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ABSTRACT 
Concurrent programming is becoming more important due to the 
growing dominance of multi-core processors and the prevalence 
of graphical user interfaces (GUIs). To prepare students for the 
concurrent future, instructors have begun to address concurrency 
earlier in their curricula. Unfortunately, test-driven development, 
which enables students and practitioners to quickly develop 
reliable single-threaded programs, is not as effective in the 
domain of concurrent programming. This paper describes how 
ConcJUnit can simplify the task of writing unit tests for multi-
threaded programs, and provides examples that can be used to 
introduce students to concurrent programming. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent programming.  
D.2.5 [Software Engineering]: Testing and debugging – Testing 
tools. 
K.3.2 [Computers and Education]: Computer and information 
science education – computer science education.  

General Terms 
Reliability, Languages. 

Keywords 
CS education, Java, JUnit, unit testing, concurrent programming, 
tools, software engineering. 

1. INTRODUCTION 
In test-driven development, tests are written for a unit of code 
before the code itself is written, and all tests must succeed before 
a new revision can be committed to the code base, facilitating the 
early detection and repair of program bugs [7]. This approach to 
software development is steadily gaining popularity both in 
computer science education [6] and industrial practice [1][13].  

Unfortunately, unit testing is much less effective for programs 
with multiple threads of control than for sequential (single-
threaded) programs. The importance of concurrent programming, 
however, is rapidly growing as multi-core processors replace 

older single core designs. To exploit the power of these new 
processors, programs must run several computations in parallel. 
Unless there is a breakthrough in processor design or language 
implementation technology, writing and testing concurrent code 
will become a skill that all software developers must master. 
Several schools have already responded to this trend and 
introduced concurrent programming concepts early in their 
curricula [2][3]. 

Furthermore, multi-threading not only occurs in applications 
designed to exploit multi-core CPUs. GUI frameworks like 
AWT/Swing and SWT access components and react to user input 
in a separate event thread. As a result, most applications with 
GUIs already involve multi-threading. 

Developers of large Java applications like DrJava [11] have 
identified two obstacles to applying test-driven development to 
concurrent programs: (i) the standard unit testing frameworks 
make it easy to write bad tests and (ii) thread scheduling is non-
deterministic and machine-specific, implying that the outcome of 
a test can change from one run to the next [12]. 

Test-driven design increases programmer confidence [14], which 
is especially important in introductory programming courses. The 
fact that tests with failed assertions may succeed is particularly 
troubling, because it could give students a false sense of security. 
It is therefore crucial to identify how concurrent unit tests may 
report false successes and what can be done to address this issue. 

Contributions In this paper, we present a course module 
introducing concurrent Java programming, which is suitable for 
inclusion at the beginning of a software engineering course that 
only presumes the CS 1/2 sequence as prerequisite. In this 
module: 

1. We identify the shortcomings of the standard JUnit [8] 
framework (and its competitors [15]) in the context of 
concurrency and describe how an extension of JUnit called 
ConcJUnit [9] remedies these problems (Section 2). 

2. We present a series of small examples that elucidate common 
problems in concurrent programming. First, we study a 
trivial program that increments a counter from multiple 
threads to stress the importance of atomicity when 
performing operations on shared data (Section 3). Next, we 
write and analyze a program that requires access to two 
pieces of shared data, introducing the possibility of deadlock 
(Section 4). To assess the students’ understanding of the 
covered topics, we assign the implementation of a bounded 
buffer and a readers-writer lock as homework (Section 5). 

3. We discuss why concurrent programs remain difficult to test 
because of nondeterministic thread scheduling (Section 6). 
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2. IMPROVING TESTING FRAMEWORKS 
All popular unit testing frameworks for Java including JUnit 
behave pathologically with regard to concurrency: failed 
assertions and uncaught exceptions in threads other than the main 
thread are ignored and do not cause a test to fail. The unit test in 
Figure 1, for instance, succeeds even though the child thread 
unconditionally calls JUnit’s fail() method. 

Inexperienced programmers unfamiliar with this pathology 
typically write unit tests for multi-threaded units of code that 
report success when assertions in auxiliary threads fail. Even 
experienced programmers may fall prey to this problem when 
they move code out of the main thread. The AWT/Swing and 
SWT GUI frameworks, for example, mandate that GUI 
components and the associated documents be accessed from the 
event thread. A unit testing harness is supposed to provide a rigid 
foundation for refactoring, but fails to do so if thread boundaries 
are crossed. 

