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Abstract

Designing Type Inference for Typed Object-Oriented

Languages

by

Daniel Smith

Type-checked object-oriented languages have typically been designed with ex-

tremely simple type systems. However, there has recently been intense interest in

extending such languages with more sophisticated types and subtyping relationships.

Java and C# are mainstream languages that have been successfully extended with

generic classes and methods; Scala, Fortress, and X10 are new languages that

adopt more advanced typing features, such as arrows, tuples, unions, intersections,

dependent types, and existentials.

Presently, the type inference performed by these languages is unstable and evolv-

ing. This thesis explores problems arising in the design of a type inference speci�cation

for such languages.

We �rst present a formal description of subtyping in the context of a variety of

advanced typing features. We then demonstrate how our formal subtyping algorithm

can be easily re-expressed to produce a type inference algorithm, and observe that this

algorithm is general enough to address a variety of important type-checking problems.
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Finally, we apply this theory to a case study of the Java language's type system.

We express Java's types and inference algorithm in terms of our formal theory and

note a variety of opportunities for improvement. We then describe the results of ap-

plying an improved type inference implementation to a selection of existing Java code,

noting that, without introducing signi�cant backwards-incompatibility problems for

these programs, we've managed to signi�cantly reduce the need for annotated method

invocations.
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Chapter 1

Introduction

1.1 Context

Computer programs are instructions that describe how a computer should map in-

put�something typed on a keyboard, gestures performed by a mouse, data stored in

a �le, etc.�to output�text or images displayed on a monitor, data stored in a �le,

etc. The standard conventions followed to express a program are called a program-

ming language; the semantics of a particular language are a generic description of

the steps that must be performed to map a program and its input to its output. If

the semantics don't make sense for a particular program�input pair, an error occurs.

Certain programming languages are designed so that some potential errors can

be recognized in a program independent of its input. This makes possible static

analysis, the checking of a program for errors when it is written rather than when it

is executed. This is useful for language designers, because it means that the language

semantics can be based upon limiting assumptions about the programs they execute.

It is useful for programmers, because it allows them to get immediate feedback when

they've made a mistake.

One particularly fruitful kind of static analysis is type checking. Most languages

contain variables and expressions which can be used to abstractly describe values.
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For di�erent inputs, an expression may represent a di�erent value, but usually those

di�erent values all have similar properties, and can appear interchangably in other

expressions. Thus, it's useful to assign a type to each expression, which describes

the set of values that the expression may represent. Type checking veri�es that

expressions with particular types only appear in contexts in which values of that type

make sense. A type system is a portion of the language de�nition that describes types

and how they are used in static analysis.

For example, some �object-oriented� languages allow programs to de�ne objects,

a kind of value that bundles together data about some entity and various functions

for operating on it. In this context, a type might be a description of the functions

bundled by an object. The type checker would be used to verify that the program

never tries to apply a function that an object might not contain.

In a typical object-oriented language, expressions can have many types�a pro-

gram can declare certain classes of objects as �extensions� of other classes of objects,

for example, thus forming hierarchies or directed graphs in which an object has a

number of �ancestor� types, each providing a less-speci�c description of the object.

To manage this complexity, type checkers usually determine just one minimal (or

most-speci�c) type for each expression; then when the type checker needs to guaran-

tee that some expression has type T , and given that the expression has minimal type

S, the type checker veri�es that S is a subtype of T .

To document programmers' intent and help guide type checking, type-checked
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languages typically make use of type annotations, in which part of the program is a

description of the types expected to appear in a particular context. In some cases,

these annotations are important for type checking, but tedious for programmers to

write and maintain. So a language might support type inference, a process by which

the type checker infers the appropriate type annotations in cases in which they were

elided. In languages with subtyping, type inference and subtyping are closely linked.

This thesis focuses on the design of type systems for one particular class of pro-

gramming languages: type-checked, object-oriented languages that make use of sub-

typing and type inference.

1.2 Purpose

Type-checked object-oriented languages have typically been designed with extremely

simple type systems: class declarations introduce types, and relationships between

types are explicitly stated. However, there has recently been intense interest in ex-

tending this paradigm with more sophisticated types and subtyping relationships.

Java and C# are mainstream languages that have been successfully extended with

generic classes and methods; Scala, Fortress, and X10 are new languages that

adopt more advanced typing features, such as arrows, tuples, unions, intersections,

dependent types, and existentials. All of these additional features allow more pro-

grammer expressiveness, but the burden of complexity quickly dictates that some

form of inference take place, allowing programmers to elide some type annotations.
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Presently, the type inference performed in these languages is unstable and evolv-

ing�in Java, inference is inconsistent among implementations and poorly-speci�ed;

in Fortress and X10, a concrete inference speci�cation has not yet been produced.

This thesis explores problems arising in the design of such a speci�cation.

1.3 Overview

In chapter 2, we explore the theory of subtyping, starting with a basic language of

types and extending it with features that are relevant to object-oriented languages

with advanced type systems. Chapter 3 establishes a formal framework for type

inference driven by the subtype relation. Chapter 4 applies the theory established

in the previous chapters to a case study of the Java language's type system, noting

a variety of opportunities for improvement, and discussing how such changes would

impact legacy code.



Chapter 2

Theory of Subtyping

The subtype relation is fundamental in most object-oriented languages' type sys-

tems. In this chapter, we'll establish a formal theory for modeling subtyping with

a variety of advanced typing features. In each case, we'll consider how the subtype

relation can be extended to include the new feature��rst by describing the relation

using straightforward declarative inference rules, and then by reexpressing the rela-

tion algorithmically.1 This translation from a declarative to an algorithmic de�nition

is important for two reasons: �rst, because it allows us to examine some issues that

arise in a concrete implementation of subtype testing; and second, because the for-

mal presentation of type inference in chapter 3 builds upon the algorithmic version

of subtyping.

To limit our scope, there are a variety of important research endeavors that are

not undertaken in this formal presentation:

• This is not a denotational semantics for types. We rely frequently on the in-

tuition that types �represent� sets of values, and that the subtype and subset

relations are similar. However, this correspondence is not explored formally;

instead, we take an operational approach: types are, formally, syntactic enti-

ties, and the subtype relation is simply the set of pairs that can be shown to be

1We follow Pierce's methodology here, and adopt his terminology [14].
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related by some application of inference rules.

• This is not a formal proof of type safety or soundness and completeness. Our

ability to make conclusive statements about a particular type system is lim-

ited by our abstract discussion: rather than focus on a particular language, we

address typing features that may be useful in a variety of contexts. So there

is no attempt to describe or prove properties about the semantics of a partic-

ular language. In addition, we do not attempt to formally demonstrate the

correspondence between the declarative and algorithmic subtyping de�nitions.

• This is not a comprehensive list of typing features. The features addressed in

this section are drawn from concrete examples in real production or prototype

object-oriented languages; an e�ort is made to avoid language-speci�c quirks

and undue limiting assumptions. But these features are only a sample, meant to

provide a �avor of the kind of work that would be done in developing subtyping

and type inference for a concrete language.

• This is not a guide to implementation. While we occasionally mention how

certain simpli�cations might help an implementation's performance, our focus is

on the speci�cation of type systems. Producing an implementation is a separate,

complex problem.
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2.1 Core Type System

To begin, we'll specify a simple core language of types and de�ne a subtype relation

over those types.

2.1.1 Types

Intuitively, a type represents a set of values. Claiming that an expression has a type

T implies that, if the expression can be evaluated successfully, the result will be a

value in the set represented by T .

T ::= B

>

⊥

For now, the types we'll consider are all atomic�that is, they are not composed

of other arbitrary types�and fall into three classes:

• The set of base types, B. The meaning of these types is language-speci�c (they

may, for example, either be primitives or be declared in a particular program).

• The top type, >, which represents the set of all values. All expressions have this

type.

• The bottom type, ⊥, which represents the empty set of values. If an expression

has this type, it must always fail to evaluate successfully.
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Typically, base types are represented as a set of names (although we do not preclude

more complex structures). Throughout this thesis, we will treat names as globally-

unique identi�ers. The details of mapping the text of a program to these globally

unique names (or guaranteeing that such a mapping is unnecessary) is beyond our

scope. By making this assumption, we avoid the tedious details of variable shadowing

and other name-related issues.

2.1.2 Declarative Subtyping

The subtype relation provides an ordering for types, from more speci�c to more gen-

eral. Just as types intuitively represent sets, the subtype relation (between types)

intuitively corresponds to the subset relation (betweeen sets).2

To de�ne subtyping for an open set of base types, we'll need to express it in terms

of a type environment Γ.3 The environment contains the following relation:

Γ.extends(A,B) asserts that base type A is a subtype of base type B.

The details about which base types appear in this relation are speci�c

to a particular language; of course, we require that the values of the

2It should be emphasized, however, that this correspondence is only an intuition, not a formal

part of the de�nition. Indeed, the de�nition of subtyping in a particular language may not be strong

enough to include certain pairs of types that are provably in the subset relation.
3Throughout this thesis, we'll use type environments to represent a variety of facts about the con-

text in which a type is to be interpreted. In general, the environment, Γ, is a record grouping together

various relations containing relevant facts. Each relation is referenced with dot notation�Γ.extends,

for example, is the relation we'll be using here.
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subtype actually belong to the supertype as well. This relation need not

be re�exive or transitive, and may be in�nite; however, the number of

types extended by a particular type must be �nite.

We can now de�ne subtyping among our core types with the following inference

rules. We'll call this a declarative subtyping de�nition, in contrast to the algorithmic

de�nition in the next section.

Γ ` T � T (Reflex)

Γ ` S � U,Γ ` U � T

Γ ` S � T

(Trans)

Γ.extends(A,B)

Γ ` A � B

(Base)

Γ ` S � > (Top)

Γ ` ⊥ � T (Bottom)

The rules Reflex and Trans guarantee re�exivity and transitivity, essential

properties of any subtype relation. Next, the Base rule maps entries in Γ.extends into

the subtype relation. Finally, the rules Top and Bottom de�ne > as a supertype4

and ⊥ as a subtype of all types.

4The supertype relation is the inverse of subtype. It can be written �.
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2.1.3 Algorithmic Subtyping

In order for a type checker to test that one type is a subtype of another, the subtyping

de�nition from the previous section must be reexpressed.5 In particular, there is not

a straightforward way to check the Trans rule:

Γ ` S � U,Γ ` U � T

Γ ` S � T

(Trans)

Given a certain S and T , the rule provides no guidance on how an algorithm might

�nd a suitable choice for U or, just as importantly, conclude that no such U exists.

As an alternative, we'll rewrite the Base rule in a way that supports checking

subtyping between base types without any need for Trans:

Γ.extends(A,B),Γ ` B � T

Γ ` A � T

(Base*)

Like Trans, Base* tests subtyping by checking for the existence of some third

type satisfying a condition; but, unlike Trans, it's clear where this type comes from:

it's listed in Γ.extends.

