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Abstract

Completing the Java Type System

by

Daniel Smith

The recent introduction of type variables and wildcards to the Java language,

while greatly enriching the expressivity of the type system, comes with prohibitions

against a variety of natural and useful expressions. Principal among these is the

declaration of type variables with lower (“super”) bounds, naturally motivated by

the support for such bounds on wildcards. We describe two variations on the Java

type system that enhance the current language specification with support for these

features. These variations must address the inference of method type arguments, and

in so doing improve the inference algorithm so that it is both sound and complete.

The first, simpler variation makes use of union types ; the second more closely matches

the current Java type system and formalizes its notion of “infinite types,” as produced

by static analysis.
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Chapter 1

Introduction

Version 3 of the Java Language Specification [2] introduces significant new con-

cepts to the Java type system. These new features, present in Java 5.0 and later,

include bounded type variables, parameterized class types, bounded wildcards as

type arguments, and intersection types.∗ Each of these constructs provides oppor-

tunities for greater expressivity in program code. There are, however, natural ways

in which these types might be used that are prohibited by the specification. In

particular:

• While wildcards and type variables produced by wildcard capture may have

upper (“extends”) and lower (“super”) bounds, declared type variables may

only have upper bounds.

• An intersection type may only be used in program code as the upper bound of

a declared type variable (and, implicitly, as the supertype of a declared class

or interface). It may not be used as the type of a variable or parameter, the

return type of a method, or even as a bound on a wildcard.

• A wildcard may not have both an upper and a lower bound.

• The null type (that is, the type containing only the value null) cannot be

∗ While a class or interface declaration’s list of superinterfaces in previous versions could be
considered an intersection type, the concept was not made explicit.
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expressed in any context, including as a type argument.

• A declared type variable may not be bounded by an array type.

Eliminating these restrictions is desirable from both a theoretical and a practical

standpoint. Theoretically, doing so merely interprets the current features at their

logical extent, providing a simpler yet more complete type system. Additionally,

the type argument inference algorithm can be defined correctly, rather than as a

heuristic analysis (as it is defined in Java 5†), only with improvements that allow for

more expressive types. Practically, there are useful kinds of programs that cannot

be accurately expressed under the current language rules.

This thesis begins with an overview in Chapter 2 of the relevant features of the

Java 5 type system, followed by a review of the evolution of these features. Chapter

3 provides a number of small examples to demonstrate the practical need for remov-

ing the restrictions listed above. Subsequently, the key contribution of this work

is presented: the formal definition of two type system variations. Both are power-

ful enough to handle the more general language that lacks the above restrictions.

Chapter 4 describes the first variation, the union-based system, which is simpler, but

relies on union types, a construct that is not part of Java 5. Chapter 5 covers the

second, the join-based system. This variation more closely matches Java 5, but is

more complex and restricted than the union-based alternative. For both variations,

† Here and subsequently, Java 5 is used informally to refer to the language defined in version 3
of the Java Language Specification [2] and implemented in platform releases J2SE 5.0 and Java SE
6.
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we describe an improved algorithm for local inference of method type arguments that

is both sound and complete. Finally, in Chapter 6 we compare Java 5 and the two

variations, and discuss how enhancing Java 5 would affect backwards compatibility.
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Chapter 2

Java 5 Type System

The following briefly presents the relevant features of the Java 5 type system.

Readers unfamiliar with parameterized types, wildcards, or intersection types in

Java should find it particularly useful. This is followed by a brief summary of the

historical evolution of these features and references to other related work.

2.1 Key Features

2.1.1 Bounded Type Variables

Type variables allow abstraction over types in Java classes and methods, much as

term variables allow abstraction over values. Java has always had subtype poly-

morphism—the ability to describe the type of a variable in terms of some shared

supertype of its anticipated instances. Type variables provide additional expressiv-

ity via parametric polymorphism, allowing a type to be described in terms of some

unknown type. For example, a type variable can be used to precisely describe the

return type of a method in terms of its parameters’ types:

<T> T pick(T t1, T t2) {

int x = new Random().nextInt();

if (x % 2 == 0) return t1;

else return t2;

}
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The invocation pick(12, 23) has static type Integer, while pick("hello",

"mom") has type String. Type analysis determines these typings by inferring an

argument that can safely instantiate the parameter T in each case. Often, the choice

of T is not so clear—we would expect pick(12, 3.14) to have type Number, for

example, while the type for pick(12, "hello") may simply be Object.∗

Type variables can be made more useful by declaring an upper bound for the

variable. All instances of the parameter then must by subtypes of that bound. For

example, the following variation on pick will only accept Numbers as arguments:

<T extends Number> T pickN(T t1, T t2) {

if (t1.doubleValue() < t2.doubleValue()) return t1;

else return t2;

}

Within the scope of the type variable T, type analysis may assume that the

unknown choice of T is a subtype of Number. Thus the expression t1.doubleValue()

is valid, as it refers to the doubleValue() method of the Number class.

2.1.2 Parameterized Class Types

In addition to methods, class and interface declarations may be parameterized by

type variables. In this case, the class or interface no longer corresponds to a single

type; rather, it is a type constructor describing an infinite number of types.

∗ In fact, due to the more complex structure of the inheritance tree in the java.lang package,
and given other features in the type system, more accurate type arguments can be inferred in each
of these cases.
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We’ll use a mutable box class as a standard example:

interface Box<T> {

T get();

void set(T v);

}

Given a Box<String>, we can invoke set() with a String argument to mu-

tate the box, and access the wrapped value—known by type analysis to have type

String—by invoking get().

Parameterized interfaces may be implemented by providing an instantiation of

the interface type in the implements clause:

class StringBox implements Box<String> {

private String val;

public String get() { return val; }

public void set(String v) { val = v; }

}

Not surprisingly, type arguments in the implements clause may be expressed in

terms of other type variables:

class GenericBox<S> implements Box<S> {

private S val;

public S get() { return val; }

public void set(S v) { val = v; }

}



7

Note, however, that there need not be a one-to-one correspondence between vari-

ables declared in a subclass and those of the superclass or superinterface:

class NumListBox<N extends Number> implements Box<List<N>> {

public List<N> get() { ... }

public void set(List<N> v) { ... }

}

Relationships between parameterized class types are determined by performing

substitution on the declared supertypes. StringBox is a subtype of Box<String>;

GenericBox<Float> is a subtype of Box<Float>; and NumListBox<Float> is a sub-

type of Box<List<Float>>. Note that, for the sake of type soundness, there is no

relationship between different parameterizations of the same class: a Box<Float>

is not a Box<Number>—while we can safely get() Numbers from a Box<Float>, we

cannot safely set() its contents to an Integer. For simplicity, this rule holds for

all classes, even where such relationships would make sense. An Iterator<Float>

cannot be treated as an Iterator<Number>, nor can a Predicate<Number> be used

where a Predicate<Float> is required.

To ease the migration from legacy Java code, the language supports the use of a

class name, without parameters, as a type. Thus the type Box is an approximation

to how the class might be declared in the absence of type variables, and all parame-

terizations are considered subtypes of Box. These improper types, termed raw types,

are best avoided in new code; we will generally ignore them here, except in later

formal treatment of the type system.
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In the presence of parameterized types, bounds on type variables can be much

more complex. For example, the bound of a variable S may be described in terms of

a variable T. These relationships may even be recursive:

<T extends Comparable<T>> void method1(T a, T b);

<T1 extends Convertible<T2>, T2 extends Convertible<T1>>

void method2(T1 a, T2 b);

Such bounds are quite useful at times, as these examples suggest. However, they

present significant challenges for type analysis.

2.1.3 Bounded Wildcards

Wildcards provide a means to describe a variety of instantiations of the same type

constructor, much as interfaces provide a means to describe a variety of different

concrete classes. The symbol ? represents an unknown type argument, possibly

constrained to fall beneath some upper bound. The add() method, below, is a

simple example of wildcard usage:

int add(Box<? extends Number> b1, Box<? extends Number> b2) {

return b1.get().intValue() + b2.get().intValue();

}
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Each argument to add can have type Box<Integer>, Box<Float>, or Box<Number>,

and the method is able to handle it appropriately. Of course, we could accomplish

the same thing without wildcards by using type variables:

<T1 extends Number, T2 extends Number>

int add(Box<T1> b1, Box<T2> b2) {

return b1.get().intValue() + b2.get().intValue();

}

This variation is a bit more verbose, and perhaps less natural to typical program-

mers. More importantly, in many circumstances, wildcards allow for fundamentally

more expressive types. There is no way to eliminate a wildcard from a mutable field,

for example:

class ClassBox implements Box<Class<?>> {

private Class<?> c;

public Class<?> get() { return c; }

public void set(Class<?> cl) { c = cl; }

}

If we attempt to remove the wildcard by introducing a type variable, we get a

very different class:

class ClassBoxT<T> implements Box<Class<T>> {

private Class<T> c;

public Class<T> get() { return c; }

public void set(Class<T> cl) { c = cl; }

}

Over the course of its lifetime, an instance of ClassBox may hold a Class<String>

at one point, and later a Class<Number>. A ClassBoxT, on the other hand, has T
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fixed at creation time. If we choose T to be String, the object can never wrap a

Class<Number>.

We described previously the invariant subtyping discipline used to relate instan-

tiations of the same type—Box<S> is a subtype of Box<T> if and only if S = T .

Wildcards provide a means to relax that constraint where needed. Thus, while

Box<Float> is not a subtype of Box<Number>, it is a subtype of Box<? extends

Number>. This relationship is called covariant subtyping. Naturally, there is a trade-

off: while we can get() a Number from a Box<? extends Number>, we cannot use

set() to change its contents to a different Number.

What if we want to set() the contents of a Box to a Number, but don’t care

about the get() method? In that case, we would like to use contravariant subtyping,

treating a Box<Object>, say, as a Box<Number>. Wildcards permit such relationships

via lower bounds, prefixed by the keyword super:

void copy(Box<? extends Number> b1, Box<? super Number> b2) {

b2.set(b1.get());

}

Type analysis of programs involving wildcards is achieved via a wildcard cap-

ture operation, which converts a parameterized type with wildcard arguments into

a type in which these arguments are replaced with fresh type variables. Thus, to

determine the method signatures in type Box<? extends Number>, we convert that

type to Box<Z1>, where variable Z1 is bound by Number. We can then determine by

substitution that get() returns a Z1 and, similarly, set() accepts a Z1. Since Z1 is
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a fresh name, we cannot produce a value of that type to pass to set() (with the

exception of the value null); on the other hand, given a Z1 returned by get(), we

can determine that the value is an instance of Number.

Lower bounds are handled similarly. The methods of Box<? super Number> are

those of type Box<Z2>, where variable Z2 is a supertype of Number. Note that this

requires a fundamental adjustment to our notion of type variables: they may now

have either an upper or a lower bound. In general, a type variable has both bounds;

by default, the lower bound is null and the upper is Object. The analysis can

thus show that the set() method of Box<Z2> can be safely called with a Number, as

Number is a subtype of Z2.

Capture is more powerful than these examples demonstrate: the fresh variable is

actually bounded both by the bounds of the wildcard and those of the corresponding

parameter. Thus, a NumListBox<?> may be treated as a NumListBox<Z3>, where

Z3 is a subtype of Number. A NumListBox<? super Integer> may be treated as

a NumListBox<Z4>, where Z4 falls somewhere between lower bound Integer and

upper bound Number. Where the wildcard and the parameter have unrelated upper

bounds—NumListBox<? extends Cloneable>, for example—we are faced with a

challenge: the capture of this type is NumListBox<Z5>, but what is the upper bound

of Z5? It must be both a subtype of Cloneable and a subtype of Number. Intersection

types, described in the next section, provide the expressiveness needed to describe

this bound.
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Finally, wildcards allow type argument inference to be more precise. Recall the

method pick, which accepts two arguments of type T and returns a value of that

same type. Given declarations Box<Integer> bi and Box<Runnable> br, what is

the type of pick(bi, br)? Previously, we would have said Object. With wildcards,

though, we can use Box<?> instead. Further, given declaration Box<Number> bn, we

can express the type of pick(bi, bn) with a bounded wildcard: Box<? extends

Number>. Note that this process is recursive—the upper bound is found by recur-

sively determining the common supertype of the two type arguments. This recursion

is not guaranteed to terminate, so the language has special facilities to support “infi-

nite” wildcards, or wildcards defined in terms of themselves. For example, Integer

implements Comparable<Integer>, while String implements Comparable<String>.

Thus, pick(23, "hello") has type Comparable<? extends Comparable<? extends

Comparable<...>>>. The existence of such types significantly complicates subtyping

and other type operations.

2.1.4 Intersection Types

The last major feature of the Java 5 type system is intersection types. The type A

& B describes all values that are instances of both A and B. For example, String is

a subtype of CharSequence & Serializable, because the class implements both of

these interfaces. The same is true for StringBuilder.

Intersections are only used in limited contexts. Programmers may describe the
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upper bound of a type variable with an intersection: <T extends CharSequence &

Serializable>. As mentioned previously, intersections are also useful in describing

the bound of a capture variable: the capture if NumListBox<? extends Cloneable>

is NumListBox<Z5>, where Z5 is a subtype of Cloneable & Number. Type analysis

also uses intersections to provide additional precision in type argument inference.

In the java.util package, classes LinkedList<T> and ArrayList<T> both extend

AbstractList<T>. They also both independently implement the Serializable

and Cloneable interfaces. Thus, given declarations LinkedList<String> ll and

ArrayList<String> al, the most precise type of pick(ll, al) is

AbstractList<String> & Serializable & Cloneable.