The unit test in Figure 1 reveals another design flaw in JUnit: 
even when a test creates an exception handler for a child thread, 
there is no guarantee when the child thread fails that the test has 
not already ended and falsely reported as a success. JUnit does not 
warn if some child threads spawned in a test do not terminate on 
time.  

 A well-written test ensures that all child threads have ended 
before the test outcome is determined. The most common ways to 
achieve this property are (a) using Thread.join(), (b) using 
Object.wait() and Object.notify(); or (c) by monitoring a 
shared volatile variable in a busy-loop. While option (c) is 
usually avoided for performance reasons, both (a) and (b) can be 
efficiently used to control thread lifetimes. These two options, 
shown1 in Figure 2 and Figure 3, are equivalent as long as the 
child thread terminates immediately after the call to notify(). 

However, only the first option, using join(), ensures that the 
other thread has truly terminated. To support robustness under 
refactoring, a well-formed unit test should require that all child 
threads are joined with the test’s main thread. This action can be 
done directly, with the main thread invoking join() for all child 
threads, or indirectly, through the transitive property of join(), 
as long as all join operations together ensure that each child thread 
terminates before the test ends [12]. 

2.1 Unit Testing with ConcJUnit 
ConcJUnit is an open-source project designed as a replacement 
for JUnit. Since it is backward-compatible with JUnit, replacing 
the junit.jar file with the appropriate version of ConcJUnit 
enables support for concurrent unit testing while preserving 
existing testing behavior. 

ConcJUnit installs a default exception handler for all child threads 
spawned in a test, as well as for the AWT/Swing event thread. 
The framework can therefore properly detect uncaught exceptions 
and failed assertions in any thread. When run with ConcJUnit, the 
test in Figure 1 fails as expected. 

ConcJUnit also tracks all child threads and causes the test to fail if 
any of them are still alive when the main thread terminates. To 
help the developer determine which threads these are, ConcJUnit 
                                                                    
1 join() and wait() may resume spuriously (§17.8.1 JLS [4]).  

For brevity, the loop necessary to handle this has been omitted. 

records the source location where each child thread is started and 
reports this information for any thread that does not properly 
terminate. For example, in Figure 1, ConcJUnit reports that the 
thread started in line 8 did not terminate. 
Furthermore, ConcJUnit analyzes the join operations that are 
performed and issues a warning when a child thread terminates 
but is not absorbed by a join. For instance, for the test in Figure 4, 
ConcJUnit reports that the thread started in line 5 terminated, but 
only because of the vagaries of thread scheduling. 

The analysis of join operations is conservative and enforces the 
policy that all child threads must be joined with the main thread. 
As a result, ConcJUnit will emit a warning for some correctly 
synchronized tests, such as the one in Figure 3 employing wait() 
and notify(). At the programmer’s option, these warnings can 

1. public void testException() { 
2.   Thread t = new Thread() { 
3.     public void run() { 
4.       // should cause failure but does not 
5.       fail(); 
6.     } 
7.   }; 
8.   t.start(); 
9. } 

Figure 1: Test Should Fail But Does Not 

1. public void testWithJoin() { 
2.   Thread t = new Thread() { 
3.     public void run() { 
4.       // ... 
5.     } 
6.   }; 
7.   t.start(); 
8.   t.join(); 
9. } 

Figure 2: Lifetime Control Using Join 

1. public void testWithJoin() { 
2.   final Object sign = new Object(); 
3.   Thread t = new Thread() { 
4.     public void run() { 
5.       // ... 
6.       synchronized(sign) { sign.notify(); } 
7.       // no more code here 
8.     } 
9.   }; 
10.   t.start(); 
11.   synchronized(sign) { sign.wait(); } 
12. } 

Figure 3: Lifetime Control Using Wait/Nofity 

1. public void testException() { 
2.   Thread t = new Thread() { 
3.     public void run() { /* no op */ } 
4.   }; 
5.   t.start(); 
6.   Thread.sleep(5000); // long wait 
7. } 

Figure 4: Child Thread Gets Lucky 



be suppressed. In our experience, the conservative analysis is 
helpful, because it catches improperly synchronized tests. 
Moreover, it is easy to ensure that child threads terminate using 
join operations. 