To guarantee termination (because Γ.extends may contain cycles), we'll also need

a relation in Γ for tracking recursive invocations:

5While this line of discussion may seem tedious as it applies to the core language of types,

the process of reexpressing subtyping algorithmically will be less obvious and more important as

additional typing features are introduced.
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Γ.without(ϕ) requires that assertions about types be made without relying

on the fact stated by ϕ (for our purposes currently, this fact always takes

the form of a subtyping assertion).

Let Γ ` S �: T represent an invocation of the subtyping algorithm for types S and

T in environment Γ. It can be resolved as follows:

1. If Γ.without contains �S �: T � then the result is false.

2. Otherwise, a �nite set of tests, as determined by the structures of S and T , and

as outlined in the table below, are performed. The result is true if and only if

one of these tests has a true result.

In the table, an inference rule name represents a test that i) the corresponding

rule conclusion matches S and T ; and ii) the corresponding rule premise, altered

by substituting Γ′ for Γ, holds. Γ′ is derived by extending Γ with the assertion

Γ.without(S �: T ).

T

> ⊥ B

> Top - -

S ⊥ Top Bottom Bottom

B Top - Reflex, Base*

For now, the only interesting case in the table is when both S and T are base

types�in that situation, the algorithm �rst checks that they are the same, and,
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if not, next recurs on any types that S extends. As we add typing features, this

table will become more complex.

2.2 Unions and Intersections

With the type system described in the previous section as a basis, we now explore

the impact of extending the system with some additional important classes of types.

It's worth pointing out that some degree of freedom for new features already

exists in the core type system. Simple parameterized classes, for example, can just be

treated as templates for generating base types; type variables bound by base types

can themselves be encoded as base types in Γ. In contrast, the features we consider

in the rest of this chapter cannot be adequately expressed (in full generality) by the

extends relation.

To start, we'll extend the core type system with union and intersection types.

Often in type checking it is useful to assert that an expression has one or all of a

set of types. Type systems sometimes de�ne complex join or meet functions that

produce types conveying these constraints; a simpler and more powerful way to make

these assertions is with union and intersection types.

2.2.1 Types

We extend the de�nition of types in section 2.1.1 with the following:

T ::= . . .
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⋃
T

⋂
T

• A union type,
⋃
T ,6 which, naturally, represents the union of the sets corre-

sponding to the given types. Concrete examples typically use in�x notation,

like S ∪ T , which can be read �S union T � or �S or T .�

• An intersection type,
⋂
T , which, also naturally, represents the intersection of

the sets corresponding to the given types. Concrete examples typically use in�x

notation, like S ∩ T , which can be read �S intersect T � or �S and T .�

2.2.2 Declarative Subtyping

We extend the de�nition of subtyping in section 2.1.2 with the following:

∀i,Γ ` Si � T

Γ `
⋃
S � T

(∪-Super)

Γ ` Ti �
⋃
T (∪-Sub)

Γ `
⋂
T � Ti (∩-Super)

6The notation T represents a (possibly-empty) list of types. For example,
⋃

(>,⊥) is a union

type. While unions and intersections could be similarly de�ned in terms of sets of types, the decision

to use lists here is important for ensuring determinism in some inference algorithms.
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∀i,Γ ` S � Ti

Γ ` S �
⋂
T

(∩-Sub)

Γ ` S ∩ (
⋃
T ) �

⋃
(S ∩ T1 . . . S ∩ Tn) (∩-∪-Dist)

Unions and intersections are complementary, and these rules re�ect that corre-

spondence. The elements of a union are subtypes of the union; the elements of an

intersection are supertypes of the intersection. A type is a supertype of a union if it is

a shared supertype of all the elements; similarly, a type is a subtype of an intersection

if it is a shared subtype of all the elements.

Some subtyping relationships between unions and intersections can't be shown by

simply decomposing the types. The rule ∩-∪-Dist, for example, can be used to show

that an intersection is a subtype of a union if the elements of the union appropriately

distribute the type information expressed by the intersection.

2.2.3 Equivalence Rules

With the introduction of unions and intersections, we've made it possible to express

the same set of values in a variety of ways. If two types correspond to the same set

of values, it is useful to consider them equivalent and intuitively interchangable. We

can formally de�ne type equivalence, ', as follows:
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Γ ` S � T,Γ ` T � S

Γ ` S ' T

(Type-Equiv)

Using the subtyping rules de�ned in section 2.2.2, we can prove the following

important equivalences. Recognizing these relationships is useful when reasoning

about types; it also helps to informally demonstrate the fundamental soundness of

our subtyping de�nition.

For brevity, the environment Γ is elided from the equivalences expressed below,

and a proof demonstrating the equivalence is not given. However, we do note which

inference rules would be important in such a proof (taking for granted that Trans

will often be used as well).

Special Unions and Intersections. Some important equivalences hold for nullary

(empty) and unary (singleton) unions, and similarly for intersections.

⊥ '
⋃

() (Bottom, ∪-Super)

> '
⋂

() (∩-Sub, Top)

T '
⋃

(T ) '
⋂

(T ) (∪-Sub, ∪-Super, etc.)

Interestingly, these equivalences mean that we could eliminate > and ⊥ from our

language of types, using empty unions and intersections instead. For clarity, however,

we prefer to keep > and ⊥.



16

Commutativity, Associativity, and Distributivity. As one might expect, the

type operators ∪ and ∩ are commutative and associative; in addition, ∪ distributes

over ∩ and vice versa.

For example:

(S1 ∪ S2) ∪ (T1 ∪ T2) '
⋃

(S1, S2, T1, T2) (∪-Super, ∪-Sub)

(S1 ∩ S2) ∩ (T1 ∩ T2) '
⋂

(S1, S2, T1, T2) (∩-Sub, ∩-Super)

⋃
(T1, T2, T3) '

⋃
(T2, T3, T1) (∪-Super, ∪-Sub)

⋂
(T1, T2, T3) '

⋂
(T2, T3, T1) (∩-Sub, ∩-Super)

S ∩ (T1 ∪ T2) ' (S ∩ T1) ∪ (S ∩ T2) (∩-∪-Dist, ∩-Sub, etc.)

S ∪ (T1 ∩ T2) ' (S ∪ T1) ∩ (S ∪ T2) (∪-Super, ∩-∪-Dist, etc.)

Simpli�cation. The subtyping rules also allow complex type expressions to be

simpli�ed. For example:

Where S � T , S ∪ T ' T (∪-Super, ∪-Sub)

Where S � T , S ∩ T ' S (∩-Super, ∩-Sub)

Where S ' S ′, S ∪ T ' S ′ ∪ T (∪-Super, ∪-Sub)

Where S ' S ′, S ∩ T ' S ′ ∩ T (∩-Sub, ∩-Super)
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2.2.4 Normalization

Before we consider extending the subtyping algorithm from section 2.1.3, we should

note that equivalences like those described in the previous section complicate the

task signi�cantly. The algorithm is driven by case analysis, where the applicability

of a particular case depends on the structure of the types to be compared. But if a

type with some structure may be rewritten to have many other structures, isolating

particular cases doesn't do much to simplify the problem.

For this reason, we'll de�ne a normalized form for types. Algorithms operating on

normalized types can make limiting assumptions that reduce complexity. The perfor-

mance of such algorithms may also bene�t from reduced redundancy in normalized

types.

Let |T |Γ represent the normalized form of T in type environment Γ. We'll say that

type T is normalized under Γ if T = |T |Γ. Whatever the details of normalization, it

must be the case that Γ ` T ' |T |Γ. We also wish to make the following guarantees,

producing a sort of disjunctive-normal form, if |T |Γ is a union or intersection:

• |T |Γ has two or more elements.

• All of |T |Γ's elements are normalized under Γ.

• None of |T |Γ's elements are a union.

• If |T |Γ is an intersection, none if its elements are an intersection.

• For any two elements T1 and T2 of |T |Γ, it is not the case that Γ ` T1 � T2.
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The details of implementing a normalization achieving these goals are tedious, but,

given the equivalences in the previous section, conceptually straightforward. First,

distributivity and associativity are used to �lift� nested unions out of intersections and

to ��atten� unions of unions or intersections of intersections. Second, each intersection

(which now must contain only base types, >, or⊥) is reduced to its minimal elements,7

and nullary and unary intersections are converted to simpler forms. Finally, each

union is similarly reduced, and nullary and unary unions are simpli�ed.

It would be convenient if the normalized form of a type were canonical�that

is, if every type in a particular equivalence class had the same normalized form.

Testing for equivalence would then reduce to testing for equality after normalization.

Unfortunately, this is di�cult in the current type system, because intersections and

unions can be freely permuted. We would need to arbitrarily enforce a total ordering

of all types, sorting union and intersection elements appropriately. As we extend the

type system with additional features, further complications will arise. Thus, we will

not attempt to de�ne a canonical normalization for types.

7The � and � relations are preorders (that is, they are re�exive and transitive). Recall that

given a (nonempty) list of values and a total order for comparing them, a single minimum value x

can be found, where minimum means that no value in the list precedes x; similarly, given a list of

values and a preorder for comparing them, a minimal list of values x can be found, where minimal

means that, for all xi, no value in the original list precedes xi. A standard, generic algorithm can

thus be used to minimize intersections and unions. For the sake of determinism, we'll require that,

where two types are equivalent, the leftmost type be preferred.
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2.2.5 Algorithmic Subtyping

As was the case for the Base subtyping rule in section 2.1.3, we'll need to reexpress

∪-Sub and ∩-Super so that the subtyping algorithm can avoid using the Trans

rule.

∃i,Γ ` S � Ti

Γ ` S �
⋃
T

(∪-Sub*)

∃i,Γ ` Si � T

Γ `
⋂
S � T

(∩-Super*)

Again, Let Γ ` S �: T represent an invocation of the subtyping algorithm for

types S and T in environment Γ. It can be resolved as follows:

1. Let |S|Γ = S ′ and |T |Γ = T ′.

2. If Γ.without contains �S ′ �: T ′� then the result is false.

3. Otherwise, the result is true if and only if one of the corresponding tests in the

following table have a true result.
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T ′

> ⊥ B
⋃
T

⋂
T

> Top - - - -

⊥ Top Bottom Bottom Bottom Bottom

S ′ B Top - Reflex, Base* ∪-Sub* ∩-Sub

⋃
T Top - ∪-Super ∪-Super ∪-Super

⋂
T Top - ∩-Super* ∪-Sub* ∩-Sub

The four cases in which unions or intersections are compared to other unions or

intersections are of particular interest. In general, either the �super� or the �sub�

rule might be applicable; however, we can show in each case that one implies

the other, and so both rules need not be tested. In some cases, the implication

goes both directions, and so the choice of which rule to test is arbitrary.

2.3 Arrows and Tuples

Languages with �rst-class functions allow functions to be treated as values�for ex-

ample, using a function as input to another function, or generating functions as the

result of an application. To support type-checking these languages, arrow and tuple

types can be used.

Even in languages that do not have �rst-class functions, arrow types can be useful

for analyzing function overloading, the declaration of multiple functions with the same

name but di�erent types. The type of an overloaded function name can be encoded
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as an intersection of arrows.

2.3.1 Types

We extend the de�nition of types in section 2.1.1 to include the following cases:

• An arrow type, S → T , which represents the set of functions that consume

values of the �rst type and produce values of the second type.