2.2 Historical Evolution and Related Work

Type variables and parameterized types in Java 5 were inherited from the GJ lan-

guage [1], an extension to Java designed to support generic programming. The

original specification for GJ describes familiar concepts and design choices that are

present in Java 5: a type variable may be bounded by a supertype; parameterized

types follow an invariant subtyping discipline; all parameterized types for a specific

class have a common “raw” supertype; variable and parameterized types are erased

at run time; and method type arguments may be locally inferred at the call site.

Wildcards arose out of research to extend GJ and similar languages with covari-

ant and contravariant subtyping. Thorup and Torgersen [7] initially proposed what
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has become known as use-site covariance—allowing programmers to specify when a

parameterized type is instantiated that a particular type parameter should be co-

variant. Igarashi and Viroli [4] extended this notion to include contravariance and

established a connection to bounded existential types. Their work requires support

for lower bounds on type variables, as described above, though these bounds are not

made expressible in type variable declarations. A joint project between the Uni-

versity of Aarhus and Sun Microsystems [8] extended these ideas and merged them

with the rest of the Java language, describing in particular how wildcards affect type

operations like type argument inference. Wildcard capture was first presented in this

paper.

The 3rd edition of the Java Language Specification (hereafter JLS) [2] enhanced

this prior work in a number of ways. Wildcard capture was refined to produce vari-

ables whose bounds include both those of the wildcard and those of the corresponding

type parameter. This enhancement produces a more useful capture variable, and may

have been deemed necessary in order to guarantee that types produced by capture are

well-formed (that is, the capture variable is within the declared parameter’s bound).

It has a number of interesting side effects: first, intersection types are required to

express the bound of some capture variables; second, a capture variable may have

both an upper and a lower bound; and third, a capture variable may appear in its

own upper bound. Perhaps spurred by the requirement for intersections produced by

capture, the language was also extended to allow intersection types as the bounds of
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declared type variables. In addition, the join operation (known as lub in the specifi-

cation) was defined to produce self-referential wildcards, an approach that had been

avoided in the Aarhus–Sun paper due to its complexity [8].

Torgersen, Ernst, and Hansen [9] complemented the specification with a formal

discussion of wildcards as implemented in Java, and presented a core calculus extend-

ing Featherweight GJ [3] with wildcards. Their calculus, for the sake of generality,

allows arbitrary combinations of upper and lower bounds on both declared type vari-

ables and wildcards. The paper, however, does not discuss how such generality might

affect the full Java language, and type argument inference in particular; nor does it

prove important properties of the calculus, such as type soundness or subtyping

decidability.

In fact, Kennedy and Pierce [6] have demonstrated the undecidability of sub-

typing algorithms for some object-oriented type systems that, like Java 5, contain

contravariance. Their work is inconclusive on the question of whether Java 5 sub-

typing is decidable, but raises the possibility that it is not. A problem arises when

recursive invocations of a subtyping algorithm are parameterized by increasingly

larger types. Fortunately, Kennedy and Pierce’s work suggests a straightforward so-

lution that can guarantee decidability in their simplified calculus: the class hierarchy

must not exhibit a property termed expansive inheritance. Class declarations of this

kind can be readily detected, and seem to serve no practical use, so it is reasonable

to prohibit them. We follow this strategy here; while the decidability results are not
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proven to extend to the full Java language, it seems likely that they will.

Finally, this thesis makes use of union types as a complement to intersections.

These are explored in the context of object-oriented languages by Igarashi and Nagira

[5]. While we do not argue here for first-class support for such types in the language—

doing so would conflict with our goal of minimizing language changes—we do allow

the type analysis to produce them, and Igarashi and Nagira’s argument for full

language support is worthy of consideration. Their work also suggests how the

members—fields, methods, and nested classes—of union types might be determined,

a topic which we do not explore here.
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Chapter 3

Motivation

Before presenting the formalisms that revise the Java 5 type system, we argue

for the practical merit in improving on the language’s deficiencies below.

3.1 Lower Bounds on Type Variables

Initially, it may seem that a lower bound on a type variable provides no useful

information for the programmer. For example, if T has a lower bound Integer and

a method declares a parameter of type T, the programmer must assume that, in the

most general case, T represents the type Object, and thus has none of the methods

specific to Integer.

This intuition, however, is only superficial. When the type T is nested, both upper

and lower bounds of the variable may be useful. The following method definition, not

legal in Java 5, demonstrates one reasonable use of a variable with a lower bound:

<E super Integer> List<E> sequence(int n) {

List<E> result = new LinkedList<E>();

for (int i = 1; i <= n; i++) { result.add(i); }

return result;

}

The sequence method is parameterized by E, a list element type. Depending on

the instantiation of E, the method can be used to create lists of Integers, lists of
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Numbers, or lists of Objects (among other things). In each case, the method will

add some number of Integers to the list before returning it.

Replacing E with a wildcard (eliminating the type variable declaration and re-

turning a List<? super Integer>) is not a satisfactory alternative: a client may,

for example, need to read from and write to a List<Number>, while a List<? super

Integer>’s get method returns Objects and its set method accepts only Integers.

Another alternative is to define E without a bound, but then it would not be possible

to add Integers to the list within the body of sequence.

Consider another example: the following implementation of Set, again not legal

in Java 5, contains any string that starts with "a", and allows clients to add additional

elements.

class ASet<E super String> implements Set<E> {

private Set<E> elts;

...

public boolean add(E o) {

boolean result = contains(o);

elts.add(o);

return result;

}

public boolean contains(Object o) {

boolean result = o instanceof String &&

((String) o).startsWith("a");

return result || elts.contains(o);

}

}

We could eliminate the lower bound on E (and the declaration of E altogether) by

defining the class with supertype Set<String>, but this workaround would not allow
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us to use the class in a context that requires adding to, for example, a Set<Object>.

As a third example, The Aarhus–Sun paper [8] notes that, where a name rep-

resenting a wildcard is needed, the equivalent of an existential-type open operation

may be performed by invoking a polymorphic method.∗ For example, it is possi-

ble to shuffle (both read from and write to) a List<?> by invoking a method with

signature <E> void shuffle(List<E> l). This strategy is useful for unbounded

and upper-bounded wildcards, but cannot work for lower-bounded wildcards, since

Java 5 prohibits the declaration of a corresponding lower-bounded type variable.

This problem is a fundamental deficiency in the language’s support for wildcards: a

“handle” or witness for certain wildcards is simply inexpressible without the loss of

information about the wildcards’ bounds.

The JLS [2] indirectly provides some insight into the language designers’ motiva-

tion for restricting type parameter declarations in this way. While discussing lower

bounds on wildcards, it implies that allowing lower bounds on method type parame-

ters would make type inference for these methods impossible: “Unlike ordinary type

variables declared in a method signature, no type inference is required when using

a wildcard. Consequently, it is permissible to declare lower bounds on a wildcard”

(4.5.1). We will demonstrate that this reservation is unnecessary—type inference

can be successfully defined in the presence of methods declaring type variables with

lower bounds.

∗ Existential types are traditionally used to define an API in terms of a private, unnamed type.
Clients of the API can use it by invoking an open operation, declaring a type variable as a stand-in
for the private type.
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There is a submission in Sun’s Java bug database requesting this feature, with

some accompanying discussion [11].

3.2 First-Class Intersection Types

Intersection types allow the behavior of two unrelated classes or interfaces to be

described with a single type. In Java 5, an intersection is only expressible as the

upper bound of a type variable. However, intersections are potentially quite useful

wherever arbitrary types are allowed.

As a simple example, the Java API includes the interfaces Flushable and

Closeable, implemented by streams that support a flush and a close operation,

respectively. Taking advantage of these interfaces, it might be convenient to create a

thread that occasionally flushes a stream, and at some point closes it. Such a thread

would need to reference a variable with type Flushable & Closeable.

The following class, illegal in Java 5, demonstrates a variety of uses for inter-

section types. It defines a simple wrapper for TreeSet that insures its elements

are comparable to each other (thus preventing any risk of a ClassCastException

thrown by TreeSet.add, which occurs whenever incompatible objects are compared).

The intersection type T & Comparable<? super T> is used as a type argument, a

parameter type, a wildcard upper bound, and a local variable type.
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public class SafeTreeSet<T> {

private TreeSet<T & Comparable<? super T>> set;

public SafeTreeSet() {

set = new TreeSet<T & Comparable<? super T>>();

}

public void add(T & Comparable<? super T> elt) {

set.add(elt);

}

public void addAll(Iterable<? extends T &

Comparable<? super T>> elts) {

for (T & Comparable<? super T> elt : elts) { set.add(elt); }

}

public Iterator<? extends T> iterator() {

return set.iterator();

}

}

In Java 5, we could approximate this definition by defining T with an upper bound

Comparable<? super T>. However, there is an important difference between the two

approaches. In the latter case, T must be a subtype of Comparable. In the former

case, that is not necessary—T could be List<String>, or even Object. In such

cases, the set could contain values of any subtype of T that happened to implement

Comparable<? super T>. For example, vendor A could define IntListA as a list

of integers, comparable to all other integer lists; vendor B could define IntListB

similarly. Both kinds of lists could safely coexist in a SafeTreeSet<List<Integer>>.

Alternatively, we could introduce a type variable TC extends T & Comparable<?

super T> in each method declaration. This approach allows us to maintain the same

semantics, but is inconvenient for the same reason that writing programs without

wildcards is inconvenient—it results in a proliferation of variable declarations that

are irrelevant to the public interface of a class or method. Further, such a conversion
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is not possible in general: a mutable field, for example, may hold values with different

types, all compatible with the intersection, over the course of its lifetime.

It is curious that intersections are supported in Java 5 as the upper bounds

of type variables but not elsewhere, because it is not obvious that intersections

are more useful in that particular context than any other. The lack of support

for intersections as the bounds of wildcards is particularly surprising. (Chapter 6

explains how limitations of the type argument inference algorithm may have led to

this restriction.)

Again, there is a submission in Sun’s Java bug database requesting this feature,

with some accompanying discussion [13].

3.3 Wildcards and Variables with Upper and Lower Bounds

As noted in Chapter 2, variables produced by capture, because they combine the

bounds of a wildcard with the bounds of a corresponding type parameter, may have

both nontrivial upper and lower bounds. Java implementations must thus allow for

such variables, and it would be reasonable to make this functionality available to

programmers, and extend it to wildcards.

The following method, illegal in Java 5, is a simple example demonstrating how

such bounds might be useful. appendSum sums the values in a list and appends that

value to the end of the list. It may operate on both lists of Doubles and lists of

Numbers; an implementation without the two bounds would only be able to handle
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one or the other.

public void appendSum(List<? extends Number super Double> vals) {

double result = 0.0;

for (Number n : vals) { result += n.doubleValue(); }

vals.add(result);

}

In addition to being occasionally convenient for programmers, we will later demon-

strate that wildcards with both upper and lower bounds allow us to improve on the

join function (lub in the JLS) by providing a tightly-bound wildcard encompassing

two different parameterizations of the same class. It is noted in the Aarhus–Sun pa-

per that the “best” bound of a wildcard produced by join may be ambiguous—either

an upper or a lower bound could be useful, depending on how the type will be used

[8]. By allowing wildcards with both bounds, we remove that ambiguity.

3.4 The Null Type

Since its inception, the Java language has had a null value without a corresponding

expressible null type (the type is written here as null, and is distinguishable from the

value null by context). In the absence of type variables and parameterized classes,

the null type arguably has little utility in program code. However, in combination

with the Java 5 features, it is quite useful.

For example, a singleton “empty” value can often only be expressed with a null

type. The following class, illegal in Java 5, defines a singleton representing an im-

mutable empty list, implementing the List<null> interface:
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public class EmptyList extends AbstractList<null> {

public static final EmptyList INSTANCE = new EmptyList();

private EmptyList() {}

public null get(int i) {

throw new IndexOutOfBoundsException();

}

public int size() { return 0; }

}

Clients can use wildcards to reference this list in whatever context is needed:

List<? extends Number> l1 = EmptyList.INSTANCE;

List<? extends String> l2 = EmptyList.INSTANCE;

Without using the type null, there is no way to define a similar singleton that

can be safely typed wherever it is needed. Instead, developers must either perform

an unchecked cast or create a new object for each instantiation of the element type.

There is a submission in Sun’s Java bug database requesting this feature, with

some accompanying discussion [12].

3.5 Array Bounds on Type Variables

The Java 5 design choice prohibiting array types as the upper bounds of type vari-

ables, yet permitting them as the upper bounds of wildcards, seems arbitrary. While

allowing the bounds would arguably make no difference to the current language—

the declaration T extends Foo[] can probably always be rewritten T extends Foo,

with all references to T replaced by T[]—the enhancements suggested here would be

incomplete without allowing array types in variable bounds. In particular, an array
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type in a lower bound cannot always be eliminated: while any useful subtype of

Foo[] must be an array type (or a variable or intersection defined in terms of an

array type), the supertype of Foo[] could be, for example, Serializable.
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Chapter 4

Union-based Type System

We now present the first of two revisions to the Java 5 type system. This union-

based system is characterized by its use of union types in wildcard capture and

type argument inference. Rather than simply describing changes to the operations

defined in the JLS [2], we redefine them fully in clear, formal terms. We thus do not

presuppose significant familiarity with the JLS, and are able to avoid a variety of

bugs and ambiguities that appear there (these are outlined in Appendix A).