Thread creation coordinates are helpful in analyzing uncaught 
exceptions and failed assertions in child threads as well. If a unit 
test fails in a child thread, ConcJUnit provides a stack trace of the 
failed child thread, as well as the stack trace of all ancestor 
threads up to the point where the child thread was started. In 
Figure 5, for example, the failure occurs in a named helper class, 
and it is not immediately obvious which thread failed, t1 or t2. 
The extended stack trace with the thread creation context, 
however, shows that the child thread was started in line 11; 
therefore, the failure occurred in thread t2. 

ConcJUnit has recently been integrated into the DrJava IDE, 
making it easy for beginners to use. Given a testing framework 
that is well equipped for multi-threaded programs, we 
subsequently discuss some small examples with our students. 

3. MULTI-THREADED COUNTER 
We explain that concurrency, while helpful for many tasks, 
improves performance when it is used to break down a 
computation into smaller pieces, which are processed in parallel 
by different CPU cores and then combined into a final value. 
Communication between threads is required to coordinate the 
assembly of the final value from the results produced by the 
individual threads. 

This communication is usually performed using shared data. To 
illustrate this technique, we present a very simple example: a 
computation that increments an integer counter 10 million times. 
We initially write a single-threaded test program for this task. At 
the end of the program, we assert that the counter has indeed 
reached the expected value. The source code for this unit test is 
given in Figure 6. After this test has been written, the students 
develop the code for the actual counter, shown in Figure 7. 

When multiple cores are available, it should be possible to 
distribute the work of incrementing the counter. Figure 8 shows a 
test program that spawns 10 helper threads, each incrementing the 
counter a million times. The test waits for all helper threads to 
finish (using the join() operation), and then asserts that the 
integer variable contains the expected number. To the students’ 
surprise, this test fails because the actual value of the counter is 
typically less than the expected value. More interestingly, the 
actual value changes from one execution to the next. 

To discover the cause of the failure, we ask the students to 
describe in detail what operations the expression count++; 
actually performs. They discover that, if one assumes addition can 
only be performed in a CPU register, the previous line can be re-
written in pseudo-code as 
 long register = count; 
 register = register + 1; 
 count = register; 

 Shown this way, it becomes evident that the increment expression 
is not atomic and may be interleaved with operations in other 
threads. If thread A first reads the counter, but then gets 
preempted by another thread B also incrementing the counter 
before A can write the changed value back to memory, then the 
work done by thread A is lost. Figure 9 shows one such 
problematic interleaving. 

1. public class MultiIncTest extends TestCase { 
2.   static final long N = 1000000; 
3.   static final int T = 10; 
4.   public void testMulti() throws Exception { 
5.     final Counter c = new Counter(); 
6.     Thread[] ts = new Thread[T]; 
7.     for(int i=0; i<T; ++i) { 
8.       ts[i]=new Thread() { 
9.         public void run() { 
10.           c.incNTimes(N); 
11.         } 
12.       }); 
13.       ts[i].start(); 
14.     } 
15.     for(Thread t: ts) t.join(); 
16.     assertEquals(T*N, c.count); 
17.   } 
18. } 

Figure 8: Multi-threaded Counter 

1. public class Counter { 
2.   public long count = 0; 
3.   public void incNTimes(long n) { 
4.     for(int i=0; i<n; ++i) { count++; } 
5.   } 
6. } 

Figure 7: Counter Implementation 

1. public class SingleIncTest extends TestCase { 
2.   static final long N = 10000000; 
3.   public void testSingle() { 
4.     Counter c = new Counter(); 
5.     c.incNTimes(N); 
6.     assertEquals(N, c.count); 
7.   } 
8. } 

Figure 6: Single-threaded Counter Test 

1. class Helper extends Thread { 
2.   boolean toFail; 
3.   public Helper(boolean b) { toFail = b; } 
4.   public void run() { if (toFail) fail(); } 
5. } 
6.  
7. public void testTCC() { 
8.   Thread t1 = new Helper(false); 
9.   Thread t2 = new Helper(true); 
10.   t1.start(); 
11.   t2.start(); 
12.   t1.join(); t2.join(); 
13. } 
 

junit.framework.AssertionFailedError: 
    at TCCTest.Helper.run(TCCTest.java:4) 
    at ...parent called Thread.start()... 
    at TCCTest.testTCC(TCCTest.java:11) 