• A tuple type, (T ), which represents the cross product of the sets corresponding

to the given types.

2.3.2 Declarative Subtyping

We extend the de�nition of subtyping in section 2.1.2 with the following rules:

Γ ` S � T

Γ ` U → S � U → T

(→-Covar)

Γ ` T � S

Γ ` S → U � T → U

(→-Contravar)

∀i,Γ ` Si � Ti

Γ ` (S) � (T )

(Tuple-Covar)

An interesting property of arrows and tuples is that they exhibit covariance and

contravariance: a supertype may be determined by widening (in the case of covari-

ance) or narrowing (in the case of contravariance) the components of a type. For
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example, if Γ.extends(B,A) and Γ.extends(C,B), the subtyping rules allow a func-

tion of type (B,B)→ B to be provided where the type (C,B)→ A is expected.

If our language has unions and intersections, we can also include the following

distribution rules (extending subtyping from section 2.2.2):

Γ ` (S → T1) ∩ (S → T2) � S → (T1 ∩ T2) (∩-→-Dist-R)

Γ ` (S1 → T ) ∩ (S2 → T ) � (S1 ∪ S2)→ T (∩-→-Dist-L)

Γ ` (S) ∩ (T ) � (S1 ∩ T1, . . . , Sn ∩ Tn) (∩-Tuple-Dist)

Γ ` (S1 ∪ T1, . . . , Sn ∪ Tn) � (S) ∪ (T ) (∪-Tuple-Dist)

2.3.3 Equivalence Rules

The distribution rules for arrows, tuples, intersections, and unions in the previous

section lead to corresponding equivalences.

(S → T1) ∩ (S → T2) ' S → (T1 ∩ T2) (∩-→-Dist-R, →-Covar)

(S1 → T ) ∩ (S2 → T ) ' (S1 ∪ S2)→ T (∩-→-Dist-L, →-Contravar)

(S) ∩ (T ) ' (S1 ∩ T1, . . . , Sn ∩ Tn) (∩-Tuple-Dist, Tuple-Covar)

(S) ∪ (T ) ' (S1 ∪ T1, . . . , Sn ∪ Tn) (Tuple-Covar, ∪-Tuple-Dist)
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Distribution can also be used as an intermediate step to show equivalence between

intersections of tuples.

(S1, S2) ∩ (T1, T2) ' (S1, T2) ∩ (T1, S2) (∩-Tuple-Dist, ∩-Sub, Tuple-Covar)

2.3.4 Normalization

The natural strategy for normalization is to use equivance rules to translate from more

complex to simpler types. However, the equivalence rules above make it di�cult to

determine which form of two equivalent types is �simpler.� For example, consider the

following equivalent intersections:

(A1 → B1) ∩ (A2 → B1) ∩ (A2 → B2)

((A1 ∪ A2)→ B1) ∩ (A2 → B2)

(A1 → B1) ∩ (A2 → (B1 ∩B2))

The choice to, say, combine the left rather than the right side of two related arrows

seems arbitrary. When further simpli�cations occur, it can be di�cult to recognize

the relationship between two equivalent types. For example, it's not obvious that the

following holds where Γ ` B � A:

Γ ` (A→ (B,A)) ∩ (B → (A,B)) � (A→ (B,A)) ∩ (B → (B,B))

However, both types are equivalent (under Γ) to the following intersection, and

can be derived by reducing the arrows on either their left or right side:
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(A→ (B,A)) ∩ (B → (B,A)) ∩ (B → (A,B))

To normalize, then, we �expand� intersections of arrows or tuples to explicitly list

all the relevant types that can be inferred from the given types. The details of this

expansion are tedious, so we won't outline them here. Essentially, whenever two types

in an intersection imply another, that third type is added to the intersection.

2.3.5 Algorithmic Subtyping

With the details of normalization worked out, the subtype algorithm builds trivially

upon what we've already seen. We'll need a new rule combining the two rules for

variance between arrows:

Γ ` T1 � S1,Γ ` S2 � T2

Γ ` S1 → S2 � T1 → T2

(→-Sub)

Now, reusing the algorithm outline from section 2.2.5, we simply include arrows

and tuples in the case-analysis table.
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T ′

> ⊥ B S → T (T )

> Top - - - -

⊥ Top Bottom Bottom Bottom Bottom

S ′ B Top - Reflex, Base* - -

S → T Top - - →-Sub -

(T ) Top - - - Tuple-Covar

2.4 Bounded Type Variables

Type variables allow programs to abstract over types. This facilitates, for example,

the de�nition of polymorphic functions�the function's signature can be expressed in

terms of a type variable, and the type checker can produce various instantiations of

that signature at application sites by providing di�erent type arguments. To support

such features, in certain contexts�such as the body of a polymorphic function�we

need to be able to treat the variable itself as a type and make assertions about it that

hold for all possible instantiations.

2.4.1 Types

We extend the de�nition of types in section 2.1.1 by including the following case:

A variable type, X, which is simply a name.
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To limit the possible instantiations of a variable, languages often provide a mechanism

to declare variable bounds. We'll model these declarations as functions in the type

environment:

• Γ.upper(X) = T , also written dXeΓ = T , de�nes an upper bound on X: in-

stantiations of X are guaranteed to be subtypes of T .

• Γ.lower(X) = T , also written bXcΓ = T , de�nes a lower bound on X: instanti-

ations of X are guaranteed to be supertypes of T .

2.4.2 Well-formedness

Well-formed Instantiations. In order for reasoning about type variables to be

sound, the instantiations of those variables must be well-formed. Informally, this

means the instantiations are �in bounds.�

To model variable instantiations, we'll use substitutions, which are mappings from

variable names to their values (in this case, types). A concrete substitution is written

[X 7→ T ] (that is, [X1 7→ T1, . . . , Xn 7→ Tn]); abstractly, we'll write the symbol σ. In

general, a substitution models a logical formula, written σ |= ϕ, if the formula can

be proven true under the assumption that the given variables have the given values.

Similarly, a substitution may be applied as a transformation to a type, written σT ,

by replacing all instances of the given variables with the corresponding values. As a

special case, σX is simply the value bound to X in σ.

Note that the type values in a substitution may contain variables, and that these
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types, in general, must be interpreted in a di�erent environment than the variables

which are being instantiated. Thus, we'll need to refer to two environments: Γ, the

environment for X, and Γ′, the environment for T .

Formally:

A substitution σ mapping from variables in environment Γ to types in

environment Γ' is well-formed if and only if, for all variables in σ, Γ′ `

σX � σ dXeΓ and Γ′ ` σ bXcΓ � σX.

Note that the substitution is applied to X's bounds�thus, this formalization allows

for F-bounded quanti�cation, or variables that are in scope within their own bounds.

These sorts of recursive bounds, while introducing signi�cant additional complexity,

are quite important in object-oriented type systems.8

Well-formed Environments. Certain variable bounds may be unsatis�able in-

dependent of X�that is, there exists no σ such that, where Γ contains X and the

well-formed environment Γ′ does not, σ is a well-formed mapping of X from Γ to Γ′.

For example, if dXeΓ = ⊥ and bXcΓ = >, no choice of X can satisfy these bounds.9

We'd like to consider environments containing such bounds to be malformed.

8More speci�cally, recursive upper bounds have important use cases. It's not clear whether

recursive lower bounds signi�cantly improve expressiveness.
9As we'll see after de�ning subtyping for variables, X itself is always, by de�nition, a type within

its declared bounds. But if X is the only such type, that fact is of little use in writing practical

programs.
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Unfortunately, checking for the existence of a satisfactory substitution is a di�cult

problem. We'll address it in chapter 3, which discusses type inference. For now, we'll

instead settle for the following condition:

A type environment Γ has well-formed bounds if there exists a well-formed

environment Γ′ derived by removing some variables X from Γ.upper and

Γ.lower, and for all Xi, Γ′ ` bXicΓ � dXieΓ. (An environment with no

bounds also has well-formed bounds.)

In the simple case in which X's bounds do not depend on X, this condition is equiva-

lent to checking for a satisfactory σ. In general, however, the connection between the

two is unclear. It seems likely that this check is sound but incomplete: it implies that

a valid σ exists, but certain bounds for which a valid σ exists would be considered

malformed. To design a correct subtyping algorithm for a particular language, the

soundness property would need to be proven formally.

2.4.3 Declarative Subtyping

We extend the de�nition of subtyping in section 2.1.2 with the following additional

inference rules:

Γ ` X � dXeΓ (Var-Super)

Γ ` bXcΓ � X (Var-Sub)
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Note that if a variable's upper and lower bounds are both type T , the variable is

equivalent to T .

2.4.4 Normalization

Variables can always be treated as normalized. While there are potentially equiva-

lences between a variable and other types, in general there's not a clear ordering for

simpli�cation�if X is equivalent to Y , the choice of which to consider normalized is

arbitrary.

As a performance optimization, implementations may choose to normalize a vari-

able's bounds�that is, �nd a type environment with the property |dXeΓ|Γ = dXeΓ

for all X in the environment (and similarly for bXc). We can de�ne a function that

maps Γ to a new environment Γ′ where dXeΓ′ is de�ned as |dXeΓ|Γ; but it is not

necessarily the case that Γ′ then has the property we're after: |dXeΓ′|Γ′ = dXeΓ′

(substituting, this is |dXeΓ′|Γ′ = |dXeΓ|Γ). It seems likely that, for a typical nor-

malization function, this property could be proven to hold. In other cases, given the

monotonicity of normalization under a �xed environment, a normalized environment

might be found by repeated application of this translation to reach a �xed point. In

any case, we won't pursue such a proof here.

2.4.5 Algorithmic Subtyping

Because algorithmic subtyping cannot depend on the Trans rule, we reexpress the

variable subtyping rules as follows:
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Γ ` dXeΓ � T

Γ ` X � T

(Var-Super*)

Γ ` S � bXcΓ

Γ ` S � X

(Var-Sub*)

We can extend the subtyping algorithm in section 2.1.3 by adding a line and

column for variables to the case-analysis table:

T

> ⊥ B X

> Top - - Var-Sub*

S ⊥ Top Bottom Bottom Bottom

B Top - Reflex, Base* Var-Sub*

X Top Var-Super* Var-Super* Reflex, Var-Super*, Var-Sub*

Note that we must consider a number of di�erent cases for the invocation X �: Y :

the variables may be equal, X's upper bound may be expressed in terms of Y , or Y 's

lower bound may be expressed in terms of X.

It's also useful to explore the interaction of variables with unions and intersections.

We can extend the table in section 2.2.5 as follows:
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T ′

X
⋃
T

⋂
T

X Reflex, Var-Super*, Var-Sub* Var-Super*, ∪-Sub* ∩-Sub

S ′
⋃
T ∪-Super ∪-Super ∪-Super

⋂
T ∩-Super*, Var-Sub* ∪-Sub* ∩-Sub

In some cases, while the variable rules are applicable, they are redundant. In other

cases, both the variable and the union/intersection rules must be tested.