4.1 Fundamentals

4.1.1 Types

A type is one of the following:

• The null type (denoted null here, but distinguishable by context from the
value null).

• A ground parameterized class type C<T1 . . . Tn>, where C is a name and, for all
i, Ti is a type.

• A wildcard-parameterized class type C<W1 . . . Wn>, where C is a name and, for
all i, Wi is a type argument, which is one of:

– A type.

– A wildcard ? extends Tu super Tl, where Tu and Tl are types. (A wild-
card is not a type.)

• A raw class type C, where C is a name.

• A primitive array type p[], where p is a primitive type name (int, char, etc.)
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• A reference array type T[], where T is a type.

• A type variable X, where X is a name.

• An intersection type T1 & . . . & Tn, where, for all i, Ti is a type.

• A union type T1 | . . . | Tn, where, for all i, Ti is a type.

For simplicity, we have ignored primitive types. Generally, primitives can be han-

dled by implementations separately before deferring to the type operations defined

here. We also ignore any distinction between classes and interfaces—hereafter, the

word “class” means either a class or an interface.

The names referred to in the definition are assumed to be globally-unique iden-

tifiers. Every class and type variable declared by a program must have exactly one

such name.∗

All lists in this definition may be of any length, including 0. The type of a class

C with no declared parameters is the ground parameterized class type C<> (but may

informally be written C).

Types of nested classes do not appear explicitly in this definition. Instead, these

are just treated like top-level classes. We follow the convention that a class’s list

of parameters includes all type variables available from outer declarations.† For

example, if class Foo declares inner class Bar, the expression

new Foo<String, Object>().new Bar<Cloneable>()

∗ This is essentially what is meant by canonical names, as defined in the JLS. However, that
definition does not apply to local classes and interfaces, nor to type variables.

† This list does not extend beyond a local scope—if a class is defined inside a method, its
parameters do not include those of the method or of the enclosing class; the list also excludes
variables that are not available because a class is declared static.
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has type Foo.Bar<String, Object, Cloneable>; in Java code, we would instead

write Foo<String, Object>.Bar<Cloneable>.

Intersections represent the most general type for which each of Ti is a supertype.

If an intersection consists of some number of interface names, for example, any class

that implements all the listed interfaces is a subtype of the intersection.

Complementing this notion, unions represent the least general type for which each

of Ti is a subtype. Any common supertype of these types is also a supertype of the

union. Because unions are not currently part of Java, certain operations involving

these types, such as method lookup and erasure, are defined neither in the JLS nor

in this thesis. Igarashi and Nagira [5] develop object-based union types in depth and

present possible definitions for these missing pieces.

In the notation that follows, we maintain the following conventions:

• X, Y , Z, P , and Q represent type variables (P and Q usually represent declared
type parameters).

• C represents a class name.

• W represents a type argument—either a type or a wildcard.

• All other capital letters represent arbitrary types.

To simplify the definition of structurally-recursive functions, we will refer to the

types of which a type is directly composed as its component types. The wildcard

bounds of a wildcard-parameterized class type are among its component types.
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4.1.2 Bounds

Type variables are always bounded—a valid instantiation of a variable must be a

subtype of its upper bound, and a supertype of its lower bound. This information

is provided by the source code, and where it is elided, Object is the default upper

bound and null is the default lower bound.

The functions upper and lower, which map variables to their bounds, are implicit

parameters (for conciseness) to most of the operations that follow. Additionally, the

capture function may produce new variables, and thus new instances of upper and

lower. These updated bound functions are implicitly threaded through all subse-

quent operations on the types produced by capture.

The expression dXe is shorthand for the application of upper to X, producing

X’s upper bound; similarly, bXc produces X’s lower bound.

4.1.3 Structural Well-formedness

A type T is structurally well-formed (in the context of a set of class definitions) if

and only if all of its component types are structurally well-formed and it violates

none of the following assertions:

• Where T = C<T1 . . . Tn>, the class named C exists and has n type parameters.

• Where T = C<W1 . . . Wn>, the class named C exists and has n type parameters,
and there exists some i such that Wi is a wildcard (thus n ≥ 1).

• Where T = C, the class named C exists and has at least one type parameter.
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Except where noted, all type operations defined below assume a domain of struc-

turally well-formed types (this includes types passed as implicit arguments, such as a

class’s parameters or a variable’s bounds). The safety of the type system relies on a

stronger notion of semantic well-formedness, defined later in this chapter. This dis-

tinction is necessary because semantic well-formedness relies on subtyping and other

type operations; we cannot in general guarantee the semantic well-formedness of the

operations’ arguments, and instead must settle for the structural checks defined here.

4.1.4 Substitution

Substitution instantiates a set of type variables, and is denoted T [P1 := T1 . . . Pn := Tn].

The types involved need not be well-formed. It is defined as the structurally-recursive

application of the following rule:

X[P1 := T1 . . . Pn := Tn] = Ti if, for some i, X = Pi; otherwise
X[P1 := T1 . . . Pn := Tn] = X.

By structurally-recursive we mean that, for arbitrary T , the substitution is ap-

plied to each T ’s component types, and a new type is constructed from these modified

types.

The bounds of a wildcard within a wildcard-paramterized type are components

of that type; the bounds of a variable are not. Thus, substitution cannot be used

directly to instantiate the bounds of a variable.
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4.1.5 Wildcard Capture

Wildcard capture is an operation on type arguments (either types or wildcards,

W1 . . . Wn) and their corresponding type parameters (P1 . . . Pn), producing a globally-

unique variable for each wildcard. Each new variable has the same bounds as the

wildcard, combined with the (instantiated) bounds of the corresponding type param-

eter.

capture(W1 . . . Wn, P1 . . . Pn) = T1 . . . Tn, where, for all i:

• If Wi is a type, Ti = Wi.

• If Wi is the wildcard ? extends Wiu super Wil, Ti = Zi for a fresh name Zi,
where:

– dZie = Wiu & dPie[P1 := T1 . . . Pn := Tn].

– bZic = Wil | bPic[P1 := T1 . . . Pn := Tn].

Capture is principally used to convert a wildcard-parameterized class type to

a ground parameterized class type. We use the notation ‖C<W1 . . . Wn>‖ to rep-

resent such a conversion: where P1 . . . Pn are the type parameters of class C and

capture(W1 . . . Wn, P1 . . . Pn) = T1 . . . Tn, we have ‖C<W1 . . . Wn>‖ = C<T1 . . . Tn>.

4.1.6 Direct Supertype

Our subtyping definition relies on determining the direct supertype of a class type,

denoted T↑. This is defined as follows:
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• Where T = C<T1 . . . Tn>,

– If C = Object, T↑ is undefined.

– If C declares no supertypes, T↑ = Object.

– If C declares supertypes S1 . . . Sm and type parameters P1 . . . Pn, let S ′
i =

Si[P1 := T1 . . . Pn := Tn]; T↑ = S ′
1 & . . . & S ′

m.

• Where T = C<W1 . . . Wn>, T↑ = ‖C<W1 . . . Wn>‖↑.

• Where T = C,

– If C declares no supertypes, T↑ = Object.

– If C declares supertypes S1 . . . Sm, T↑ = |S1| & . . . & |Sm|.

|Si|, used in the raw case, denotes the erasure of the given type, as defined in

the JLS (4.6).

The direct supertype operation is implicitly parameterized by a class table which

contains the supertype declarations defined in the source code. All operations that

depend on direct supertypes are similarly parameterized.

4.1.7 Subtype Relation

The type S is a subtype of T , denoted S <: T , if and only if the assertion in the

corresponding cell of Table 4.1 holds. (S matches one of the cases in the left column;

T matches one of the cases in the top row. A “-” in the table represents a result that

is trivially false.) If S <: T , then equivalently T is a supertype of S (denoted T :> S).

Where two types are mutual subtypes of each other—that is, S <: T and T <: S—we

say that they are equivalent, denoted S ∼= T .
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null Ct<T1 . . . Tm> Ct<W1 . . . Wm> Ct

null true true true true
Cs<S1 . . . Sn> - [1] [2] [3]

Cs<W1 . . . Wn> - ‖S‖ <: T ‖S‖ <: T ‖S‖ <: T
Cs - S↑ <: T S↑ <: T [3]

ps[] - [4] [4] [4]
S ′[] - [4] [4] [4]

Xs dSe <: T dSe <: T dSe <: T dSe <: T
S1 & . . . & Sn ∃i, Si <: T ∃i, Si <: T ∃i, Si <: T ∃i, Si <: T
S1 | . . . | Sn ∀i, Si <: T ∀i, Si <: T ∀i, Si <: T ∀i, Si <: T

pt[] T ′[] Xt T1 & . . . & Tm T1 | . . . | Tm

null true true true true true
Cs<S1 . . . Sn> - - S <: bT c ∀i, S <: Ti ∃i, S <: Ti

Cs<W1 . . . Wn> - - S <: bT c ∀i, S <: Ti ∃i, S <: Ti

Cs - - S <: bT c ∀i, S <: Ti ∃i, S <: Ti

ps[] ps = pt - S <: bT c ∀i, S <: Ti ∃i, S <: Ti

S ′[] - S ′
<: T ′ S <: bT c ∀i, S <: Ti ∃i, S <: Ti

Xs dSe <: T dSe <: T [5] ∀i, S <: Ti [6]
S1 & . . . & Sn ∃i, Si <: T ∃i, Si <: T [7] ∀i, S <: Ti ∃i, Si <: T
S1 | . . . | Sn ∀i, Si <: T ∀i, Si <: T ∀i, Si <: T ∀i, Si <: T ∀i, Si <: T

[1]: If Cs = Ct, ∀i, Si ∼= Ti; otherwise, S↑ <: T
[2]: If Cs = Ct, for all i:

• If Wi is a type, Si ∼= Wi

• If Wi is a wildcard ? extends Tiu super Til, Si <: Tiu ∧ Til <: Si

Otherwise, S↑ <: T
[3]: Either Cs = Ct or S↑ <: T
[4]: Cloneable & Serializable <: T
[5]: Xs = Xt or dSe <: Tor S <: bT c
[6]: dSe <: Tor ∃i, S <: Ti

[7]: ∃i, Si <: Tor S <: bT c

Table 4.1 : Rules for subtyping
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In addition to the assumption of structurally well-formed arguments, we require

the following of the subtyping arguments:‡

• No variable is bounded by itself—that is, dXe+ 6= X and bXc+ 6= X.

• The class table is acyclic: C<T1 . . . Tn>↑+ 6= C<T ′
1 . . . T ′

n> for any choice of

T ′
1 . . . T ′

n.

• The class table does not exhibit expansive inheritance, as defined by Kennedy

and Pierce [6].

Unlike the JLS, we do not prohibit multiple-instantiation inheritance: we might have

C<T1 . . . Tn>↑+ = D<S1 . . . Sm> and C<T1 . . . Tn>↑+ = D<S ′
1 . . . S ′

m> where, for some

i, Si 6= S ′
i.

These subtyping rules are syntax-directed; defining an algorithm in terms of this

definition is a straightforward process. As demonstrated by Kennedy and Pierce

[6], however, such an algorithm must be extended to keep track of “in-process”

invocations and terminate whenever a subtyping invocation depends on itself.

The interactions between variables, intersections, and unions are tricky. Where

S = Xs and T = T1 | . . . | Tm, for example, it is possible that Ti = S for some i,

so we must decompose T and not S; on the other hand, it is possible that dSe is T ,

so we must also recur on S’s upper bound without decomposing T . In general, it is

always safe to check for both conditions as in cases [6] and [7], while in some cases,

‡ The use of transitive closure here is intended to also permit the decomposition of intersection
and union types.
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one of the checks is provably unnecessary.

4.1.8 Bounds Checking

We use inBounds to assert that type arguments (T1 . . . Tn) do not violate the bound

assertions of their corresponding type parameters (P1 . . . Pn).

inBounds(T1 . . . Tn, P1 . . . Pn) is defined for structurally well-formed types as fol-

lows:

• For all i, Ti <: dPie[P1 := T1 . . . Pn := Tn].

• For all i, bPic[P1 := T1 . . . Pn := Tn] <: Ti.

Bounds checking is complicated by the fact that the bound for a specific argument

may depend on that or other arguments. So substitution must be used to instantiate

each bound before it is checked.

4.1.9 Semantic Well-formedness

We do not provide in this thesis any formal proof of the correctness of the above

operations. However, the consistent use of case analysis provides a framework for

such a proof. In addition, we describe here a notion of semantic well-formedness

and assert, for each operation, a variety of properties that hold when processing

semantically well-formed types. These assertions would be essential to a larger proof

of type safety, and they provide a standard by which to informally verify correctness.

A type is semantically well-formed (in the context of a set of class definitions) if

and only if it is structurally well-formed, all of its component types are semantically
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well-formed, and it violates none of the following assertions:

• Where T = C<T1 . . . Tn>, and class C has parameters P1 . . . Pn,
inBounds(T1 . . . Tn, P1 . . . Pn).

• Where T = C<W1 . . . Wn>, ‖C<W1 . . . Wn>‖ is semantically well-formed.

• Where T = X, bXc <: dXe.

“Well-formed,” when used without qualification, refers to semantic well-formedness.

In the context of a full language definition, all types expressed in code should be well-

formed, and the type analysis must only produce new types that are well-formed.