 
Figure 5: Thread Creation Context for Uncaught Exceptions 



This is an example of a data race. A data race occurs when 
(1) two threads access the same shared data, (2) at least one of the 
accesses is a write access, and (3) the accesses are unsynchronized 
(nothing prevents the order of the accesses from changing). The 
accesses in our example are the read access of B1 and the write 
access of A3: If A3 happens before B1, the program performs as 
expected; however, if B1 occurs before A3, as shown in Figure 9, 
then the increment performed by thread A is lost. The actual 
interleaving is nondeterministic and changes from one run to the 
next, which also explains why the final value of the counter 
varies. 

To eliminate this concurrency bug, we need to ensure that the 
instructions A1; A2; A3 cannot be interleaved with the same 
instructions in another thread. We do this by introducing a 
synchronized block requiring a lock object to be acquired before 
the increment operation may be performed. Threads compete for 
ownership of the lock object, and only the thread owning it is 
allowed into the synchronized block protected by the lock. The 
instructions A1; A2; A3 in the synchronized block are not 
atomic—thread A may be preempted by other threads—but once 
thread A has ownership of the lock object, no other thread may 
execute code protected by the same lock object. 

Once the students allocate a lock object as a field of the Counter 
class and enclose the increment operation in a synchronized block, 
the unit test will pass. 

private Object lock = new Object(); 
// ... 
synchronized(lock) { count++; } 

It is important to emphasize that the code needs to be protected by 
the same runtime object for the synchronized block to be 
effective; therefore, the lock object cannot be the value of a local 
variable in the incNTimes()method, because a local variable will 
be bound to a different object in each call. 

4. MULTI-THREADED BANK 
After the students have correctly synchronized the multi-threaded 
counter, we present them with another problem: in a concurrent 
simulation of a bank’s checking accounts, we would like to make 
arbitrary transfers from one account to another. This implies 
subtracting a value x from the balance of account A and adding it 
to the balance of account B. We use the notation (A→B, x) for this 
transfer. 

One drastic approach would be to have one lock object protecting 
the access to all accounts; however, this would eliminate 
concurrent transfers and essentially serialize the program. We 
would like to allow several transfers at the same time, as long as 
they don’t involve the same accounts. For instance, it should be 
allowed to execute the transfers (0→1, 10) and (2→3, 20) 
concurrently, but the transfer (1→2, 15) should block until 
accounts 1 and 2 are not in use anymore. 

Most students will suggest one lock object per account acquired in 
two nested synchronized blocks, as shown in Figure 10. It is 
worthwhile to point out that Java locks are re-entrant, i.e. if a 
thread has already acquired ownership of a lock, attempting to do 
so again is a no-op; therefore, it is not problematic if from == 
to. When a student runs a unit test that issues random transfers 
and checks that the total amount of money remains constant, it is 
almost certain that the program will “hang” after a few seconds 
without finishing all transfers. 

Unfortunately, it is difficult to determine what exactly happened 
without using additional tools such as a debugger. Adding a print 
statement after line 11 to show the values of from and to is not 
helpful because performing console output inadvertently 
synchronizes competing threads, eliminating the “hanging” 
problem in typical schedules. However, it is possible to run an 
additional diagnostic thread, shown in Figure 11, in the 
background and periodically print the current to and from values 
of all the transfer threads. When the students analyze the 
diagnostic output, they realize there is a cycle: For instance, one 
thread has claimed lock object 0 and needs lock object 1, while 
the other thread owns lock object 1 and requires lock object 0; 
neither thread can proceed. This situation is called deadlock. 