2.5 Generic Type Constructors

The previous section facilitated programs declared abstractly in terms of types. Type

constructors provide a mechanism for types declared abstractly in terms of types. For

example, a Map [[A,B ]] might represent a data structure mapping values of base type A

to values of base type B. More broadly, type constructors allow types to be declared

abstractly in terms of any domain that is convenient: numbers, symbol or string

literals, algebraic expressions, variables referring to runtime values, etc. Regardless

of the domain, the following formalisms provide a framework for analyzing such types.

2.5.1 Types

We extend the de�nition of types in section 2.1.1 by including the following case:

An application type, K [[ a ]], whereK is a type constructor (possibly de�ned

by a program), and each ai is a constructor argument.
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To properly interpret constructor applications, we rely on a few relations in the type

environment:

• Γ.params(K) = x provides a list of parameter names corresponding to the

arguments a; these variables may appear in some of the other environment

relations involving K.

• Γ.constraint(K,ϕ) describes a constraint which must hold for well-formed appli-

cations of K. In general, we'll allow the constraint ϕ to be an arbitrary logical

formula. A variety of constraints might be expressible, depending on the do-

mains of the parameters. If type parameters are allowed, we'll assume subtype

assertions of the form S � T (the environment is implicit) can be written.

• Γ.subArg(K, x) = � produces an operator representing a relation that should

be used when checking that K [[ a ]] � K [[ c ]]. The relation must be a pre-

order�re�exive and transitive. Syntactic equality, =, is the most restrictive

choice for the operator, and is always a valid result. Where x is a type variable,

the language might allow declarations to specify one of �, �, or ' instead. Of

course, the designated operator must represent a sound subtyping relationship

between applications.

• Γ.appExtends(K,T ) asserts that the type K [[ a ]] is a subtype of σT , where

Γ.params(K) = x and σ = [x 7→ a]. As was the case with the similar Γ.extends

relation on base types, the details about how this relation is derived are speci�c
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to a particular language. We have similar requirements: values of type K [[ a ]]

must actually belong to type T , and the number of types extended by a partic-

ular constructor must be �nite. The relation need not be re�exive or transitive,

and need not cover relationships described by Γ.subArg.

2.5.2 Well-formedness

Well-formed Applications. For a constructor application to be well-formed, it

must satisfy the corresponding constraints. Formally:

The application K [[ a ]] is well-formed in environment Γ if and only if

Γ.params(K) = x, a and x are compatible (their arities and domains

match), and for all ϕ such that Γ.constraint(K,ϕ), [x 7→ a] |= ϕ.

How the assertion [x 7→ a] |= ϕ is checked depends on the sorts of constraints that

can be expressed. If ϕ is a subtype assertion of the form S � T , it can be checked by

testing, where σ = [x 7→ a], that Γ ` σS � σT .

If a type constructor is declared in a program and some of its parameters are type

variables, checking the portion of the program for which these variables are in scope

may rely on the assumption that all constructor applications are well-formed. To do

so, we can map from ϕ to a pair of bounds that will appear in Γ.upper and Γ.lower.

We'll write the following to denote a function that performs this extraction:

extend(Γ, X, ϕ) = Γ′
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The environment Γ′ is identical to Γ, except that it de�nes bounds for each of X.

The extraction of bounds need not be complete (that is, produce bounds equivalent

to ϕ), but it must conform to the following soundness property: for all instantiations

σ of X such that σ |= ϕ, σ is well-formed mapping from Γ′ to Γ. The extraction is

trivial if one of S or T in the formula S � T is in X; in general, bounds on variables

appearing in S and T can be inferred following the process described in chapter 3.

Well-formed Environments. In addition to the basic constraints outlined in their

de�nitions, the type environment relations associated with constructors must conform

to certain well-formedness conditions.

If Γ.appExtends(K,T ), any of x appearing in T must be compatible with the

corresponding operator de�ned by Γ.subArg(K, xi). Loosely speaking, �compatible�

here means that if subArg allows us to map from a to c, then [x 7→ a]T � [x 7→ c]T .

For example, a covariant variable must not appear in a contravariant context in T .

Additionally, appExtends is malformed if it exhibits expansive inheritance, as

described by Kennedy and Pierce [10]. Their work demonstrates that languages with

unrestricted co- and contravariant type constructors can have undecidable subtype

relations; the prohibition against expansive inheritance sidesteps this undecidability

problem.10

10Kennedy and Pierce's work proves decidability for a small calculus with type constructors. While

we adopt their inheritance restriction to avoid undecidability in this particular area, it's certainly

possible that there are similar problems lurking in other aspects of our subtyping algorithms.
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Finally, the constraints expressed by Γ.constraint(K,ϕ) must be satis�able, and

the type variable bounds extracted from ϕ must be well-formed.

2.5.3 Declarative Subtyping

We extend the de�nition of subtyping in section 2.1.2 with the following additional

inference rules:

Γ.params(K) = x,Γ.appExtends(K,T )

Γ ` K [[ a ]] � [x 7→ a]T

(App-Super)

Γ.params(K) = x, ∀i(Γ.subArg(K, xi) = � ∧ Γ ` ai � ci)

Γ ` K [[ a ]] � K [[ c ]]

(App-Subarg)

Note that the App-Subarg rule supports covariant and contravariant subtyping,

depending on the de�nition of subArg. In contrast to arrows and tuples, however, we

have not provided a means to distribute unions and intersections over type applica-

tions. It would be interesting to design a language with such an extension, allowing

arrows and tuples to be fully modeled in terms of type constructor applications. How-

ever, while the conditions under which, for example, a generic class's type parameter

can be covariant or contravariant are well-explored (and beyond the scope of this the-

sis), the conditions that must be satis�ed to support union or intersection distribution

are not.
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2.5.4 Normalization

In general, it is not the case that, for example, Γ ` K [[T ]] ' K [[ |T |Γ ]]. However, if

Γ.subarg allows equivalent or variant parameters, some normalization can take place:

|K [[ a ]]|Γ = K [[ c ]] where c is derived from a as follows (given Γ.params(K) =

x):

• If ai is a type and Γ.subarg(K, xi) is one of ', �, or �, ci = |ai|Γ.

• Otherwise, ci = ai.

Additional cases might be added for other parameter domains.

2.5.5 Algorithmic Subtyping

Again, we can easily adjust the subtyping algorithm de�ned in previous sections to

include type constructors by adding a few rules to the case-analysis table.

The following algorithmic rule is needed:

Γ.params(K) = x,Γ.appExtends(K,U), [x 7→ a]U � T

Γ ` K [[ a ]] � T

(App-Super*)

The subtyping algorithm is then de�ned as in section 2.1.3, extending the case-

analysis table as follows:
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T

> ⊥ B K [[ a ]]

> Top - - -

S ⊥ Top Bottom Bottom Bottom

B Top - Reflex, Base* -

K [[ a ]] Top App-Super* App-Super* App-Subarg, App-Super*

2.6 Existential Types

Existential types allow static analysis to generalize over a number of di�erent types

that are structurally similar but vary in one or more parts. Recall that union types

similarly expressed the assertion that an expression has one of a set of types; unlike

unions, existentials allow this set to be in�nite.

One common application for existential types in object-oriented languages is to

support use-site variance. This allows a type constructor that is declared without

support for variance to be treated as covariant or contravariant, dependending on the

programmer's needs in a particular application. To do so, the programmer uses an

existential to generalize over all choices for a type constructor argument, bound by

some sub- or supertype.
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2.6.1 Types

We extend the de�nition of types in section 2.4.111 to include the following case:

An existential type, ∃Xϕ.T , which represents the union of all types T ′ for

which there exists a valid substitution mapping T to T ′.

As was the case with type constructors, existentials are constrained by an arbitrary

logical formula ϕ which restricts the valid choices for X. We'll need to interpret T

in the context of these variables' bounds, so we must be able to map from ϕ to a set

of bounds via extend(Γ, X, ϕ). Again, this is trivial if one of S or T in the formula

S � T is a variable; in general, bounds on variables appearing in S and T can be

inferred following the process described in chapter 3.

2.6.2 Well-formedness

An existential type ∃Xϕ.T is well-formed only if T is well-formed and ϕ is satis�able

(and type variable bounds extracted from ϕ be are similarly well-formed).

2.6.3 Declarative Subtyping

We extend the de�nition of the subtype relation in section 2.4.3 with the following

rules:

11We model existentials in terms of universal variables, so the variables covered in section 2.4 must

be part of the language as well. Also note that existential variables are of little use without some

form of non-atomic types, such as arrows or generic type constructors.
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σ = [X 7→ U ], σ |= ϕ

Γ ` σT � ∃Xϕ.T

(∃-Sub)

Zare fresh, σ = [X 7→ Z], extend(Γ, Z, σϕ) = Γ′, Γ′ ` σS � T

Γ ` ∃Xϕ.S � T

(∃-Super)

The ∃-Sub rule corresponds to the traditional �close� or �pack� operation for

existential types, and parallels ∪-Sub. It is used to identify valid instantiations of

the existential.

The ∃-Super rule corresponds to the traditional �open� or �unpack� operation

for existential types, and parallels ∪-Super. It makes use of an informal condition

that there exist some fresh variables Z used to model the unknown instantiations

of X. This assertion implies that the names Z have not been used elsewhere by an

instantiation of this rule in the derivation of type checking.12

2.6.4 Algorithmic Subtyping

We modify the ∃-Sub rule to support an arbitrary subtype as follows:

12Formally, this can be modeled by maintaining a list of �available� names in Γ and nondeter-

ministically �splitting� this list whenever a rule premise uses Γ for more than one assertion; but the

details are tedious and non-modular, so we avoid doing so here. In subtyping algorithms, fresh-name

generation can be easily implemented using mutable state.
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σ = [X 7→ U ], σ |= ϕ,Γ ` S � σT

Γ ` S � ∃Xϕ.T

(∃-Sub*)

Note the presence of existentially-quanti�ed types U in the rule premise. How are

these to be generated algorithmically? Fortunately, we don't need to do so�instead,

we can test the satis�ability of the entire premise using the inference techniques

developed in chapter 3.

Once more, we'll use the algorithm outline developed in previous sections, and

simply extend the table in section 2.4.5 to include the types de�ned here.

T

> ⊥ B X ∃Xϕ.T

> Top - - Var-Sub* ∃-Sub*

⊥ Top Bottom Bottom Bottom Bottom

S B Top - Reflex, ... Var-Sub* ∃-Sub*

X Top Var-Super* Var-Super* Reflex, ... Var-Super*, ∃-Sub*

∃Xϕ.T Top ∃-Super ∃-Super ∃-Super ∃-Super



Chapter 3

Theory of Type Inference

3.1 Overview

In the previous chapter, we established a language of types for object-oriented lan-

guages with advanced type systems. We also de�ned various subtype relations for

those types, which relations allow a language's static analysis to determine whether

a value of some type S can be provided when a value of type T is required.

We now turn our attention to another important question for static analysis: given

a program that elides certain type annotations (such as the type of a variable or the

type arguments to a polymorphic function), can appropriate types be inferred that

will satisfy subtype and other error checks? If so, what are those types?