Note the use of capture in validating the arguments of a wildcard-parameterized

class type. It is tempting to try to avoid capture conversion here, and in many

situations its use can be eliminated. However, in general, we must use capture to

insure two important conditions: first, that the variables generated by capture are

not malformed—each variable’s lower bound is a subtype of its upper bound; and

second, that non-wildcard arguments are within their bounds. Bounds in both cases

may be defined in terms of capture variables and other type arguments, so the bounds

must be instantiated before they are checked.§

Substitution. If the following are true, we can guarantee that the result of the

substitution T [P1 := T1 . . . Pn := Tn] is well-formed.

• T , P1 . . . Pn, and T1 . . . Tn are well-formed.

• inBounds(T1 . . . Tn, P1 . . . Pn) holds.

§ We do not need to check the inBounds condition for capture variables, since these variables
are guaranteed to be in bounds, but we don’t complicate the definition with this fact here.
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Under these conditions, substitution has the following properties, which must be

true in order for well-formedness to be preserved:

• T1 <: T2 ⇒ T1[P1 := T1 . . . Pn := Tn] <: T2[P1 := T1 . . . Pn := Tn]

• inBounds(S1 . . . Sm, Q1 . . . Qm) ⇒ inBounds((S1 . . . Sm)[P1 := T1 . . . Pn := Tn],

Q1 . . . Qm) (assuming Q1 . . . Qm do not involve P1 . . . Pn)

Wildcard capture. In general, capture may produce malformed types from

well-formed arguments—this is why the rules for semantic well-formedness check

that the type is well-formed after capture. Where all the arguments are wildcards,

however, we can make the following claim: if the types capture(W1 . . . Wn, P1 . . . Pn)

are well-formed,

inBounds(capture(W1 . . . Wn, P1 . . . Pn), P1 . . . Pn)

Subtyping. Where the inputs are well-formed, the subtype relation is reflexive

and transitive. It also guarantees, for all well-formed T , T ′, etc., that:

• null <: T <: Object

• dXe = T ⇒ X <: T

• bXc = T ⇒ T <: X

• For all i, T1 & . . . & Tn <: Ti

• For all i, Ti <: T1 | . . . | Tn

• Where T ′
1 . . . T ′

m ⊆ T1 . . . Tn (allowing for arbitrary permutations),

– T1 & . . . & Tn <: T ′
1 & . . . & T ′

m

– T ′
1 | . . . | T ′

m <: T1 | . . . | Tn



38

• For all X such that inBounds(T1, X) and inBounds(T2, X), T1 ∼= T2 ⇒ T [X :=
T1] ∼= T [X := T2]

The final assertion of equivalence preservation implies that implementations are

free to replace any type with a simplified, but equivalent, form whenever it is conve-

nient. For example, the intersection String & Object could be safely replaced with

the simple class type String.¶ This fact is particularly useful when creating inter-

sections and unions, which can easily be simplified when one of the component types

is a subtype of another. However, the intersections and unions created by capture

may only be simplified with care: the upper and lower functions involving the fresh

variable Zi cannot be defined until after the bounds of Zi have been determined;

yet Zi may appear in its own bound. So any algorithm that attempts, for example,

to simplify the intersection produced by capture must not attempt to access Zi’s

bounds before they have been defined.

4.2 Type Argument Inference

4.2.1 Overview

A type argument inference algorithm provides an instantiation of a set of method

type parameters (we use T1 . . . Tn to denote the arguments and P1 . . . Pn to denote

the parameters) for a specific call site. In Java 5, these types are inferred based

solely on type information available locally at the method call. Thus, the result

¶ Such a transformation may change the result of erasure: T ∼= T ′ 6⇒ |T | ∼= |T ′|, but erasure is
only applied to types expressed in code, so it is not relevant to this discussion.
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is a function of the types of the formal parameters (F1 . . . Fm), the types of the

invocation’s arguments (A1 . . . Am), the method’s return type (R), and the type

expected in the call site’s context (E). An inference result must satisfy the following:

• ∀j, Aj <: Fj[P1 := T1 . . . Pn := Tn].

• R[P1 := T1 . . . Pn := Tn] <: E.

• inBounds(T1 . . . Tn, P1 . . . Pn).

Here we present such an algorithm. We proceed by first producing a set of

constraints required to satisfy the first two conditions, and then using capture to

produce types that both meet these constraints and fall within bounds specified by

P1 . . . Pn. The algorithm is both sound and complete: sound in the sense that the

results, T1 . . . Tn, satisfy the three above equations; and complete in the sense that a

result is produced whenever a solution exists.

The algorithm is expressed in terms of two functions, <:? and :>?. A <:? F produces

a minimal set of constraints on T1 . . . Tn required to satisfy A <: F [P1 := T1 . . . Pn := Tn];

A :>? F similarly produces the constraints satisfying A :> F [P1 := T1 . . . Pn := Tn]. The

constraints are expressed as logical formulas, combined with the operations ∧cf and

∨cf as outlined below. For convenience, a third inference function, ∼=?, is a shortcut

for ∧cf (A <:? F, A :>? F ).

4.2.2 Constraint Formulas

A constraint formula is a formula in first-order logic expressing upper and lower

bounds on our choices for types T1 . . . Tn. We restrict the form of a constraint formula
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as follows, modeled after disjunctive normal form:

m∨
j=1

T1jl <: T1 <: T1ju ∧ . . . ∧ Tnjl <: Tn <: Tnju

The value of m may be any natural number. We will use false as an abbrevia-

tion for the formula in which m = 0. If m = 1, the formula is a simple constraint

formula; we use true to represent the simple formula null <: T1 <: Object ∧ . . . ∧

null <: Tn <: Object. Finally, an expression such as C <: T1 <: D is taken as an ab-

breviation for a simple constraint formula in which the given parameter has the

specified bounds, and all other parameters are bounded by the unconstraining null

and Object.

Constraint formulas may be combined by and-ing or or-ing them together. ∧cf

is used where multiple formulas must all be satisfied; ∨cf is used where just one of

a number of formulas must be satisfied.

Let SC1 . . . SCm be simple constraint formulas. Let Tijl refer to the lower bound of

Ti in SCj, and Tiju refer to the corresponding upper bound. Then ∧cf (SC1 . . . SCm)

has value
n∧

i=1

(Ti1l | . . . | Timl) <: Ti <: (Ti1u & . . . & Timu)

If the result is unsatisfiable—that is, for some Ti, the lower bound is not a subtype

of the upper bound—it is simplified to false. Note also that if any of SCj is true

(and m > 1), that formula may be discarded.

In the general case, we define ∧cf by merging each possible combination of simple

constraint formulas. Let C1 . . . Cm be constraint formulas. Each of of these formulas
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can be treated as a set of simple formulas; the cross product of these sets, C1× . . .×

Cm, produces m′ tuples of the form (SC1 . . . SCm). Applying ∧cf to each of these

tuples (as defined above for simple formulas), we produce the set of simple formulas

SC ′
1 . . . SC ′

m′ . Then we have

∧cf (C1 . . . Cm) = ∨cf (SC ′
1 . . . SC ′

m′)

Again, we note that if any of Cj is true, that set may be discarded; if any of Cj

is false, the result will also be false (because m′ = 0).

The ∨cf operation could be defined to simply concatenate its arguments together.

However, we wish to ensure that all formulas we produce are in a minimal form. To

do so, we first need a notion of constraint-formula implication. A simple constraint

formula SC1 models SC2 (denoted SC1 |= SC2) if and only if, for all i, Ti1u <: Ti2u and

Ti1l :> Ti2l. In other words, if T1 . . . Tn satisfies SC1, we can guarantee that T1 . . . Tn

satisfies SC2.

Now, we define ∨cf (C1 . . . Cm) as follows. Again treating these formulas as sets

of simple formulas, let SC1 . . . SCk be the union C1 ∪ . . . ∪ Cm. We can compute a

minimal equivalent subset of SC1 . . . SCk, SC ′
1 . . . SC ′

k′ , where minimal means that

∀i,∃j, SCi |= SC ′
j. Now we have

∨cf (C1 . . . Cm) =
k′∨

i=1

SC ′
i

Again note that we’ve preserved important logical properties: if any of C1 . . . Cm

is false, it may be ignored; if any of C1 . . . Cm is true, it will be the only member of

the minimal subset, and the result will be true.
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4.2.3 Subtype Inference

The invocation A <:? F |µ produces a constraint formula supporting the assumption

that A <: F . The parameter µ is a set of previous invocations of <:? and :>?. For

brevity, we do not express µ explicitly; it is always empty on external invocations, and

wherever one of these operations is recursively invoked (including mutual recursion

between <:?, :>?, and ∼=?), the previous invocation is accumulated in µ.

• If the invocation A <:? F ∈ µ, the result is false.

• Else if, for some i, F = Pi, the result is A <: Ti <: Object.

• Else if F involves none of P1 . . . Pn, the result is A <: F (treating the boolean
result of <: as a trivial constraint formula).

• Otherwise, the result is given in Table 4.2. (A matches one of the cases in the
left column; F matches one of the cases in the top row. A “-” in the table
represents the formula false.)

Compare Table 4.2 to Table 4.1. Notice that the rules for inference follow directly

from subtyping. The only changes replace boolean operations with their analogs: <:

becomes <:?; “and” and “or” become ∧cf and ∨cf .
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Cf<F1 . . . Fm> Cf<W1 . . . Wm> F ′[]

null true true true
Ca<A1 . . . An> [1] [2] -

Ca<W1 . . . Wn> ‖A‖ <:? F ‖A‖ <:? F -
Ca A↑ <:? F A↑ <:? F -

ps[] [4] [4] -
A′[] [4] [4] A′

<:? F ′

Xa dAe <:? F dAe <:? F dAe <:? F
A1 & . . . & An ∨cf (Ai <:? F ) ∨cf (Ai <:? F ) ∨cf (Ai <:? F )
A1 | . . . | An ∧cf (Ai <:? F ) ∧cf (Ai <:? F ) ∧cf (Ai <:? F )

Xf F1 & . . . & Fm F1 | . . . | Fm

null true true true
Ca<A1 . . . An> A <:? bF c ∧cf (A <:? Fi) ∨cf (A <:? Fi)

Ca<W1 . . . Wn> A <:? bF c ∧cf (A <:? Fi) ∨cf (A <:? Fi)
Ca A <:? bF c ∧cf (A <:? Fi) ∨cf (A <:? Fi)

ps[] A <:? bF c ∧cf (A <:? Fi) ∨cf (A <:? Fi)
A′[] A <:? bF c ∧cf (A <:? Fi) ∨cf (A <:? Fi)

Xa [5] ∧cf (A <:? Fi) [6]
A1 & . . . & An [7] ∧cf (A <:? Fi) ∨cf (A <:? Fi)
A1 | . . . | An ∧cf (Ai <:? F ) ∧cf (Ai <:? F ) ∧cf (Ai <:? F )

[1]: There are two cases:

• If Ca = Cf , ∧cf (A1 ∼=? F1 . . . An ∼=? Fn)

• Otherwise, A↑ <:? F

[2]: There are two cases:

• If Ca = Cf , ∧cf (CF1 . . . CFn) where, for all i:
– If Wi is a type, CFi = Ai ∼=? Wi

– If Wi is a wildcard ? extends Fiu super Fil, CFi = ∧cf (Ai <:? Fiu,
Ai :>? Fil)

• Otherwise, A↑ <:? F

[4]: Cloneable & Serializable <:? F
[5]: ∨cf (dAe <:? F, A <:? bF c)
[6]: ∨cf (dAe <:? F, A <:? F1 . . . A <:? Fm)
[7]: ∨cf (A1 <:? F . . . An <:? F, A <:? bF c)

Table 4.2 : Rules for subtype inference
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4.2.4 Supertype Inference

The invocation A :>? F |µ produces a constraint formula supporting the assumption

that A :> F . The parameter µ is as described in the previous section.

• If the invocation A :>? F ∈ µ, the result is false.

• If, for some i, F = Pi, the result is null <: Ti <: A.

• If F involves none of P1 . . . Pn, the result is F <: A (treating the boolean result
of <: as a trivial constraint formula).

• Otherwise, the result is given in Table 4.3. (A matches one of the cases in the
left column; F matches one of the cases in the top row. A “-” in the table
represents the formula false.)

Similarly to Table 4.2, Table 4.3 follows directly from the subtyping rules (this is

slightly less apparent, because the table has been transposed, allowing the “upper”

argument to appear on the left).

4.2.5 Inference Algorithm

Building on these definitions, we now describe the full algorithm for type argument

inference.