A1     long register1 = count; // register1==0 
   B1  long register2 = count; // register2==0 
A2     register1 = register1 + 1; // register1==1 
A3     count = register1; // count==1 
   B2  register2 = register2 + 1; // register2==1 
   B3  count = register2; // count==1 
       final result // count==1 

Figure 9: Problematic Interleaving 

1. final int NUM_ACCOUNTS = 5; 
2. final int NUM_TRANSFERS = 1000000; 
3. long[]    accounts = new long[NUM_ACCOUNTS]; 
4. Object[]  locks = new Object[NUM_ACCOUNTS]; 
5. Random    r = new Random(); 
6. class TransferThread extends Thread { 
7.   public int from, to; 
8.   public void run() { 
9.     for(int i=0; i<NUM_TRANSFERS; ++i) { 
10.       from = r.nextInt(NUM_ACCOUNTS); 
11.       to   = r.nextInt(NUM_ACCOUNTS); 
12.       synchronized(locks[to]) { 
13.         synchronized(locks[from]) { 
14.           int x = r.nextInt(100); 
15.           accounts[from] -= x; 
16.           accounts[to]   += x; 
17.         } 
18.       } 
19.     } 
20.   } 
21. } 

Figure 10: Nested Synchronized Blocks 

1. class CheckThread extends Thread { 
2.   public void run() { 
3.     while(true) { 
4.       Thread.sleep(5000); 
5.       for(TransferThread t: ts) { 
6.         System.out.println(t.from+"->"+t.to); 
7.       } 
8.     } 
9.   } 
10. } 
 
Output:   0->1 
          1->0 
 

Figure 11: Diagnostic Background Thread and Output 



It is interesting to note that there would be no deadlock if the 
second thread had also attempted to procure lock object 0 first. In 
that case, the second thread would just have to wait until the lock 
object is released again. The order in which the lock objects are 
sought is critical. This observation leads students to the realization 
that lock objects must be acquired according to the same global 
order. 

In our account transfer example, one way to ensure this is to 
always acquire the lock with the lower account number first: 

synchronized(locks[Math.min(to,from)]) { 
  synchronized(locks[Math.max(to,from]) { 

Any total order on lock objects will work. 

5. HOMEWORK ASSIGNMENT 
To assess the students’ understanding of the topics covered, we 
assign the implementation of a bounded buffer and a readers-
writer lock as homework. We provide unit test suites for both, 
allowing students to test their programs before they turn in their 
assignments. 

While we primarily grade for correctness, which among other 
things involves checking that the implemented methods are 
correctly synchronized, we also consider efficiency and fairness. 
For example, a bounded buffer implementation should maximize 
concurrency, yet avoid awakening more waiting producers or 
consumers than can be accommodated. For the readers-writer 
lock, readers and writers should be put in a queue to ensure that 
readers cannot starve writers.  

The assignment, along with the solutions, is available at [10]. 
Note that we also discuss synchronized methods, volatile and 
final variables, and the Object.wait(), Object.notify() 
and Thread.interrupt() methods before we assign this 
homework. Brief notes are contained in the assignment. 

6. NONDETERMINISTIC SCHEDULING 
We also inform our students that ConcJUnit can only detect 
problems in the schedule (the interleaving of operations on shared 
data) [12] chosen by the JVM for each test. ConcJUnit does not 
detect all defects that could occur; only those in the executed 
schedule are found. Even when a ConcJUnit test passes without 
failures or warnings, the same test could fail on the next run. 
Conventional unit testing assumes the program behavior is 
deterministic, a property that is lost for concurrent programs. The 
ordering of competing accesses to shared data is non-deterministic 
– even when those accesses are synchronized. The Java Memory 
Model [5] does not even ensure that program execution 
corresponds to a serial interleaving of its threads unless the 
program is free of data races. The simplest strategy for avoiding 
data races in Java is to mark all shared variables as final or 
volatile. Both dynamic and static data race detectors have been 
developed for Java [5], but this is still an active area of research. 
We are not aware of any lightweight, practical race detection tools 
suitable for use in the classroom or in routine software 
development. 
Since concurrent program execution is non-deterministic, a unit 
testing framework should ideally run each test under all possible 
schedules. Unfortunately, the number of possible schedules 
increases exponentially with the size of the program. A practical 

alternative to exhaustively running each test under all schedules 
might be to run each test under a set of schedules generated using 
heuristic methods. The design and construction of such a heuristic 
tool is one of our primary research interests. 

7. CONCLUSION 
As mainstream processor designs become more explicitly parallel 
and include more cores, concurrent programming will become 
more prominent in both computer science education and industrial 
practice. It is therefore essential to educate students about the 
challenges involved in writing efficient and reliable concurrent 
programs. Using ConcJUnit and the examples presented in this 
paper, instructors can temper the conflict between test-driven 
development and concurrent programming. 
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