Expressed another way, let's assume we've annotated the program with an infer-

ence variable for each elided type.1 For example, a polymorphic function application

foo(x, y) has been rewritten foo [[α, γ ]] (x, y), where the variables α and γ represent

unknown types. Our goal is now to produce a substitution σ that instantiates the

inference variables in a way that re�ects the programmer's intent and makes the

program well-typed. That substitution can then be applied to the program.

1An inference variable can be thought of as either an extension to the programming language�a

new kind of type variable with special semantics�or as a meta-variable used to represent a (possibly-

in�nite) set of programs.
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The problem of inferring an appropriate substitution can be further decomposed

into two steps:

Constraint Reduction Produce a simple formula (a substitution constraint) de-

scribing the constraints on σ.

Constraint Solving Follow a straightforward process to determine a choice for σ

that satis�es the substitution constraint (if one exists).

This will become more concrete in the sections that follow.

We should note that the problem of inferring a substitution that satis�es certain

constraints has many applications beyond the language feature described above. We

already encountered a few applications in chapter 2: checking that a variable is well-

formed, extracting variable bounds from a type constructor constraint, and testing

for a subtype of an existential. As we'll see below, subtype checking itself can be

thought of as a special case of type inference.

The above outline of inference is very general. While the fundamentals are similar

in most languages, a few important design decisions can have a major impact on

inference features. These include:

Scope. The above discussion describes �nding a substitution that could be applied

to a program. The term �program� here may refer to a large collection of source code,

a particular module, a function declaration, or even a single function application.

At the broadest scope, just one substitution is inferred during static analysis; if
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the scope is narrower, more substitutions are separately inferred. Inference strategies

using broader scopes are called global, while strategies with narrower scopes are called

local.

This distinction is important, because generally constraint solving must choose

between many possible solutions. If we choose to instantiate some inference variables

with only local information, we risk choosing types that lead to errors elsewhere in

the program. On the other hand, local inference strategies are easier for programmers

to follow and predict, which is an important design goal; and they are easier and more

e�cient to implement, because the number of variables is smaller and the substitution

constraint is much less complex.

Completeness. An inference algorithm is sound if, when it produces a result, that

result consists of well-typed choices for the inference variables. Clearly, soundness is

essential. It is also easy to achieve�an algorithm that always fails to produce a result

is sound.

Complementing soundness, an inference algorithm is complete if it produces a

solution whenever one exists. Achieving completeness is important; it may also be

quite di�cult, or even impossible, assuming soundness is a prerequesite. A complete

algorithm allows greater expressiveness and requires less programmer intervention.

If the alternative algorithm is arbitrarily restricted, completeness may also be more

predictable. On the other hand, achieving completeness may lead to more complexity,

which can also lead to programmer confusion, and may negatively impact compiler
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performance.

Since absolute completeness is not an essential property of an inference algorithm,

it's useful to consider completeness as a relative property: one algorithm is more

complete than another if the set of programs for which it produces a result is a proper

superset of those handled by the other algorithm.

Proactive Reduction. Constraint reduction can be thought of as a process of ac-

cumulating simple constraints on inference variables. In the process of checking a

program, each subtyping assertion, for example, might produce a simple constraint

on a variable. If accumulation is lazy�that is, it simply accumulates a list of simple

constraints�more work must be done in constraint solving. If, on the other hand,

constraint reduction is proactive�merging constraints on a variable as they are pro-

duced into a single, simpler constraint�constraint solving is more straightforward.

More importantly, a proactive strategy can eliminate redundancy, which may dramat-

ically improve performance. And by immediately recognizing when the constraints

on a variable are unsatis�able, a proactive approach may lead to error messages that

better isolate a problem to a local portion of the code.

3.2 Constraint Reduction

Constraint reduction is the �rst phase of the inference process. It is so termed because,

from the start, we already have a formula describing a constraint that needs to be

satis�ed: we must, for example, �nd σ such that, where P is the program, σ |=
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“P is well-formed”. Our goal is to reduce this very general statement into something

concrete and simple enough that constraint solving becomes a straightforward process.

For example, σ |= (α � String) ∧ (γ � Square ∪ Circle).

In this discussion, asserting that a program is well-formed reduces to asserting

a number of subtyping relationships.2 So our focus will be to revise subtyping such

that, rather than a relation between types, it is a function producing a substitution

constraint. We'll write Γ ` S �? T |ϕ to mean that, under condition ϕ, S is a subtype

of T in environment Γ. Alternately, we can just talk about the value Γ ` S �? T

without mentioning it by name, ϕ.

Substitution constraints may take the following forms:

• The literal true.

• The literal false.

• A variable lower bound α � T .3

• A variable upper bound α � T .

2Where a language performs static checks that cannot be expressed in terms of subtyping, a

similar pattern might be followed to produce constraints from other relations on types; here, we

restrict ourselves to the subtype relation.
3Note that we've elided Γ from the subtype constraints. For simplicity, we'll assume that the

entire constraint is expressed in terms of a single, implicit type environment. In applications where

that is not the case, a more general formulation might include type environments as part of the

substitution constraint.
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• A conjunction of constraints ϕ ∧ ρ.

• A disjunction of constraints ϕ ∨ ρ.

Where neither S, T , nor Γ contain inference variables, the result of �? must be

equivalent to either true or false�these special cases map directly to invocations of

�. More generally, the correspondence between the two relations can be expressed as

follows:

σ |= (Γ ` S � T ) if and only if σ |= ϕ4 where Γ ` S �? T |ϕ.

3.2.1 Subtype Reduction

Concretely, the subtype constraint reduction algorithm can be expressed simply as

a modi�ed version of the subtype algorithm described throughout chapter 2 (�rst

outlined in section 2.1.3). Our modi�cation closely parallels the original de�nition,

with an additional case to handle inference variables.

1. Let |S|Γ = S ′ and |T |Γ = T ′.

2. If one of S ′ or T ′ is an inference variable, the result is de�ned as follows (earlier

cases take precedence):

(a) Γ ` α �? α produces true.

(b) Γ ` α �? γ produces (α � γ) ∧ (γ � α).

4We haven't formally de�ned what it means for a substitution to model a substitution constraint,

but the intent should be clear.
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(c) Γ ` α �? T
′ produces α � T ′.

(d) Γ ` S ′ �? γ produces γ � S ′.

3. If Γ.without contains �S ′ �? T
′� then the result is false.

4. Otherwise, a �nite set of constraints, as determined by the structures of S ′ and

T ′, and as outlined in a table covering our chosen domain of types, is produced.

The result is the disjunction of these constraints.

In the table, an inference rule name represents a constraint. If the corresponding

rule conclusion does not match both S ′ and T ′, this is simply false; otherwise, we

map the rule premise to a constraint, replacing the premise's logical assertions

with substitution constraint constructors. Speci�cally:

• Γ ` U � V becomes Γ′ ` U �? V . The environment Γ′ is produced by

extending Γ with the assertion Γ′.without(S �? T ).

• Simple assertions unrelated to subtyping become either true or false.

• Logical conjunctions become constraints of the form ϕ ∧ ρ.

• Logical disjunctions become constraints of the form ϕ ∨ ρ.

• Universal quanti�ers, which must only quantify over �nite domains, be-

come constraints of the form ϕ1 ∧ϕ2 ∧ . . .. (If the domain is empty, this is

true.)

• Existential quanti�ers, which must only quantify over �nite domains, be-

come constraints of the form ϕ1 ∨ϕ2 ∨ . . .. (If the domain is empty, this is
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false.) Implicit existential quanti�cations (meta-variables that only occur

in the premise) are handled in the same way.

As an example, consider the invocation Γ ` (A ∪ α) �? (γ ∪ B) where Γ.extends is

empty. This can be incrementally reduced to a substitution constraint as follows:

(A ∪ α) �? (γ ∪B)

(A �? (γ ∪B)) ∧ (α � (γ ∪B)) (∪-Super)

((γ � A) ∨ (A �? B)) ∧ (α � (γ ∪B)) (∪-Sub)

((γ � A) ∨ false) ∧ (α � (γ ∪B)) (Base*)

3.2.2 Constraint Equivalence

As might be expected, substitution constraints can be simpli�ed in any way that

preserves the logical assertions encoded by the constraint. For example, if one term

in a conjunction implies another, the second can be removed without changing the

meaning of the constraint. Formally:

• ϕ |= ρ if and only if, for all σ, σ |= ϕ implies σ |= ρ.

• ϕ ≡ ρ if and only if ϕ |= ρ and ρ |= ϕ.

As a simple example, the result of Γ ` (A∪α) �? (γ∪B) in the previous section was:

((γ � A) ∨ false) ∧ (α � (γ ∪B))
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This is equivalent to:

(γ � A) ∧ (α � (γ ∪B))

In addition to the usual rules for logical equivalence, a few important equivalences

hold for subtype assertions:

(γ � S) ∧ (γ � T ) ≡ γ � S ∩ T

(γ � S) ∧ (γ � T ) ≡ γ � S ∪ T

γ � > ≡ true

γ � ⊥ ≡ true

We can use these equivalences to de�ne a normalization for substitution con-

straints. Structurally, normalized constraints are in disjunctive-normal form (a dis-

junction of conjunctions). In addition, every inference variable has exactly one upper

bound and one lower bound in every disjunct. And any provably unsatis�able dis-

juncts are removed.

Normalizing in this way has two important bene�ts. First, constraint solving easily

reduces to �nding an instantiation for a set of bounded variables. Second, it simpli�es

the identi�cation of unsatis�able constraints, which has important implications for

algorithmic e�ciency and error reporting.
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One �nal equivalence is especially important for inference:

(γ � U) ∧ (γ � L) ≡ (γ � U) ∧ (γ � L) ∧ (Γ ` L �? U)

For a conjunction to be �provably unsatis�able,� we must be able to prove a

contradiction from its elements. Where a variable's bounds are incompatible, this

equivalence allows us to do just that�Γ ` L �? U in that case will be false. Another

useful application is to infer additional bounds on any variables that appear in U or

L. Of course, these new bounds might, in turn, be used to infer other bounds. It's

not clear in general whether this process will reach a �xed point.

3.2.3 Correctness

As outlined above, constraint reduction is sound and complete: σ models the origi-

nal constraint if and only if it models the reduced constraint. This is because every

reduction step we take is directly derived from either the subtyping algorithm (sec-

tion 3.2.1) or established tautologies (section 3.2.2).

3.3 Constraint Solving

Constraint solving is the �nal phase of the inference process. Given a substitution

constraint, the solver attempts to produce a substitution modeling the constraint.

We'll consider constraint solver inputs of the form de�ned in section 3.2. Further,

we'll assume these have been normalized as described in section 3.2.2. So the core

constraint-solving problem is to produce types that satisfy the bounds of a set of
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variables. Given that capability, we can iterate through the list of conjunctions,

producing a result from the �rst disjunct we're able to satisfy. If the algorithm fails

to �nd a solution after iterating through the list, it reports that no solution was found.

Of course, if a variable's bounds do not contain inference variables, producing a

solution is trivial: we can simply choose one of the bounds as the variable's instanti-

ation. Even so, care should be taken in deciding which bound to choose, especially in

algorithms that are not global. If a variable's instantiation will appear in a covariant

context, for example, the lower bound is best; in a contravariant context, the upper

bound is best.