The first two conditions to be satisfied by the types T1 . . . Tn—that the invoca-

tion’s arguments are subtypes of their corresponding formal parameters, and that

the return type is a subtype of the expected type—are described by the formula

CF = ∧cf (A1 <:? F1 . . . Am <:? Fm, E :>? R)
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Cf<F1 . . . Fm> Cf<W1 . . . Wm> F ′[]

null - - -
Ca<A1 . . . An> [1] A :>? ‖F‖ [4]

Ca<W1 . . . Wn> [2] A :>? ‖F‖ [4]
Ca [3] A :>? ‖F‖ [4]

ps[] - - -
A′[] - - A′

:>? F ′

Xa bAc :>? F bAc :>? F bAc :>? F
A1 & . . . & An ∧cf (Ai :>? F ) ∧cf (Ai :>? F ) ∧cf (Ai :>? F )
A1 | . . . | An ∨cf (Ai :>? F ) ∨cf (Ai :>? F ) ∨cf (Ai :>? F )

Xf F1 & . . . & Fm F1 | . . . | Fm

null A :>? dF e ∨cf (A :>? Fi) ∧cf (A :>? Fi)
Ca<A1 . . . An> A :>? dF e ∨cf (A :>? Fi) ∧cf (A :>? Fi)

Ca<W1 . . . Wn> A :>? dF e ∨cf (A :>? Fi) ∧cf (A :>? Fi)
Ca A :>? dF e ∨cf (A :>? Fi) ∧cf (A :>? Fi)

ps[] A :>? dF e ∨cf (A :>? Fi) ∧cf (A :>? Fi)
A′[] A :>? dF e ∨cf (A :>? Fi) ∧cf (A :>? Fi)

Xa [5] [7] ∧cf (A :>? Fi)
A1 & . . . & An ∧cf (Ai :>? F ) ∧cf (Ai :>? F ) ∧cf (A :>? Fi)
A1 | . . . | An [6] ∨cf (A :>? Fi) ∧cf (A :>? Fi)

[1]: There are two cases:

• If Ca = Cf , ∧cf (A1 ∼=? F1 . . . An ∼=? Fn)

• Otherwise, A :>? F↑
[2]: There are two cases:

• If Ca = Cf , ∧cf (CF1 . . . CFn) where, for all i:
– If Wi is a type, CFi = Wi ∼=? Fi

– If Wi is a wildcard ? extends Aiu super Ail, CFi = ∧cf (Aiu :>? Fi,
Ail <:? Fi)

• Otherwise, A :>? F↑
[3]: If Ca = Cf , true; otherwise, A :>? F↑
[4]: A :>? Cloneable & Serializable

[5]: ∨cf (A :>? dF e, bAc :>? F )
[6]: ∨cf (A :>? dF e, A1 :>? F . . . An :>? F )
[7]: ∨cf (A :>? F1 . . . A :>? Fm, bAc :>? F )

Table 4.3 : Rules for supertype inference
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Given the formula CF , we must choose types for T1 . . . Tn satisfying the bounds

of the corresponding parameters:

inBounds(T1 . . . Tn, P1 . . . Pn)

If we treat each assertion Til <: Ti <: Tiu in a constraint formula as a wildcard—

? extends Tiu super Til—we can represent CF as follows:

CF =
m∨

j=1

W1j . . . Wnj

To satisfy the bounds, we let

T1 . . . Tn = capture(W11 . . . Wn1, P1 . . . Pn)

If the result is not well-formed, the given constraints are not satisfiable. We con-

tinue with W12 . . . Wn2, etc., until a well-formed solution is found. If no well-formed

solution can be found by this process, none exists, and the algorithm reports failure.

Where a well-formed result is found, we have produced a satisfactory inference

result. In addition, T1 . . . Tn are capture variables representing the entire range of

possible results: for all T ′
1 . . . T ′

n, where T ′
1 . . . T ′

n are valid choices for instantiation

types, inBounds(T ′
1 . . . T ′

n, T1 . . . Tn) holds.

Without defining additional kinds of types or introducing more contextual infor-

mation into the inference algorithm, it is impossible to predict which of the valid

choices for T ′
1 . . . T ′

n is most useful to the programmer. In many typical circum-

stances, however, the capture variables T1 . . . Tn are an inconvenient choice. A good
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best guess at the programmer’s intent is the lower bound of these capture variables.

We thus choose, for all i, to return the following as instantiation types:

T ′
i = bTic[T1 := T ′

1 . . . Tn := T ′
n]

In most cases, this substitution eliminates all mention of the fresh capture variables

from the inferred arguments. Note, however, that this is not always the case—if

one of Pi appears in its own lower bound, for example, the corresponding capture

variable will (harmlessly) remain in the inference result.

Note that there is a nondeterminacy present in the above algorithm: where more

than one simple constraint formula in the final constraints is satisfiable, the choice

of which formula to use depends on the order in which they are enumerated. This

nondeterminacy is inherent in the inference problem: if the constraints on T can be

satisfied with either T = String or T = Integer, the algorithm must arbitrarily

choose one or the other. Clearly, such nondeterminacy must be avoided in a full

specification (two different implementations must not choose different types for T);

to do so, the specification would need to extend the treatment of formula operations

in terms of sets to preserve a well-defined order of elements.

4.2.6 Special Cases

When the above inference algorithm is used in the context of the full Java language,

a variety of subtleties must be addressed:

• E may be undefined—that is, we may not wish to determine what type is
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“expected” in the invocation’s context. Then there are no constraints on the

return type, and we do not include E :>? R in the result.

• R may be void. Again, there is no constraint for the return type and we do

not incorporate E :>? R.

• The types involved may be primitives. The inference operations can be eas-

ily extended to handle both primitive subtyping and reference subtyping, as

appropriate.

• Boxing or unboxing of the arguments or return value may be allowed. De-

termining whether these conversions should occur is always possible without

knowing T1 . . . Tn. So we can assume here that A1 . . . Am and E represent the

types after any necessary conversions.

• Variable-length arguments may be used. In this case, the method signature

provides formal parameter types F1 . . . Fj, and Fj is the array type F ′
j[]. The

constraint calculation must then contain A1 <:? F1 . . . Aj−1 <:? Fj−1 and, if m ≥

j, Aj <:? F ′
j . . . Am <:? F ′

j .

• The type parameters of a class enclosing the method declaration may appear

in F1 . . . Fm, R, or the bounds of P1 . . . Pn. This can be handled in one of

two ways (where the class parameters are Q1 . . . Qk and the instantations are

S1 . . . Sk):
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– Perform substitution to instantiate the class variables. This is straight-

forward for F1 . . . Fm and R, but more difficult for the method type pa-

rameters, because substitution does not recur into the bounds of variables

(doing so would redefine the bounds of the given variable in the upper

function, with potentially unexpected consequences). We can work around

this problem by defining and performing inference with fresh parameters

P ′
1 . . . P ′

n such that

dP ′
ie = dPie[P1 := P ′

1 . . . Pn := P ′
n][Q1 := S1 . . . Qk := Sk]

bP ′
ic = bPic[P1 := P ′

1 . . . Pn := P ′
n][Q1 := S1 . . . Qk := Sk]

– Include the class type parameters in the list of parameters to be inferred

(that is, P1 . . . Pk = Q1 . . . Qk). In addition to the bounds produced by

the inference algorithm, we constrain each of T1 . . . Tk to be bound above

and below by S1 . . . Sk. We thus would not actually infer new types for

these parameters, but we would get the necessary substitutions without

any extra effort.
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Chapter 5

Join-based Type System

We define the join-based type system by modifying the union-based version, elim-

inating union types from the definition and substituting the use of a join function in

capture and ∧cf . The goal of the join function is to determine a non-union type that

has the same properties as the union—all common supertypes are also supertypes of

the join. In order to correctly define such a function in the presence of wildcards, we

introduce wildcard references, which provide a mechanism for describing “infinite”

wildcard bounds.

5.1 Fundamentals

5.1.1 Types

We revise the definition of type argument as follows. A type argument is one of:

• A type.

• A wildcard ? extends Tu super Tl, where Tu and Tl are types.

• A wildcard reference ?n where n is a natural number.

Wildcard references use de-Bruijn–style indexing to identify an enclosing wild-

card to which the reference is treated as equivalent. For example, the informal type

List<? extends List<? extends List<...>>> is expressed as List<? extends
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List<?0>>; 0 is the index of the directly enclosing wildcard. As a more complex ex-

ample, both references in the type C<? extends C<?0> & D<? extends C<?1>[]>>

point to the left-most wildcard. In examples we will sometimes, for the sake of

readability, use an equivalent representation giving names to both wildcards and

references: C<?’ extends C<?’> & D<? extends C<?’>[]>>.

To correctly interpret wildcard references, some type operations must be param-

eterized by a wildcard context, Γ, which is simply a list of enclosing wildcards. The

reference value, n, is an index into this list. We define the constant Γ0 as the empty

wildcard context; Γ0 is always the parameter of an invocation of any operation (ei-

ther external or recursive) unless a different parameter is explicitly provided. In

operations parameterized by a wildcard context, the assumption that its parameters

are structurally well-formed is weakened to allow types that are only structurally

well-formed under the given context.

5.1.2 Structural Well-formedness

To simplify the scope of operations like subtyping in the presence of wildcard refer-

ences, we only allow references to occur in specific contexts. A wildcard may only be

referenced in its upper bound, and then only nested within some combination of inter-

sections, wildcard upper bounds in parameterized types, and array types. For exam-

ple, types such as C<? extends D<? super C<?1>>> and C<? extends D<C<?0>>>

are not structurally well-formed.
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It is also necessary, to prevent problems in the capture function, to prohibit the

lower bound of a variable from being defined in terms of itself.

These stipulations are made explicit in the extended structural well-formedness

definition:

• A wildcard-parameterized class type C<W1 . . . Wn> is structurally well-formed
in context Γ if and only if:

– The class or interface named C exists and has n type parameters.

– There exists some i such that Wi is a wildcard or wildcard reference.

– For all i, if Wi is a type, it is structurally well-formed under Γ0; otherwise,
it is structurally well-formed under Γ.

• An array type T ′[] is structurally well-formed in context Γ if and only if T ′ is
structurally well-formed under Γ.

• A variable type X is structurally well-formed if and only if X is not reachable
from bXc.

• An intersection type T1 & . . . & Tn is structurally well-formed in context Γ if
and only if, for all i, Ti is structurally well-formed under Γ.

• A wildcard W = ? extends Tu super Tl is structurally well-formed in con-
text Γ if and only if Tu is structurally well-formed under W :: Γ and Tl is
structurally well-formed under Γ0.

• A wildcard reference ?n is structurally well-formed under Γ if and only if Γ[n]
is defined.

Note that the predicate’s domain is extended to include all type arguments.

To clarify the meaning of the variable case, a variable X is reachable from a type

T if and only if X = T , X is reachable from one of T ’s component types, or T is a

variable and X is reachable from dT e or bT c.
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5.1.3 Wildcard Capture

Because capture places the upper bound of a wildcard in a context in which that

wildcard no longer encloses its bound, the operation must eliminate any free ref-

erences, thus avoiding producing malformed types. This is done with the unroll

operation.

unroll(T )|Γ = T , with the following exceptions:

• unroll(C<W1 . . . Wn>)|Γ = C<W ′
1 . . . W ′

n> where, for all i:

– If Wi is a wildcard ? extends Tiu super Til,
W ′

i = ? extends unroll(Tiu)|Wi::Γ super Til.

– If Wi is a wildcard reference ?m and |Γ| = m, W ′
i = Γ[m].

– Otherwise, W ′
i = Wi.

• unroll(T ′[])|Γ = unroll(T ′)|Γ[].

• unroll(T1 & . . . & Tn)|Γ = T ′
1 & . . . & T ′

n where, for all i, T ′
i = unroll(Ti)|Γ.

Capture requires that the type arguments W1 . . . Wn be structurally well-formed.

Thus, there is no i such that Wi is a wildcard reference. On the other hand, there

may be some i such that Wi is a wildcard with an upper bound that contains free

wildcard references. For example, the type C<?0> is not well-formed, but the wildcard

? extends C<?0> is, and may appear in the type argument list.

To facilitate subtyping and join, capture consumes and produces an implicit

parameter source which, like upper and lower, is threaded through subsequent op-

erations. The source parameter is a function that maps capture variables to the

wildcard–variable pair from which they were created.
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We redefine capture as follows: capture(W1 . . . Wn, P1 . . . Pn) = T1 . . . Tn, where,

for all i:

• If Wi is a type, Ti = Wi.

• If Wi is the wildcard ? extends Wiu super Wil, Ti = Zi for a fresh name Zi,
where:

– dZie = unroll(Wiu)|Wi
& dPie[P1 := T1 . . . Pn := Tn].

– bZic = join(Wil, bPic[P1 := T1 . . . Pn := Tn]).

– source(Zi) = (Wi, Pi).

The use of join in the lower bound of Zi is problematic. The join function

operates by comparing (via <:) and decomposing its arguments. But if Zi were to

occur within the type bPic[P1 := T1 . . . Pn := Tn], the function might need to know

the lower bound of Zi before it has been defined! More formally, where capture con-

sumes bound function lower and extends it to produce lower1 . . . lowern (ultimately

returning lowern), loweri cannot be passed to join when defining bZic, because the

definition of loweri depends on that join invocation. Thus, we have stipulated that

no variable may be reachable from its lower bound.

Even with this restriction, it is possible for a naive ordering of lower1 . . . lowern

to cause problems: if Z3 is reachable from bZ1c, then the definition of lower1 depends

on lower3, and bZ3c must be resolved before bZ1c. Implementations must determine

a safe sequence of join invocations that avoids all such problems.
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5.1.4 Subtyping

The subtype relation is parameterized by a wildcard context, Γ, and a list of types,

γ. The lengths of these two lists must be equal; γ conveys the fact that the current

invocation of subtyping arose out of a test that the type γ[i] is within the upper

bound of Γ[i]. By default, γ is the constant γ0, an empty list.

We modify the rules for subtyping, S <: T |Γ,γ, as follows:

• If S = Cs<S1 . . . Sn>, T = Ct<W1 . . . Wm>, and Cs = Ct, then for all i:

– If Wi is a type Ti, Si ∼= Ti.

– If Wi is a wildcard ? extends Tiu super Til, Si <: Tiu|Wi::Γ,Si::γ and
Til <: Si|Γ0,γ0 .

– If Wi is a wildcard reference ?k, either ∃j, Γ[j] = Γ[k] ∧ (γ[j] = Si ∨
source(γ[j]) = source(Si)); or the wildcard case holds for Γ[k].

