

lematic, perhaps dissuading researchers in programming theory from giving it much credence.

The principle is still called the Liskov Substitution principle in most software engineering con-

texts. A subtype can augment the contracts inherited from its parent type, but the inherited

contracts still apply as well. Of course, no decidable type system can fully capture program

behavior since any non-trivial aspect of program behavior is undecidable by Rice’s theorem. In

practice, a decidable type system should perform static checks that help programmers confirm

that their code obeys CP.

In nominal OO languages like Java and C#, the static type system identifies subtyping with
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inheritance: the type corresponding to class C consists of all instances of C and all instances of

subclasses of C, which by definition inherit from C. Hence, the type for class B is a subtype of

the type for class A iff B inherits from A. In writing the code for a subclass, the programmer

is responsible for confirming that instances of the class conform to the contracts for all super-

classes. The preservation of such contracts is a pillar of good OO design. For this reason and

to support mutability of object fields, the input types in the signature of an overriding method

typically must exactly match those in the overridden method.

According to folklore among programming language researchers, the identification of sub-

typing and inheritance in mainstream OO languages like Java and C# is misguided, despite

the fact that simple versions of these type systems have been proved sound [5, 6] relative to

operational semantics for these languages. In earlier work [1], we presented denotational model

of OOP, dubbed NOOP, akin to Cardelli’s record model that justifies the typing conventions in

mainstream OO languages and breaks typing rules based on record subtyping. In other words,

given what we believe is a proper model of mainstream nominal OOP, subtyping is inheritance

and the usual structural typing rules are unsound.

The key idea in the construction of NOOP is to define the meaning of an object in class C

as a pair consisting of a record (as in structural models) plus the signature closure for class C.

A signature s is a triple consisting of a key class name C, a (possibly empty) set of superclass

names, and a set of syntactic types for the visible members of C. A signature environment se is

a finite set of class signatures where no two key class names are the same. Hence, a signature

environment determines a function mapping a finite set of class names to signatures. A signature

environment is closed iff every class name that appears anywhere in the environment appears as

a key class name. In other words, every class that is referenced in the environment is defined in

the finite function corresponding to the environment. A signature environment se is a signature

closure for class name C iff (i) se is closed, (ii) se defines the name C, and (iii) se only defines

the names in the transitive reference closure of C.

From the preceding definitions, we deduce that a signature closure for class name C is a

signature environment consisting of the transitive closure (under class reference) of the singleton

set consisting of a signature for class name C.

For the details on how to construct NOOP, see [1] and [2].

It is straightforward to define a syntactic relation between class signatures called subsigning:

the class signature s1 subsigns the class signature for s2 iff the information in s1 includes the

information in s2 and both signatures are well-formed. The details of the construction are given

in [1]. We identify subsigning with inheritance. In a nominal OO program P, class B inherits

from class A iff the signature closure for A subsigns the signature closure for B.

For each class C in a program P, we can define the weak ideal [8] of objects consisting of

all objects with signature matching the signature of C in P and all objects in classes with

signatures that subsign the signature of C. This weak ideal includes the instances of all possible

classes extending C. Moreover, it is not difficult to prove that subsigning implies subtyping.

The proof of this property appears in [1]. Hence, in nominal OO languages, inheritance implies

subtyping.
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