Bounds that are expressed in terms of other inference variables (or recursively in

terms of the variable itself) are much more di�cult to handle. In such cases, choosing

an instantiation for one variable restricts the set of choices available for another. In

general, this is most likely an undecideable problem. A few strategies are helpful,

however, in producing a solution:

• If a variable is tightly-bound�its upper and lower bounds are equivalent�we

have no choice but to accept this type (or some other in the equivalence class)

as the instantiation. The variable can then be eliminated from other variables'

bounds.

• Checking transitive constraints�given bounds L � α � U , computing Γ `

L �? U�can often help to strengthen the bounds on other variables (assuming

this has not been done already during normalization).
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• If there are variables without dependencies on others, an instantiation can be

chosen (the lower bound, say), and the variable can then be eliminated from

other bounds. Of course, at this point, we can't guarantee that a choice we

make will be the correct one.

• In the worst case, if we're somehow able to prove the satis�ability of the vari-

ables' bounds but unable to produce a witness for that fact, we can use exis-

tential types to model the unknown (but known-to-exist) solution.

Fortunately, typical uses of a programming language are unlikely to produce the

more di�cult instances of this problem. While a constraint solver may not be able

to guarantee completeness, it will likely be quite useful in practical situations as long

as its behavior is simple and well-de�ned.



Chapter 4

Case Study: Type Inference in Java

As a case study for the type theory outlined in the previous chapters, we now

consider the Java language. In this chapter, we'll describe the Java type system in

terms of the theory we've developed, discuss ways in which its type inference algorithm

can be improved, and examine the impact such changes would have on existing code.1

4.1 Java Type System

The speci�c language we'll examine is Java 5�the language update coinciding with

the release of Java SE 5.0 in 2004 and speci�ed by the 3rd edition of the Java

Language Speci�cation [6]. This language update introduced a number of advanced

typing features, including user-de�ned type constructors, polymorphic methods with

bounded type variables, and restricted forms of intersection types (in variable bounds)

and existential types (in type constructor applications). The speci�cation also re-

quires some internal support for recursive types, although these are not expressible

in source code.

This was a major technical addition to the language, and the Java language

1Some of this discussion was previously published in a 2008 paper presented at OOPSLA [17].

Here, the Java type features are framed in terms of the above theory, suggestions for constraint

solving are improved, and an experimental analysis of the impact of suggested type system changes

is presented.
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designers, with input from the Java Community Process, spent several years carefully

evaluating potential generic extensions and their technical implications. Nevertheless,

the �nal design introduced type features that were not well-explored by the research

literature. As a result, a number of subtle logical errors are present in the speci�cation,

and particularly in the de�nition of type inference. We'll examine some of these errors

in section 4.2.

4.1.1 Types

Types in Java are either primitives or references ; the rules for manipulating primitives

are di�erent from those for references. Because the analysis of primitives is simple

and unrelated to type inference, we'll focus on reference types here, and use the term

�type� to refer exclusively to references.

Java programs are organized as collections of class declarations, where a class de-

scribes the �elds and methods associated with objects of a particular type. Classes can

�extend� other classes and can be parameterized by type variables; non-hierarchical

extension relationships are supported via special, restricted classes called interfaces.

These declarations form the basis of Java types.

A type in Java is one of the following:

• The null type, null, which is similar to ⊥ in many ways, but contains a single

null value. There is no syntax for expressing this type in source code, but it is

used extensively by analysis.
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• A ground parameterized class type C
[[
T
]]
, which is a type constructor appli-

cation with types as arguments. C is the name of a class; we'll model classes

that don't have any type parameters as nullary type constructors�T in such

cases is an empty list (and the brackets are then elided). One important special

instance is Object, which is the parent class of all others, and thus acts as >

in this type system.

Class declarations can be nested within other classes. When this occurs, some

type parameters for the class may be implicit from surrounding context. In

our notation, the list T includes arguments for both implicit and explicit type

parameters.2

• A wildcard-parameterized class type C〈w〉, which is an existential type wrap-

ping a constructor application. The domain of w includes both types and

wildcards, which represent implicitly-declared existential variables and take the

form ? extends U super L. Where class C has a single, unbound type pa-

rameter, the type C〈? extends U super L〉 is interpreted as the existential

∃XL�X�U .C [[X ]]. (For more complex cases, see section 4.1.3 below.)

When we write wildcards without a lower bound, the bound null is implicit;

similarly, the default upper bound is Object.3

2In the concrete syntax, a nested class's argument list may be separated into pieces like

Foo<String>.Bar<Integer>.

3As speci�ed, wildcards in Java must always elide at least one bound�there can be an upper

bound, or a lower bound, but not both. We've generalized here by allowing both bounds at once.
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Java also includes a third kind of class type, �raw types.� These are class

names used without type arguments, and are included for compatibility with

legacy code. Fortunately, while their use can prompt certain implicit, compiler-

generated casts, they are otherwise equivalent to wildcard-parameterized types.

For our purposes, the raw type C is equivalent (where C has a single parameter)

to C〈?〉.

One �nal complication arises in modeling wildcards: the speci�ed join func-

tion produces a restricted class of recursive types involving wildcards, termed

�in�nite types.� For example, analysis might produce the type C〈? extends

C〈? extends C〈. . .〉〉〉. The speci�cation o�ers little guidance on how these types

should be modeled or implemented [6, 15.12.2.7], and no instruction on how they

relate to other types (in subtyping, for example). Some e�ort was made in a

previous iteration of this work to properly specify these types [16], but we will

make no such attempt here. Instead, we identify this lack of speci�cation as a

failing of the current type system, and suggest union types as a suitable solution.

• A primitive array type p[], which is an application of a special �primitive array�

type constructor.

• A reference array type T[], which is an application of a special �reference array�

type constructor. Unlike primitive arrays, reference arrays are covariant.

• A type variable X. The type environment contains upper and lower bounds for
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variables. Programmers can declare upper bounds with the declaration syntax

X extends T ; no syntax supports describing lower bounds, and so only variables

produced from wildcards have them. In the absense of more restrictive bounds,

it is always the case that null � X � Object.

• An intersection type
⋂
T . Programmers can only write intersections as the

upper bounds of variables: X extends T1 &T2. Intersections are also produced

by analysis.

4.1.2 Type Environments

There is a global type environment, Γ0, which describes the type constructors de�ned

by all class declarations in a program. Additional distinct type environments corre-

spond to the scope of type variables introduced by a class or method; we'll refer to

these environments as ΓC or ΓM (M is a method name). Additionally, each top-level

expression may have a distinct type environment to accomodate fresh variables used

to analyze existentials.4

For each class declaration appearing in a program, the environment Γ0 contains

entries for the class C in the type-constructor relations described in section 2.5.1:

• Γ.params(C) = X where X is the list of class type parameters.

4The subtyping rule ∃-Super (de�ned in section 2.6.3) can be altered slightly to accomodate

fresh variables that �already� appear in the environment Γ. This is important for Java because its

type-checking rules also introduce fresh existential instantiations, and these variables are permitted

to �ow outside the scope of the subexpression in which they are introduced.
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• Γ.constraint(C,Xi � U) describes an upper bound on one of Xi.

• Γ.subArg(C,Xi) is de�ned as = for all parameters.

• Γ.appExtends(C, S) describes a declared supertype of the class. With the ex-

ception of Object, all classes have at least one entry in appExtends, and all

class types ultimately extend from Object. The domain of S is restricted to

class types.

There are also entries for the two built-in array type constructors. Each has one

parameter; there are no constraints; subArg is = for the primitive array constructor

and � for the reference array constructor; and each constructor extends the two

special class types Serializable and Cloneable.

4.1.3 Wildcard Capture

All wildcard-parameterized class types C〈w〉 represent an equivalent existential type

∃Xϕ.C
[[
T
]]
. The speci�cation de�nes a wildcard capture operation which essentially

expresses this mapping.5

• Ti is de�ned as the name of a distinct variable Zi if wi is a wildcard, and as just

wi if wi is a type.

• X is the list of variables introduced in the de�nition of T .

5As de�ned in the speci�cation, wildcard capture also expresses the generation of fresh variables

that occurs whenever an existential is opened.
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• ϕ provides an upper and lower bound for each of Zi. Given that C has type pa-

rameters Y , wi = ? extends Ui super Li, and σ = [Y 7→ T ], ϕ is a conjunction

of the following for all valid i:

Li � Zi � (Ui ∩ σ dYieΓC
)

Note that the upper bound of Zi incorporates both the wildcard bound and the

corresponding type parameter bound. This allows programmers to, for example, write

C〈?〉 without worrying about ensuring that the wildcard bounds are compatible with

the declared bound.

4.1.4 Subtyping

Modeling types as described above, subtyping in Java can be expressed straightfor-

wardly in terms of the rules described in chapter 2. The following rules are applicable:6

Core Reflex, Trans, Bottom

Unions & Intersections ∩-Super, ∩-Sub

Variables Var-Super, Var-Sub

Constructors App-Super, App-Subarg

Existentials ∃-Super, ∃-Sub

6Given the restricted form of existentials in Java, the ∃-Sub rule can be simpli�ed to only

handle the case C
[[

T
]]
� C〈w〉; in this case checking for the existence of a suitable substitution is

straightforward: we simply verify that each Ti is within the bounds of (or equal to) wi.
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The algorithmic subtyping de�nitions corresponding to these rules can similarly

be applied to Java subtyping.

Of course, for the algorithmic results to be correct, the types and type parameters

must be well-formed, again as outlined in chapter 2. Type arguments must be within

their declared bounds, and variable bounds and existential constraints (as de�ned by

wildcard capture) must be satis�able.

Because intersections do not distribute over any other types in this type system,

no normalization is necessary. Implementations may �nd it useful, however, to elim-

inate redundant elements from an intersection, as long as this is consistent with the

speci�cation.

4.1.5 Join

Because unions are not part of the type system, the Java type checker occasionally

must determine a common supertype of two types. We can model this with a function

join(S, T ) which determines a common upper bound for S and T . That is:

join(S, T ) = U → S � U ∧ T � U

Ideally, join should produce a minimal bound, where all common supertypes of S

and T are also supertypes of U . As we'll see in section 4.2.1, this isn't possible within

the speci�ed constraints of the type system. However, the function does produce

reasonably tight bounds in most situations.

We won't describe the full details of join here, which involve searching for a com-
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mon superclass of the two types. One interesting aspect of the function is its handling

of two di�erent parameterizations of the same class, which makes use of existentials.

For example:

join(C [[S ]] , C [[T ]]) = C〈? extends join(S, T )〉

Note that the recursion in this de�nition may not terminate, leading to the need

for special recursive wildcards, as described in section 4.1.1.

4.1.6 Type Inference

Methods in Java (functions bundled with an object) can declare type parameters,

and invocations may either provide explicit type arguments or allow the arguments

to be inferred.

Methods can also be overloaded: the expression obj.m(x) may refer a set of

methods declared with name m. Type inference is used independently at each call site

to determine type arguments for a particular method in this set; these results in turn

help to determine which (if any) method should be applied. So type inference is a

component of overload resolution.