• The parameters Γ and γ are propagated into other recursive invocations of
subtyping (rather than the defaults Γ0 and γ0) whenever:

– The second parameter to the recursive invocation is T , unmodified.

– T = T ′[].

– T = T1 & . . . & Tn.

The parameters Γ and γ are used to accomplish two things. First, as discussed

previously, the wildcard context allows us to determine the meaning of wildcard

references appearing in T . (Were we to recur on a wildcard upper bound appearing

in S, we would need two wildcard contexts, one for S and one for T . But we always

perform capture where S is wildcard-parameterized.) Second, we must be able to

recognize combinations of S and T in which S should be a subtype of T , but, in the

absence of γ, no finite application of the rules can show it.
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This second point requires some discussion. Consider the type T = C<?’ extends

C<?’>>. Assume the class D is declared as D extends C<D>. Then in order to show

that D <: T , we might follow these steps:

D <: C<?’ extends C<?’>>

C<D> <: C<?’ extends C<?’>>

D <: C<?’> where ?’ extends C<?’>

C<D> <: C<?’> where ?’ extends C<?’>

D <: C<?’> where ?’ extends C<?’>

. . .

The subtype relation must be defined to somehow “catch” this infinite regress

and determine that it constitutes a valid subtyping.∗

To formalize our understanding of subtyping in the presence of wildcard ref-

erences, we define a notion of finite expansion that removes references to certain

wildcards from a type.

The kth-degree finite expansion of a type, 〈T 〉k|Γ, is defined as follows:

• 〈C<W1 . . . Wn>〉k|Γ = C<W ′
1 . . . W ′

n> where, for all i:

– If Wi is a wildcard ? extends Tiu super Til, W ′
i = ? extends 〈Tiu〉k|Wi::Γ

super Til.

– If Wi is a wildcard reference ?m, k = 0, and |Γ| = m, W ′
i = ? extends

Object super null.

– If Wi is a wildcard reference ?m, k > 0, |Γ| = m, and Γ[m] = ? extends

Tiu super Til, W ′
i = ? extends 〈Tiu〉k−1|Γ0 super Til.

– Otherwise, W ′
i = Wi.

• 〈T ′[]〉k|Γ = 〈T ′〉k|Γ[].

• 〈T1 & . . . & Tn〉k|Γ = T ′
1 & . . . & T ′

n where, for all i, T ′
i = 〈Ti〉k|Γ.

∗ There are other forms of infinite regress, some of which are highlighted by Kennedy and Pierce
[6], that must not constitute a valid subtyping.
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• In all other cases, 〈T 〉k|Γ = T .

For example:

〈C<?’ extends C<?’>>〉0 = C<? extends C<?>>

〈C<?’ extends C<?’>>〉1 = C<? extends C<? extends C<?>>>

〈C<?’ extends C<?’>>〉2 = C<? extends C<? extends C<? extends C<?>>>>

Finite expansion is defined such that, for all T , 〈T 〉0 :> 〈T 〉1 :> 〈T 〉2 :> . . . :> T .

The type T can be viewed as the limit of these finite expansions as the degree

approaches ∞. This leads us to the conclusion, based on transitivity of subtyping,

that the following property must hold in the subtype relation:

Assume there exists some k such that, for all n, S <: 〈T 〉kn. Then S <: T .

With this understanding, it makes sense that the recursion in subtyping halts

in the wildcard reference case where Si is already being compared to Γ[k]. We’re

essentially converting the wildcard reference to ? extends Object super null, as

in finite expansion. We thus transform an attempt to prove that Si <: T into a proof

that, for some k, Si <: 〈T 〉k. Further, the demonstration provides evidence for the

inductive case: assuming Si <: 〈T 〉kn for some n, Si <: 〈T 〉k(n+1).

The subtyping clause for detecting infinite regress is more complex than sim-

ply asserting that γ[k] = Si. First, it is possible for the same wildcard to appear

multiple times in Γ before being compared twice to the type Si. If, for example,

the wildcard reference appears 5 levels deep (that is, it is the reference ?5), while

Si is similarly defined in terms of itself, but at 3 levels deep, Γ will have size 15
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before Si is compared to the same wildcard; at that point, Γ will contain 3 in-

stances of the wildcard. So the index j may be chosen for any position at which

Γ[j] = Γ[k]. Second, because capture produces unique variables with each applica-

tion, two capture variables that were produced from the same wildcard–variable

pair must be considered equivalent. Otherwise, not even the reflexive assertion

C<?’ extends C<?’>> <: C<?’ extends C<?’>> can be demonstrated!

5.1.5 Join Function

The function join(S, T ) produces a tight upper bound on S and T . That is, for all U

such that S <: U and T <: U , join(S, T ) <: U . The use of join extends to an arbitrary

number of arguments, where join() = null, join(T ) = T , and join(T1 . . . Tn) =

join(. . . join(join(T1, T2), T3), . . . , Tn).

An additional parameter, θ, is a list of pairs of types. It is used to detect contexts

in which a wildcard reference must be created. By default, external invocations

provide an empty list (θ0); recursive invocations propagate the given θ.

join(S, T )|θ is defined as follows:

• If T <: S, join(S, T )|θ = S.

• Else if S <: T , join(S, T )|θ = T .

• Otherwise, the result is given in Table 5.1. (S matches one of the cases in the
left column; T matches one of the cases in the top row. A “-” in the table
represents a case that cannot occur.)

Where S ∼= T , the choice of S as the result over T is arbitrary and inconsequential,

since we can freely substitute T for S.
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null Ct<T1 . . . Tm> Ct<W1 . . . Wm> Ct

null - - - -
Cs<S1 . . . Sn> - [1] join(S, ‖T‖) join(S, T↑)

Cs<W1 . . . Wn> - join(‖S‖, T ) join(‖S‖, ‖T‖) join(S, T↑)
Cs - join(S↑, T ) join(S↑, T ) join(S↑, T↑)

ps[] - [2a] [2a] [2a]
S ′[] - [2a] [2a] [2a]

Xs - join(dSe, T ) join(dSe, T ) join(dSe, T )
S1 & . . . & Sn - [4a] [4a] [4a]

pt[] T ′[] Xt T1 & . . . & Tm

null - - - -
Cs<S1 . . . Sn> [2b] [2b] join(S, dT e) [4b]

Cs<W1 . . . Wn> [2b] [2b] join(S, dT e) [4b]
Cs [2b] [2b] join(S, dT e) [4b]

ps[] [3] [3] join(S, dT e) [4b]
S ′[] [3] join(S ′, T ′)[] join(S, dT e) [4b]

Xs join(dSe, T ) join(dSe, T ) join(dSe, dT e) join(dSe, T )
S1 & . . . & Sn [4a] [4a] join(S, dT e) [5]

[1]: There are two cases:

• If Cs = Ct, Cs<J1 . . . Jn>, where for all i:
– If Si ∼= Ti, Ji = Si

– If, for some k, θ[k] = (S ′
i, T

′
i ) where Si = S ′

i ∨ source(Si) = source(S ′
i)

and Ti = T ′
i ∨ source(Ti) = source(T ′

i ), Ji = ?k

– Otherwise, Ji = ? extends join(Si, Ti)|(Si,Ti)::θ super Si & Ti

• If Cs 6= Ct, join(S↑, T ) & join(S, T↑).
[2a]: join(Cloneable & Serializable, T )
[2b]: join(S, Cloneable & Serializable)
[3]: Cloneable & Serializable

[4a]: join(S1, T ) & . . . & join(Sn, T )
[4b]: join(S, T1) & . . . & join(S, Tm)
[5]: join(S1, T1) & . . . & join(S1, Tm) & . . . & join(Sn, T1) & . . . & join(Sn, Tm)

Table 5.1 : join(S, T ) where S and T are not directly related
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The rules for computing join in Table 5.1 are derived directly from the subtype

relation (Table 4.1), under the assumptions that S 6<: T and T 6<: S. As we would

expect, the table is symmetric, corresponding to the symmetry of the join function.

Case [1] is of particular interest. By allowing wildcards to have both upper and

lower bounds, we are able to produce a tight bound on two different parameterizations

of the same class. For example, where we have interface declarations A, B extends

A, and C extends A, the result of join(List<B>, List<C>) is List<? extends A

super B & C>. Without both bounds, we would be forced, as observed in the

Aarhus–Sun paper [8], to choose between List<? extends A> and List<? super

B & C>, both of which are valid results. Since neither result is a subtype of the

other, a type satisfying the join property would not exist.

Wildcard references are produced in case [1] where a recursive invocation of join

would otherwise produce the same result as the invocation represented by θ[k]. As

an example, the type Integer implements Comparable<Integer>, while the type

Double implements Comparable<Double>; both are Numbers. So we have (abbrevi-

ating the names):

join(Int, Dbl) = Nbr & Cm<?’ extends Nbr & Cm<?’> super Int & Dbl>

Case [5] produces an intersection of arity n × m. While the size of the result is

daunting, a good implementation ought to optimize the operation—for example, it

is quite likely that some of the results of join would be redundant, and the imple-

mentation could then replace the result with a simpler, equivalent type.
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5.2 Type Argument Inference

The two core functions in type argument inference, <:? and :>?, must be updated to

reflect the changes that have been made to the subtype relation. In addition, ∧cf

must be defined in terms of join instead of union types. The rest of the algorithm

is unchanged.

5.2.1 Constraint Formulas

We revise ∧cf as applied to simple constraint formulas as follows. Let SC1 . . . SCm

be simple constraint formulas. Let Tijl refer to the lower bound of Ti in SCj, and

Tiju refer to the corresponding upper bound. Then ∧cf (SC1 . . . SCm) has value

n∧
i=1

join(Ti1l . . . Timl) <: Ti <: (Ti1u & . . . & Timu)

5.2.2 Subtype Inference

In addition to µ, <:? is now parameterized by wildcard context Γ and list of types γ.

As in subtyping, these parameters are by default Γ0 and γ0, but are propagated into

recursive invocations where F is unchanged, F is an array, or F is an intersection.

We also modify the definition of A <:? F |Γ,γ,µ in the following ways:

• Where F and the wildcards to which F contains references involve none of
P1 . . . Pn, the result is A <: F |Γ,γ (treating the boolean result of <: as a trivial
constraint formula).

• If A = Ca<A1 . . . An>, F = Cf<W1 . . . Wm>, and Ca = Cf , the result is
∧cf (CF1 . . . CFn) where, for all i:

– If Wi is a type, CFi = Ai ∼=? Wi.
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– If Wi is a wildcard ? extends Fiu super Fil,
CFi = ∧cf (Ai <:? Fiu|Wi::Γ,Ai::γ, Ai :>? Fil|Γ0,γ0).

– If Wi is a wildcard reference ?k and ∃j, Γ[j] = Γ[k] ∧ (γ[j] = Ai ∨
source(γ[j]) = source(Ai)) then CFi = true; otherwise, CFi is the re-
sult of the wildcard case for Γ[k].

It is possibly the case that A<:?F will never be invoked where F contains wildcard

references—given the ways in which the inference algorithm uses this function (and

the language specification uses the inference algorithm), F arises out of either the

declared type of a formal parameter or the declared return type of a method, neither

of which are types produced by join. If that is true, these extensions to <:? are

unnecessary. However, A in A:>?F certainly can contain wildcard references, so

there is little benefit to assuming they are not present here, and we prefer not to

make such a guarantee.

5.2.3 Supertype Inference

The changes to the subtype relation are similarly reflected in the definition of :>?. We

add parameters Γ and γ. These are by default Γ0 and γ0, except when propagated

into recursive invocations when A is unchanged, A is an array, or A is an intersection.

Similar changes to the other rules must also be made:

• Where F involves none of P1 . . . Pn, the result is F <: A|Γ,γ (treating the boolean
result of <: as a trivial constraint formula).
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• If A = Ca<W1 . . . Wn>, F = Cf<F1 . . . Fm>, and Ca = Cf , the result is
∧cf (CF1 . . . CFn) where, for all i:

– If Wi is a type, CFi = Wi ∼=? Fi.

– If Wi is a wildcard ? extends Aiu super Ail,
CFi = ∧cf (Aiu :>? Fi|Wi::Γ,Fi::γ, Ail <:? Fi|Γ0,γ0).

– If Wi is a wildcard reference ?k and ∃j, Γ[j] = Γ[k] ∧ (γ[j] = Fi ∨
source(γ[j]) = source(Fi)) then CFi = true; otherwise, CFi is the re-
sult of the wildcard case for Γ[k].
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Chapter 6

Comparison of Type System Variations

Now that we have three variations on the Java type system—union-based, join-

based, and the original (as defined by the JLS [2])—we can discuss the comparative

merits of each. Table 6.1 highlights the most important differences.

The greatest strength of the JLS system is, of course, that it is the current

standard—changes to that standard have far-reaching impact, and must not be made

lightly. On the other hand, there are clear problems with the JLS that need to be

addressed, and as long as these changes are being made, it would make sense to

consider the benefits of the other variations.

In addition to supporting the extended features described earlier, both the union-

based and join-based variations address one shortcoming of the JLS: type argument

inference is an inflexible, heuristic procedure, making no guarantees about soundness

or completeness.∗ While sharing a strong inference algorithm, the two other systems

are distinguished by the presence of union types on the one hand and wildcard

references on the other. The union-based system has a clear advantage in this regard,

due to its relative simplicity.

Below, we describe how the join- and union-based systems differ from the JLS

in specific operations. Any major shortcomings of the JLS are highlighted, while

∗ To deal with potential unsoundness, the results of inference are checked for correctness before
being accepted by the type checker.
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JLS Union-based Join-based
Unique
features

Self-referencing wildcards (but
their handling in subtyping is un-
specified).

Union types. Self-referencing
wildcards.

Inference Unsound, incomplete, contains
bugs; no disjunctions.

Sound and complete; requires
reasoning about disjunctions.

Necessary
restric-
tions

Variables with lower bounds are
inexpressible, as are intersections
in most contexts; no multiple-
instantiation inheritance.

None. Variables cannot
have self-referencing
lower bounds.

Other Wildcards can’t have both
bounds; type null is inexpress-
ible; variable bounds can’t be
arrays.

Subtyping uses equivalence, not
equality; inference always uses
the expected type where avail-
able.

Table 6.1 : Major differences in type system variations

additional “bugs” and confusing content in the JLS are described in Appendix A.

We conclude by discussing how defining the specification in terms of one of these

systems would affect backwards compatibility.

6.1 Comparison of Type Operations

6.1.1 Fundamentals

Types. While wildcard references are not explicitly described in the JLS definition

of types (4.3-4.5, 4.8-4.9), it requires in the definition of join (15.12.2.7) that some

form of “infinite types” exist. Thus types in the JLS are like types in the join-based

system, with the exception that an intersection in the JLS is only permitted to appear

as the upper bound of a variable. The JLS definition also excludes wildcards with

both upper and lower bounds.
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Wildcard capture. The lower bound of a capture variable in the JLS is simply

the lower bound of the wildcard—the corresponding parameter must always have

a null lower bound. Extending the language to support lower bounds on declared

variables requires the use of unions or join in capture.

Subtyping. The most significant difference between the union- and join-based

subtyping rules and the JLS rules is the use of equivalence when comparing ar-

guments of ground parameterized types rather than equality. This change is not

strictly necessary, but it provides some convenience to programmers, and gives lan-

guage specifiers and implementors far greater flexibility. The order of the types in

an intersection produced by inference, for example, need not be made explicit, be-

cause C<A & B> is equivalent to C<B & A>. And the implementor is free to simplify

types to their equivalents without such optimizations being explicitly specified. The

use of equivalence has positive implications for backwards compatibility as well, as

described below.

The JLS fails to describe how subtyping works in the presence of wildcard ref-

erences. Without specific rules for demonstrating membership in the relation, a

variety of valid subtypings are implicitly prohibited. This failure is addressed by the

join-based system.

Well-formedness. In most respects, the union- and join-based systems have

less restrictive well-formedness rules than the JLS. Most significantly, the class ta-

ble and intersections expressed in code are prohibited by the JLS from exhibiting
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multiple-instantiation inheritance—no type may be a subtype of two distinct pa-

rameterizations of the same class. Further, the form of intersections is restricted so

that they can have only one most specific array or non-interface class supertype; and

when expressed in code, intersections are restricted such that a non-interface class

type may only appear as the first component type. Some of these restrictions help to

simplify type argument inference (as it is defined in the JLS), but they are otherwise

unnecessary.

If convenience to programmers is the goal of limitations on intersections, it might

be more useful to instead check that an intersection expressed in code is not trivially

uninhabited (except by null)—for example, only the value null has type Integer &

Float or String & Cloneable (String is declared final and does not implement

Cloneable). We do not specify such an analysis here.

One restriction that should be present in the JLS but is not is the requirement

that a variable’s lower bound be a subtype of its upper bound. Variables with

both bounds may only be produced in the JLS system by wildcard capture, but it is

possible for users to provide lower bounds on wildcards that lead to these inconsistent

variables.†

Join. In the JLS, join is called lub (15.12.2.7). The function sometimes pro-

duces a tight result, as does the join-based system, but in many instances is less

precise. As discussed in the join-based definition, wildcards with both upper and

† The javac compiler does insure that wildcard lower bounds are consistent with the corre-
sponding parameters’ upper bounds, despite the absence of such an assertion in the JLS.
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lower bounds are essential to defining a tight join function. The JLS version is

thus inherently limited. In addition, it does not produce a best bound in some sit-

uations in which such a bound is expressible: join(List<Object>, List<String>),

for example, produces List<?>, not List<? super String>; variables are not pro-

duced by the function under any circumstances; arrays are not handled correctly—

they must always be erased; and, in a case that is simply incorrect, invocations

like join(List<? extends Number>, List<? super Number>) produce results like

List<Number>.‡

The JLS version of join does not perform capture when handling wildcard-

parameterized class types in some cases. Since wildcards carry with them the as-

sumption that instantiations will fall within the parameter’s declared bounds, this

is a valid approach to take. Capture must be used to determine a direct supertype,

however, so we prefer the brevity of consistently using capture in the join-based

system.

6.1.2 Type Argument Inference

The type argument inference algorithms in the union-based and join-based systems

are essentially equivalent, with slight adjustments made to support different subtype

relations. The inference algorithm defined in the JLS (15.12.2.7) is also similar, at

a high level, to these algorithms. It relies on analogs to <:? and :>?, which produce

‡ Fortunately (for the sake of type safety), javac does not faithfully implement the JLS in this
last case.
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bounding constraints on the inferred types; the inferred lower bounds are combined

via join to determine a satisfactory type. There are significant differences between

the algorithms, however.

First, constraint formulas in the JLS are constraint sets, capable of representing

conjunctions but not disjunctions (in other words, they can only represent simple

constraint formulas). The JLS algorithm avoids the need to describe disjunctions

based on the following simplifying assumptions:

• Neither A nor F is a union type.

• F , if it is a variable but not one of P1 . . . Pn, cannot involve any of P1 . . . Pn.

This is because F is always derived from a type appearing in the method

signature, no declared variable appearing there can have P1 . . . Pn in scope at

its declaration point, and capture variables are never produced by the JLS

algorithm.

• In <:?, where A is an intersection and F is a class type, there is at most one

class supertype of the intersection that has the same class name as the upper

type; where A is an intersection and F is an array type, there is at most one

most specific array supertype of the intersection.§

• F cannot be an intersection. Intersections can only be reached recursively by

the inference functions. However, variables, which might have intersections in

§ As a technicality, the JLS does not describe how A <:? F should be handled where A is an
intersection and F is an array, but the correct behavior follows directly from this assumption.
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their upper bounds, cannot involve any of P1 . . . Pn, and so the recursion would

never occur; and for the reasons outlined in the previous point, there is no need

to represent the supertype of a class type as an intersection.

In the presence of these simplifications, it’s clear from Tables 4.2 and 4.3 that ∨cf

need never be invoked. So the only useful constraint formula that is inexpressible in

the JLS representation is false (the handling of this problem is described below).

However, if we want to allow arbitrary intersection types, use capture on F to im-

prove the algorithm, or relax any of these assumptions, a more versatile constraint

representation is necessary.

Second, the JLS inference algorithm is (intentionally, in some cases) unsound.

The following limitations lead to unsoundness:

• The false constraint formula is not representable, so situations that lead triv-

ially to unsatisfiability are merely ignored, as are inconsistent combinations of

lower and upper bounds on any of T1 . . . Tn.

• Default bounds on wildcards are incorrectly ignored. For example, List<?> <:?

List<? extends T> should produce Object <: T <: Object; the JLS algorithm

produces true instead.

• If A in :>? is null, the result is true (rather than, for example, null <: T <: null).

• If A in :>? is a variable, it is not handled correctly: if its upper bound is an

array, the algorithm recurs on that bound; otherwise, it produces true. The
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correct behavior is to recur on the lower bound.

• In situations in which one of the Pis’ upper bound is used to produce Ti,

references to P1 . . . Pn in that bound may leak into the calling context. For ex-

ample, given method signature <T extends List<T>> T method(), inference

may determine (depending on the value of E) that T = List<T>.

These problems don’t lead to an unsound type system, because the JLS requires an

additional check that the inferred types are satisfactory before using them. They can,

however, lead to unnecessary failure of the algorithm and encourage implementation

bugs. The following program, for example, is compiled by javac without warning,

but throws a ClassCastException at run time. The cause of the bug seems to be

the third item above, compounded by the fact that the compiler does not verify its

inference results in this case.

<T> List<? super T> id(List<? super T> arg) {

return arg;

}

void test() {

List<Float> ln = new LinkedList<Float>();

List<?> l = ln;

List<? super String> ls = id(l);

ls.add("hi");

Float f = ln.get(0);

}

Third, the JLS inference algorithm is incomplete. This is due in part to the

limitations of the join function, as discussed previously. In addition, the algorithm

never invokes capture. As noted above, using capture in some cases would require
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support for disjunctive constraint formulas (performing capture on A, however, has

no such effect). But a consequence of not using capture is that types that could

be produced from the bounds of parameter declarations are ignored, and, conse-

quently, the inferred constraints may be too restrictive. Consider, for example,

a class declaration Foo<X extends A> (let A and B be interface names). The in-

vocation Foo<? extends B> <:? Foo<? extends T> produces Z <: T <: Object where

dZe = A & B; the JLS algorithm produces the more restrictive B <: T <: Object. The

type A meets the constraints on T in the first case, but not the second.

Finally, the initial framing of the problem and final process of choosing inferred

types are slightly different in the JLS algorithm. We must use capture in the union-

and join-based algorithms to satisfy the inBounds condition where variables may

have lower bounds; this is not necessary where there are no declared lower bounds

(although it would solve the problem described above of parameters in upper bounds

appearing out of context).

The JLS also differs in not incorporating the method return type and expected

type (R and E) into the algorithm unless the lower bound produced for a type

variable is null. Incorporating such contextual information into type checking is

a significant (and perhaps undesirable) paradigm shift, but since the JLS already

requires this information, there is no reason not to take advantage of it in all cases.

In addition, where a variable has lower bound null even after considering the

return type, the JLS chooses its upper bound as the result. It is an open question
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whether such a choice is more useful to programmers in general; as we discussed

previously, the choice of specific types for T1 . . . Tn once the bounds on the variables

have been established is essentially arbitrary.

6.2 Backwards Compatibility

Enhancements to the Java language are generally made in a backwards-compatible

fashion: the modified language should be a superset of the previous version. Un-

fortunately, changes to the current specification that affect join and type argument

inference are almost impossible to make without rendering some programs incorrect.

Consider, for example, the signature of the method java.util.Arrays.asList:

static <T> List<T> asList(T... ts). If this method is invoked in a context

in which the expected type E is unknown—as an argument to another method, for

example—invariant subtyping can easily cause a correct program to become incorrect

with only slight modifications to the inference algorithm. That is, where the original

algorithm produces T = T1 and the context of the invocation requires a List<T1>,

an algorithm that produces a better but different type T2 will lead to an assertion

that List<T2> <: List<T1>, which is false.

More troubling is the possibility that a change to join or the inference algo-

rithm, while not invalidating a certain previously well-formed program, will change

the meaning of that program. This is possible because overloading resolution is de-

pendent on the types produced by type checking. The value of the test method
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below, for example, depends on the sophistication of the inference algorithm used:

interface NumBox<T extends Number> {

T get();

}

static <T> T unwrap(NumBox<? extends T> arg) {

return arg.get();

}

static int f(Object o) { return 0; }

static int f(Number n) { return 1; }

static int test(NumBox<?> arg) {

return f(unwrap(arg));

}

A system with an inference algorithm that uses capture (or otherwise incorporates

the declared bounds of a wildcard’s corresponding parameter) can determine that

the f(Number) function is applicable in the body of test; one that does not will

instead resolve f to the f(Object) function.

Despite these incompatibilities, the previous section’s outline of problems in the

JLS’s join function and type argument inference algorithm should provide motivation

for fixing these operations, even if the other recommendations in this thesis are not

incorporated. So we are left with a problem: do we go to great lengths to enforce

backwards compatibility with broken operations (perhaps by defining two inference

algorithms, and using the second only when the first is unsuccessful), or relax this

requirement in order to correct and clean up the specification? Complicating this

question is the fact that the javac compiler, and presumably others, is not entirely
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consistent with the JLS, especially in areas where the JLS is incorrect. So it’s not

clear exactly which language any changes should seek to be backwards-compatible

with.

The most attractive path is to introduce a new source language version that is

not entirely backwards compatible. This is analogous the the situation in which a

1.4 source language version was specified in order to add the keyword assert to the

language, breaking any previous programs that happened to use assert as a variable

name. A source-to-source tool could be developed that implemented both the old

and new type systems, and inserted casts or explicit type arguments as necessary

wherever the two conflicted.

A variety of properties of the union- and join-based type systems soften the impact

of the language change, minimizing the number of correct programs that would be

rendered incorrect by the new system:

• Because type argument inference is defined in terms of the expected type E,

and because the inference algorithm is complete, changes to inference will never

be problematic in contexts in which E is known (this includes assignments and

return statements).

• The results of join are always subtypes of the results produced by the JLS

(except where the JLS is incorrect); in practice, inferring a subtype for a pa-

rameter is often safe, since type variables in method return types are frequently

not nested.
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• The use of equivalence in subtyping allows changes that produce different but

equivalent types to be permitted.

Assuming one of the type systems defined in this thesis were to be adopted, which

one would be more appropriate? The union-based system has some clear advantages

over the join-based version. The lack of wildcard references greatly simplifies the

specification and implementation. And it makes no restriction of self-referencing

lower variable bounds. Its biggest drawback is that it is less backwards-compatible.