The initial constraints to be solved for an inference invocation are as follows. Let

M be a method with declared parameter types T and type parameters X. Where the

elided type arguments are represented by inference variables α, the signature of M

can be instantiated with substitution σα = [X 7→ α]. Given a call site in the scope of

environment Γ with argument types S, inference seeks to produce an instantiation σ
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for α such that (for all applicable i and j):

σ |= Γ ` Si � σαTi

σ |= Γ ` αj � σα dXjeΓM

In some cases, Java expressions can have an expected type determined by the

surrounding context. When this type is available, it may be used in inference to help

compensate for the local nature of the algorithm. If used, the following additional

constraint applies (for declared return type R and expected type V ):

σ |= Γ ` σαR � V

Constraint Reduction. The speci�cation de�nes a function like �? to facilitate

constraint reduction. Unfortunately, it diverges from the subtyping de�nition at

times. Thus, the constraint reduction algorithm is both incomplete and unsound.

It's best considered a heuristic which generally produces useful bounds; ultimately,

the results of inference must be re-checked by the actual subtyping algorithm to

guarantee that they are valid.

The substitution constraint produced by Java's constraint reduction algorithm

can be thought of as two separate pieces: the �rst is a conjunction of bounds inferred

from the method parameter types (Si �? σαTi); the second is just a conjunction of the

declared, already-reduced type parameter bounds (αj � σα dXjeΓM
). Note that the
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inferred bounds derived from Si �? σαTi are guaranteed not to contain any inference

variables, because no inference variables appear in Si. Also note that there are no

disjuncts: restrictions in the language guarantee that these never need to be used.

Constraint Solving. Loosely speaking, the process used for constraint solving,

given a set of inferred upper and lower bounds and a single declared upper bound for

each variable, is as follows:

1. If some lower bounds were inferred for an inference variable, that variable's

instantiation is the join of those lower bounds.

2. Otherwise, the inferred bounds are combined with the result of σαR �? V (if V

is de�ned in this context).

3. Finally, the instantiation for each unresolved variable is the intersection of the

variable's inferred and declared upper bounds. (Note that this declared upper

bound might include an inference variable�this is a serious problem that we'll

return to in section 4.2.4.)

4.2 Suggested Improvements

The following discussion outlines a number of improvements that could be made to

the Java type system. These suggestions build on the theory developed in this thesis

to examine areas in which type inference could be made more complete and more

general.
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While some of the inference algorithm's current limitations arise from conscious

engineering decisions, in many cases the heuristic nature of the algorithm provides

a cover for unintentional speci�cation and implementation bugs, some of which have

been described in previous papers [16, 17]. Here, we'll focus on higher-level concerns.

4.2.1 Correct Join

As mentioned previously, the join function does not always produce a most speci�c

bound. As a simple example, consider the following invocation:

join(C [[ Object ]] , C [[A ]])

The correct result in this case is C〈? super A〉; the Java function, however, never

produces wildcards with lower bounds, and will instead produce C〈?〉.

The correct de�nition in other cases is more subtle. Consider a similar invoca-

tion in which the two argument types are not directly related, but share a common

supertype (assume B and B′ extend A):

join(C [[B ]] , C [[B′ ]])

A tempting choice for the result (and the result chosen by the Java algorithm)

is C〈? extends A〉. However, it is equally reasonable to choose a lower bound for

the wildcard: C〈? super B ∩B′〉. Both candidates are supertypes of both C [[B ]]

and C [[B′ ]]; yet neither is a subtype of the other. In practice, which type is more

convenient depends on how the type is used.
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A joint University of Aarhus�Sun Microsystems paper introducing wildcards makes

note of this ambiguity [19, 3.1], but does not mention how it can be resolved�by ei-

ther producing a wildcard with both bounds: C〈? extends A super B ∩B′〉, or using

a union type to represent the join: C [[B ]]∪C [[B′ ]]. Both of these types are subtypes of

our previous join candidates, and both are optimal (the �rst is optimal in the absence

of union types). But neither is valid in Java, so to accommodate either approach,

the language would need to be extended.

A second problem, as described previously, is that join may produce recursive

types with wildcards (C〈? extends C〈? extends C〈. . .〉〉〉), and the semantics of these

types is unspeci�ed. Again, there are two alternatives. The �rst is to fully specify

the behavior of all type operations (including subtyping, join, and inference) where

recursive types are present. The second is to abandon recursive types and instead

compute join using union types. This also requires adjusting the domain of all type

operations, but has the advantage that algorithms involving unions are far simpler

than those involving recursive types.

4.2.2 Analysis Using Full Wildcard Bounds

We saw in the discussion of wildcard capture (section 4.1.3) that the bounds of the

existential variable corresponding to a wildcard implictly contain the declared bounds

of the corresponding class type parameter:

Li � Zi � (Ui ∩ σ dYieΓC
)
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The Java inference algorithm is inconsistent with subtyping in its handling of

wildcards: rather than reasoning about wildcards by using wildcard capture, it sim-

ply recurs on the explicit wildcard bound (Ui above). This inconsistency leads to

constraints that are too restrictive, limiting the overall completeness of the inference

algorithm.

The solution to this omission seems simple: just use the correct bound. However,

this strategy forces us to relax simplifying assumptions the Java algorithm makes

about its inputs. Speci�cally, the algorithm implicitly requires that all subtyping

relationships with which it is presented can be constrainted by a conjunction of simple

bounds.

Note, however, that the invocation Γ ` S1∩S2 �? T , where both S1 and S2 contain

inference variables, may not conform to this scheme, because it can be satis�ed by

Γ ` S1 �? T or Γ ` S2 �? T . In order to avoid the possibility that relevant

information will be discarded, the algorithm must guarantee that such applications

will never occur. In particular, it is designed under the assumption that a (non-

inference) variable appearing in the invocation does not have bounds that refer to

inference variables. Variables arising out of wildcard capture violate this assumption.

In principle, and as we've described it in chapter 3, there's no reason constraint

solving should be unable to handle disjunctive constraints. It's also worth noting that

many use cases in which inference based on wildcard capture would be bene�cial do

not produce disjunctions.
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4.2.3 First-Class Intersection Types

As noted in the previous section, intersection types can introduce additional com-

plexity to the inference algorithm. For this reason, their use in Java is extremely

limited: a programmer may only express an intersection in code when it appears as

the upper bound of a type variable. (Programmers may be surprised to discover that

the upper bound of a wildcard cannot be similarly expressed with an intersection.)

If we are willing to extend the inference algorithm to support disjunctive constraints,

it then becomes possible to support intersections as �rst-class citizens in the domain

of types, admitting their usage anywhere an arbitrary type can appear.

As a simple motivating example, the Java API includes the interfaces Flushable

and Closeable, implemented by streams that support a flush and a close operation,

respectively. Taking advantage of these interfaces, it might be convenient to create a

thread that occasionally �ushes a stream, and at some point closes it. Such a thread

would need to reference a variable of type Flushable ∩ Closeable.

It is sometimes possible to approximate the �rst-class use of an intersection by

introducing a type variable X with an intersection upper bound, and replacing all

instances of the intersection with references to X. However, this approach is quite

inconvient, and does not generalize to all use cases.

Support for �rst-class intersections, combined with the ability to make full use

of wildcard capture during inference, provides a compelling motivation for extending

the inference algorithm with support for disjunctive constraints.
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4.2.4 Recursively-Bounded Type Parameters

As noted in section 4.1.6, when the Java constraint solver attempts to incorporate the

declared upper bounds of the type parameters before choosing σ, it does so incorrectly

and allows inference variables appearing within these bounds to leak into the calling

context.

If we're interested in simply patching this speci�cation bug, the workaroud is for

inference to give up in cases that will produce such malformed results. A more useful

solution is to choose the inferred lower bound, which is guaranteed to not contain

inference variables.

If we do so, it's important to �rst incorporate the implicit constraint that the

inferred lower bound be a subtype of the declared upper bound. This is just a special

case of the equivalence rule de�ned in section 3.2.2:

(γ � U) ∧ (γ � L) ≡ (γ � U) ∧ (γ � L) ∧ (Γ ` L �? U)

For example, the Java API de�nes a class Comparable<T> which represents objects

that can be compared (via some ordering) with objects of type T. Say I've de�ned

classes C andD such that C � Comparable [[C ]] andD � C. If a polymorphic method

declares a type parameter T extends Comparable<T>, and inference determines that

the instantiation α has lower bound D, this lower bound is not a suitable choice for

α: D is not a subtype of Comparable [[D ]]. By computing D �? Comparable [[α ]], we

can further infer that α must be equivalent to C.
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4.2.5 Lower-Bounded Type Parameters

While wildcards may be bounded from either above or below, type parameters are

not given this �exibility: only an upper bound is expressible. It's natural to wonder

whether this inconsistency is necessary (especially given that variables produced by

capture can have both upper and lower bounds). In fact, the limitation is closely tied

to the type argument inference algorithm, and improvements to the algorithm would

make this restriction unnecessary.

As an example use case, consider an Option<T> class, which can be used to rep-

resent a possibly-unknown value of type T. In Java, we can give this class a method

T unwrap(T alt), which returns the wrapped value, if it exists, and alt otherwise.

This method would be more useful if alt could be a supertype of T:

<S super T> S unwrap(S alt)

Given the signi�cance of lower-bounded parameters, why are they prohibited? The

speci�cation indirectly suggests that type inference cannot be easily altered handle

such bounds [6, 4.5.1]. In fact, most use cases for lower-bounded parameters would be

trivial to handle by simply joining the inferred and declared lower bounds. The only

potential di�culty is when a declared lower bound contains inference variables; in this

case, some of the constraint-solving strategies outlined earlier would help to produce

useful results. (In practice, uses of lower bounds containing inference variables would

probably be quite rare.)
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4.2.6 Allowing null as a Variable Instantiation

One �nal change to the constraint solver is simple to implement but would likely

constitute a signi�cant practical improvement to the inference algorithm: in some

cases, the best choice for an inference variable instantiation is the type null. The

Java algorithm avoids such results, instead choosing an upper bound or the type

Object.

One common use case is a factory method invocation that produces an �empty�

object, such as an empty list. In such cases, there may be no information available

from constraint reduction to limit the choices for α:

cons(�foo�, empty())

While the choice between null and Object is then essentially arbitrary, null is, in

general, more useful. The above invocation would fail to compile given the current

language's choice of Object, but would work �ne if null were chosen instead, and

assuming cons were de�ned as follows:

<T> List<T> cons(T first, List<? extends T> rest)

We must make an exception to this general pattern of preferring lower bounds, how-

ever: if an inference variable appears in the argument types T of the polymorphic

method, and null is the inferred lower bound, the upper bound will usually be a better

choice (because the inference variable most likely appears in contravariant contexts).
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For example, consider the following method signature, where the Comparator<T>

class has a method de�ning a total order for values of type T:

<T> Comparator<T> inverse(Comparator<? super T> c)

In the absense of an expected type (from the surrounding context), all invocations of

inverse will have null as the inferred lower bound of the instantiation of T. Clearly,

however, this is not what the programmer will want: a Comparator<null> can only

compare null values! So, in this and similar cases, the best choice for instantiating T

is the upper bound.