Assume classes B and C are subtypes of A. In a context in which the expected type, E,

is unknown, the invocation Arrays.asList(new B(), new C()) has type List<A>

under the join-based system and List<B|C> in the union-based system. The first

type is backwards-compatible, while the second is not. In general, where E is un-

known, the arguments to a method imply more than one bound on a parameter, and

the parameter appears in an invariant context in the return type, the union-based

system will often be incompatible because it will give the parameter a union type.

The join-based system will be compatible in many of these instances. While this sit-

uation probably does not arise frequently, the difference is worth some consideration.

The benefits of the union-based system, however, may be enough to outweigh these

compatibility concerns.
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Chapter 7

Conclusion

We have defined two variations on the Java type system able to support lower

bounds on declared type variables, wildcards with both upper and lower bounds,

and intersections as first-class types. We have demonstrated that the operations the

Java language performs on types can be extended to correctly handle these types

without artificial restrictions. In addition, we have demonstrated that the proper

application of these extensions makes possible the definition of a sound and complete

type argument inference algorithm.

An immediate goal of this work is to incorporate one of the two variations into

a future version of the Java language; as discussed when comparing the improved

type systems to the current specification, a number of flaws in the JLS strengthen

this cause, since a revision that is not backwards-compatible probably ought to be

made anyway to fix those bugs. The argument for these changes could be further

strengthened by an experimental study of their practical impact. It would be useful to

demonstrate, for example, that many current Java programs would not be adversely

affected by backwards-compatibility problems under one or both of the type system

variations.

The described type systems are being implemented as components of the DrJava

IDE’s interactive interpreter [10]. When completed, the updated interpreter will
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provide a useful demonstration of these modified typing rules.

Another potential path for future work is to complement the various assertions

of safety, well-formedness, soundness, etc., made throughout this thesis with formal

proofs. The scope of this work—a full, practical object-oriented language rather than

a theoretical calculus such as Featherweight Java [3]—makes such a task significant,

but clearly the support provided by formal proof is important in establishing that

these type systems are not just convenient, but ideal in important ways.

Finally, it may be useful to explore how some of the changes introduced in these

type systems might support future features of the language. Union types, for exam-

ple, could be quite useful to users when combined with a pattern-matching construct,

as discussed by Igarashi and Nagira [5]. And tightly-bounded variables, such as LN

extends List<Number> super List<Number>, combined with support for equiva-

lence in subtyping, provide a convenient framework for supporting type aliases—the

variable LN could be used wherever List<Number> was required.
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Appendix A

Summary of Bugs in the JLS

This thesis notes in passing a variety of specification bugs in the JLS. A com-

prehensive list of the bugs we have encountered in working with the JLS follows,

including many not noted elsewhere.

A.1 Errors

• The textual definition of reference types (4.3) lists class types, interface types,

and array types, but not variable types; the formal definition does include vari-

able types. Variable types are also ignored in 4.3.4. (It would also make sense

to include the null type and intersection types in this definition, despite the

fact that they are not expressible in program code, because they are reference

types.)

• The definition of “type variable” does not include a lower bound (4.4), but

subtyping (4.10.2) and capture conversion (5.1.10) require variables with lower

bounds. There is no compile-time restriction on the relationship between a

lower and an upper bound (analogous to the compile-time restrictions that ap-

ply to intersections produced by capture conversion (4.9)), so it is not clear that

a static error should occur when class Foo<T extends Integer> is instanti-

ated as Foo<? super Number> (javac treats this as an error, and it would be
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unwise not to do so).

• The definition of subtyping involving intersections (4.10) is incomplete. It does

not allow an intersection to appear as the direct supertype of any type, implying

that an intersection is only a supertype of itself. This is clearly inconsistent

with the definition of intersection types (4.9). The correct subtyping definition,

as presented here, is nontrivial when an intersection is compared to a variable

or to another intersection.

• The definition of subtyping does not cover infinite types. For example, the fact

that X extends List<X> <: List<? extends List<. . .>> cannot be arrived at

by any number of applications of the direct supertype and containment rela-

tions.

• The type argument inference algorithm (15.12.2.7) does not correctly handle

the null type. null >> T ought to produce T <: null.

• The type argument inference algorithm (15.12.2.7) does not correctly handle

variables. A << F , where A is a variable with an intersection upper bound

and F is an array, produces no constraints. (This is incorrect if one of the

members of the intersection is an array type.) A >> F or A = F , where A is

a variable and F is an array type, incorrectly recurs on A’s upper bound (this

is only valid for A << F ). A >> F , where A is a variable and F is not an

array type, produces no constraints; it ought to recur on A’s lower bound.



81

• Trivial bounds on wildcards are incorrectly ignored by the type argument in-

ference algorithm (15.12.2.7). The fact that the wildcard in List<?> has up-

per bound Object and lower bound null ought to be exploited where possi-

ble; bounded wildcards also have trivial bounds that can be exploited. For

example, List<? super String> << List<? extends T> ought to produce

T :> Object.

• The lub function (a.k.a. join, 15.12.2.7) is defined incorrectly for some wildcard-

parameterized types: lub(List<? extends A>, List<? super A>) would pro-

duce List<A>, which is clearly incorrect. javac fixes the bug.

• The process that produces an infinite type is not formally specified by lub

(a.k.a. join, 15.12.2.7). A strict interpretation leads to the conclusion that a

lub invocation that ought to produce an infinite type actually has an undefined

result.

• The inference algorithm’s handling of unresolved type arguments (15.12.2.8)

allows references to an unresolved parameter in the upper bound of a param-

eter to leak into the calling context. For example, given method signature <T

extends List<T>> T method(), inference may determine (depending on the

assignment context) that T = List<T>.
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A.2 Simple Missing Features

• The implicit use of equality in the subtype relation (4.10) when comparing

type arguments is based on syntactic equality (“the same,” 4.3.4). Thus, the

following code is illegal, because a tightly-bound variable is not syntactically

equal to its bounds. javac does not report an error, and we favor its approach,

defining “equals” in terms of mutual subtypes.

class NumBox<T extends Number> { ... }

NumBox<? super Number> nb = ...;

NumBox<Number> nb2 = nb;

• Unboxing conversion (5.1.8) should be defined to explicitly support subtypes

of the wrapper types, such as a variable with bound Integer. It should be

possible, for example, to unbox the members of a List<? extends Integer>.

Alternately, all contexts that allow an unboxing conversion (such as numeric

promotion (5.6)) should allow a preceding widening reference conversion; this

second formulation may be more confusing, though, because boxing conversions

do not support a similar widening primitive conversion before boxing.

• The type argument inference algorithm (15.12.2.7) could produce more general

results by invoking capture on A where A is a wildcard-parameterized class

type. For example, given class declaration Foo<X extends A> (let A and B be

interface names), the invocation Foo<? extends B> << Foo<? extends T>

produces T :> B; it could produce the less restrictive T :> A & B. The type A
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meets the constraints on T in the first case, but not the second.

• lub (a.k.a. join, 15.12.2.7), due to its dependence on erasure, does not sat-

isfactorily handle variables or arrays of parameterized class types. For exam-

ple, given variable declarations <X, Y extends X, Z extends X>, lub(Y, Z) =

Object, because |X| = Object. Clearly, X would be a more useful result in

this case. (In the case of arrays, lub(List<Integer>[], List<Double>[]) =

List[], based on the JLS. javac provides the more useful List<? extends

Number>[].)

• Where lub (a.k.a. join, 15.12.2.7) produces no useful upper bound for a wild-

card, it would be convenient to produce a lower bound instead. For example,

lub(List<Object>, List<String>) = List<?>, but could produce the more

useful List<? super String>.

• Since the type argument inference algorithm (15.12.2.7) requires in some cases

the incorporation of the expected return type, it would be trivial to allow

its use in all cases. This would allow invocations like List<Number> l =

Arrays.asList(1, 2, 3), which is currently incorrect because the algorithm

chooses Integer as the type of the list, not Number. This change could have no

ill effects on backwards compatibility, because it would only produce a different

return type for the method where the currently-inferred type is incompatible

with the calling context—only programs that contain type errors currently
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would be typed differently.

• It’s not clear that the type argument inference algorithm’s (15.12.2.7) choice

of a parameter’s inferred upper bound as the result in some cases is warranted.

The upper bound is chosen where the lower bound is null. For example,

someMethod(Arrays.asList()) passes a List<Object> to someMethod. Our

suggested choice of the lower bound in all cases is better in some situations,

is not obviously worse in general, and has the benefit of consistency. In

the someMethod example, it’s likely that a List<null> would be more use-

ful than a List<Object>, assuming the method signature is something like

void someMethod(List<? extends Number> l).

A.3 Confusing Content

• The distinction between a type variable bound involving multiple types (4.4)

and an intersection type (4.9) is unclear and unmotivated. The assertion is

made that “it is not possible to write an intersection type directly as part of a

program; no syntax supports this,” but the type variable bound does provide

a syntax to describe the very same notion, even if it is not defined as such.

• The notion of containment (4.5.1.1) would be better described as direct contain-

ment, with containment being the reflexive, transitive closure of this relation.

It is only used in the definition of direct supertype, which is closed to produce

the supertype relation (4.10), so, strictly speaking, it is correct as it stands.
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However, the name is confusingly inconsistent with the definition. As demon-

strated here, this concept is not essential in the definition of subtyping anyway

(it can instead be expressed concisely in the subtype definition), and could be

removed entirely.

• S <: T is defined to mean T :> S ∨ S = null (4.10). Since the definition of :>

includes null, the additional check that S is null is redundant.

• The descriptions of parameterized types (4.5) and subtyping (4.10) are incon-

sistent in their use of metavariables. T , for example, represents a type in the

subtyping section, while representing a type argument (possibly a wildcard) in

the parameterized types section. This makes the presentation very difficult to

decipher. It’s also not clear whether class types with no parameters, including

raw types, are to be considered degenerate parameterized types (the definition

seems to imply that they are not, while the subtyping section, to be correct,

must assume that they are).

• The presentation of the type argument inference algorithm (15.12.2.7) is diffi-

cult to follow and appears more complicated than necessary due to the excessive

use of “discussion” blocks explaining the logic behind the algorithm. These dis-

cussions might be less distracting if presented separately from the main body

of the algorithm.

• The discussion overview of type argument inference (15.12.2.7) confusingly
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merges the concepts of lub and intersection. It even suggests that lub(I, J) =

I & J, which is simply incorrect. The use of the word intersect in this context

is unfortunate, since it suggests the incorrect use of intersection types and the

glb function.

• The type argument inference algorithm (15.12.2.7) performs boxing, suggesting

that recursive invocations of the algorithm could lead to incorrect boxing (for

example, int[] << T[] could produce T :> Integer). Such incorrect results

are prevented by never invoking the algorithm recursively with a primitive type,

but this invariant is never stated, and discovering it requires careful reading

(the array rule requires that the element type be non-primitive). A simpler

presentation would separate issues related to boxing from the core algorithm.

• The handling of inferred equality constraints in the type argument inference

algorithm (15.12.2.7) is far more general than necessary: the algorithm allows

arbitrary equivalences to be established between parameters, while the process

that produces these constraints follows a discipline guaranteeing that, given

constraint S = T , S is a parameter to be inferred and T is a type that is

valid in the calling context. There is no need to equate two different inference

parameters and perform a unifying substitution on all other constraints.

• The specification of lub (a.k.a. join, 15.12.2.7) is far removed from the specifi-

cation of subtyping (4.10) and relies heavily on raw types, which were intended
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to be merely a bridge with legacy code. This gives rise to bugs in the JLS,

and makes the definition difficult to follow. Implementations are certainly free

to define their algorithms in terms of sets of erased types, but a much clearer

presentation would follow the definition of subtyping as closely as possible and

describe the function recursively.
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Appendix B

Summary of javac Bugs

In the process of experimenting with the Sun implementation of a Java com-

piler, javac, we have noted the following bugs. In addition, there are a variety of

inconsistencies between the compiler and the specification related to the specifica-

tion bugs above (the compiler may, for example, implement something correctly but

inconsistently due to problems in the specification).

B.1 Present in Versions 5.0 and 6.0

• Capture is not used to statically check the bounds of of a wildcard-parameterized

type:

class ABClass<A, B extends A> {}

// This instantiation should be illegal:

ABClass<? extends String, String> ab2;

• The inference algorithm produces unsound results and does not check their

accuracy in some cases. The following program, for example, is compiled by

javac without warning, but throws a ClassCastException at run time.
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<T> List<? super T> id(List<? super T> arg) {

return arg;

}

void test() {

List<Float> ln = new LinkedList<Float>();

List<?> l = ln;

List<? super String> ls = id(l);

ls.add("hi");

Float f = ln.get(0);

}

• Infinite types are not produced by join, as the following code demonstrates:

class Box<T> {}

class SelfBox1 extends Box<SelfBox1> {}

class SelfBox2 extends Box<SelfBox2> {}

// This should be legal:

Box<? extends Box<? extends Box<?>>> b2 =

true ? new SelfBox1() : new SelfBox2();

B.2 Fixed in Version 6.0

• Capture is not implemented correctly, ignoring the wildcard’s bound when

there is a bound on the parameter:

class NumBox<T extends Number> {

public T get() { return null; }

}

NumBox<? extends Cloneable> b = null;

// This should be legal:

Cloneable c = b.get();
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• Unboxing conversion cannot handle subtypes of the wrapper types, such as

bounded variables, at compile-time; an internal error occurs (the specification

is not extremely clear on this, but regardless of the interpretation, the compiler

should not unexpectedly fail):

<T extends Integer> void method(T arg) {

// This should be legal:

int x = arg + 3;

}
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