4.2.7 Better Use of Context

Note that the Java constraint-solving procedure described in section 4.1.6 uses the

results of σαR �? V (where R is the declared return type and V is the type expected

in the surrounding context) only if no lower bound for an inference variable is found

by comparing the invocation's argument and parameter types. This limitation is

somewhat arbitrary, and unnecessarily constrains the algorithm's ability to choose

results that will be useful in the surrounding context. For example, the following

invocation will not compile, because the method invocation produces a Set<Integer>,

not a Set<Number>:

Set<Number> s = Collections.singleton(23);

Another unnecessary limitation is the restricted set of contexts in which the expected

type V is de�ned. Assignments, variable declarations, and return statements de�ne
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expected types; no other statements or expressions do. It would be trivial to to

extend this set to include conditional expressions (of the form exp ? exp : exp).

Without making inference global, even the argument expressions of certain method

invocations could have an expected type, assuming the method is not polymorphic

or overloaded.

4.3 Impact on Existing Code

Enhancements to the Java language are generally made in a backwards-compatible

fashion: the revised language is a superset of the previous version, and the behavior

of previous programs is preserved. Unfortunately, changes to the current speci�cation

that a�ect join and type inference are almost impossible to make without rendering

some programs incorrect, and changing the behavior of others.

Consider, for example, the signature for the method java.util.Arrays.asList:

static <T> List<T> asList(T... ts)

If this method is invoked in a context in which the expected type is unknown�as an

argument to another method, for example�invariant type argument subtyping can

easily cause a correct program to become incorrect with only slight modi�cations to

the inference algorithm. That is, where the original algorithm produces [α 7→ T ] and

the context of the invocation requires a List [[T ]], an algorithm that produces a better

but di�erent type S will lead to an assertion that List [[S ]] � List [[T ]], which is false.



73

More troubling is the possibility that a change to join or the inference algorithm,

while not invalidating a certain previously well-formed program, will change themean-

ing of that program. This is possible because overloading resolution is dependent on

the types produced by type checking.

Despite these incompatibilities, existing bugs in the Java speci�cation (as de-

scribed in a previous paper [17]) and the shortcomings outlined in section 4.2 provide

strong motivation for improving these operations.

To examine the impact of potential changes to the Java inference algorithm,

we developed a tool which implements type checking both as speci�ed and with

an extension that addresses many of the concerns in section 4.2. Speci�cally, the

improved checking:

• Makes use of union types

• Incorporates a sound and complete constraint reduction algorithm which can

express disjunctions

• Improves the constraint solver:

� If a parameter's declared upper bound contains an inference variable, addi-

tional bounds are derived by comparing the currently-inferred lower bound

to the declared upper bound.

� Always infers bounds from the expected type (if it is de�ned) before choos-

ing variable instantiations.
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� If a parameter has no inferred lower bound and it does not appear in the

method's declared arguments, the type null is chosen as its instantiation.

• De�nes the expected type for method invocations occuring inside a conditional

expression (of the form exp ? exp : exp)

The tool was then used to analyze the sources from four open-source Java projects

that make signi�cant use of type inference. Details for running this tool are provided

in appendix B; summary statistics appear in the following table.

Fortress OpenJDK DrJava PLT

Lines of code 92 K 88 K 87 K 22 K

Generic methods 219 245 58 694

Annot. invocations ratio 723/3021 181/1502 9/1391 249/1154

�super� wildcards ratio 23/286 24/426 41/268 1784/3964

Expression types changed 593 70 9 152

Annot. removed ratio 61/361 4/85 2/7 44/160

Casts removed 3 0 2 16

Details about the sources selected for analysis appear in appendix B; note, in

particular, that OpenJDK above refers only to the language tools portion of that

project, not the standard Java APIs or the Java runtime implementation.

The rows of the table refer to the following:
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Lines of code The number of non-comment Java source lines, in thou-

sands.

Generic methods The number of methods with type parameters declared by

the sources.

Annot. invocations ratio Two values: the number of annotated (�explicit�) polymor-

phic method invocations in the source and the total num-

ber of polymorphic method invocations (the rest depend

on inference).

�super� wildcards ratio Two values: the number of lower-bounded wildcards in the

source and the total number of wildcards. Many problems

in the original algorithm relate to the use of wildcards.

Expression types changed The number of expressions (including subexpressions) with

types that are not identical when comparing the results of

the two algorithms. Entries counted by the next two rows

require this as a prerequisite�if the type of the expression

is unchanged, the algorithm changes have no impact.

Annot. removed ratio Two values: the number of statements containing at least

one annotated polymorphic method invocation in which

the current algorithm requires the annotations and the im-

proved algorithm does not ; and the total number of such
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statements in which the current algorithm requires anno-

tations.

Casts removed The number of cast expressions which are necessary un-

der the current algorithm but are not necessary under the

improved algorithm.

While the small selection of code makes it premature to draw sweeping conclusions,

it's clear from these numbers that the improved algorithm would signi�cantly reduce

the clerical burden in some programs, while others would see very little impact at all.

The negative impacts observed were minimal. In no case did the algorithm changes

lead to the selection of a di�erent overloaded method (which would allow arbitrarily-

di�erent program behavior). In only one �le (�ve statements) did the changes lead

to compilation errors.7

By considering the causes for annotations and casts becoming removeable, we can

identify which improvements to the inference algorithm are likely to have the biggest

impact on existing code (keeping in mind that these programs were written to satisfy

the existing type checker). We noted the following major factors:

• Improved precision of join (40 annotations or casts). In particular, joining two

7The improved algorithm's preference for null rather than Object in the constraint solver led

to the error. To be fair, the code appeared in a test that did not exercise the methods of the value

with the inferred type; if it had, the programmer would have been forced to insert annotations to

get useful results, and the errors would then have not occurred.
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�super� wildcards does not produce a �super� wildcard.

• Inferring a null type argument rather than Object (34 annotations or casts).

This comes up frequently for invocations that produce empty lists and similar

objects.

• Always using the expected type (35 annotations). The Java inference algorithm

ignores the expected type if lower bounds can be inferred from the argument

types, and so can infer arguments that are incompatible with the expected type.

Note that these are all fairly simple problems with straightforward solutions�many

of the subtle issues described in previous sections, while important for correctness,

have little impact on these concrete examples.

In summary, despite the theoretical concerns, it seems possible to develop an

improvement to the existing Java type inference algorithm that would signi�cantly

improve its handling of some programs while requiring minimal transitional problems

for legacy code. Of course, such a transition would require some tool support to allow

programmers to guarantee that their program behavior would not change, but the

e�ort required to migrate using such a tool would probably be small.



Chapter 5

Conclusion

This thesis has provided a formal framework for discussing types, subtyping, and

type inference in the context of object-oriented languages with advanced typing fea-

tures. It has also demonstrated how this formal framework can be applied to the

Java language, and showed how principled improvements to the language's type sys-

tem can be applied to produce a more expressive language without negative practical

consequences.

Some speci�c, unique contributions of this work include the following:

• Exploring the interaction of unions and intersections with other typing features.

• De�ning a type inference algorithm as a generalization of subtyping, produced

by a straightforward transformation applied to the subtyping algorithm.

• Identifying useful applications of type inference to a variety of type-checking

tasks, including checking constraint well-formedness and existential subtyping.

• Formally expressing Java wildcards as existential types.

• De�ning and implementing a concrete Java inference algorithm that improves

on the speci�cation.

• Performing a practical analysis of the impact of inference algorithm changes on



79

existing code, noting that, without introducing signi�cant backwards-incompati-

bility problems for these programs, we've managed to signi�cantly reduce the

need for annotated method invocations.

The formal framework de�ned here was intended to be general enough to represent

the core typing features of languages like Scala, Fortress, and X10. Future work

might explore this connection in a concrete manner, as we did with Java, looking

for opportunities to improve both the framework and the languages themselves. In

particular, it is hoped that this work will help in the design of type inference speci�-

cations for these and similar languages.

There is also ample opportunity to strengthen the foundations of our formal frame-

work. For example:

• We've mentioned throughout this thesis important assumptions that ought to

be proven, such as the equivalence of declarative and algorithmic subtyping.

• The intuitive connection between types and sets could be explored formally by

developing a denotational semantics for these types.

• There are a number of important results in type theory concerning the satis�-

ability of type inference; these should be related to our inference approach, in

order to better understand the circumstances under which constraint solving is

decidable.

Finally, we've limited our scope in this thesis to designing type inference. Imple-
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mentation is a separate, complex problem. Particularly important is the ability for

analysis to scale with program size.

5.1 Related Work

5.1.1 General

All of the typing features described in this thesis have a long history in the �eld of

type theory; constraint-producing type-checkers are also well-established. Pierce's

Types and Programming Languages [14] is a very good general-purpose reference on

type theory, and covers most of these topics. It also has an extensive bibliography

referencing the most important works in the �eld, which we won't reproduce here.

All of the major languages mentioned in this thesis have o�cial speci�cations

(some of them only drafts) which address type inference with varying degrees of

concreteness. These include Java [6], C# [21], Scala [11], Fortress [2], and X10

[15]. Many of the ideas in this thesis were directly inspired by the Java and Fortress

speci�cations.

Barbanera, Dezani-Ciancaglini, and Liguoro [3] explored subtyping in the presense

of both unions and intersections. In particular, their paper presents distribution rules

for intersections of unions and intersections of arrows.

Algorithms for local type inference in languages with subtyping and bounded

quanti�cation were �rst explored by Cardelli [5] and later Pierce and Turner [12, 13].

Pierce and Turner noted the di�culty of performing inference for type parameters
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with interdependent bounds, and did not handle these instances [12].

Kennedy and Pierce [10] demonstrated the undecidability of subtyping algorithms

(and, by extension, subtype inference algorithms) for some object-oriented type sys-

tems that can express contravariance. Fortunately, their work also suggests a straight-

forward well-formedness limitation to the class extension graph which restores decid-

ability to their simpli�ed calculus.

Union types are explored in the context of object-oriented languages by Igarashi

and Nagira [9]. Their work provides an interpretation of inheritance for union types,

a problem we have not explored here. Their approach is reminiscent of structural

subtyping; a more nominal approach could also be developed.

5.1.2 Java

Many of the advanced typing features in Java, including type variables and parame-

terized types, accompanied by inference, were adopted from the GJ language [4], an

extension to Java designed to support generic programming.

Wildcards arose out of research to extend GJ and similar languages with covariant

and contravariant subtyping. Thorup and Torgersen [18] initially proposed what has

become known as use-site covariance�allowing programmers to speci�c when a pa-

rameterized type is instantiated that a particular type parameter should be covariant.

Igarashi and Viroli [8] extended this notion to include contravariance and established

a connection to bounded existential types. In contrast to GJ, their work required
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support for variables with lower bounds. A joint project between the University of

Aarhus and Sun Microsystems [19] extended these ideas and merged them with the

rest of the Java language, describing in particular how wildcards a�ect type inference.

Wildcard capture was �rst presented in this paper.

The Java speci�cation (3rd edition) [6] enhanced this prior work in a number

of ways. Wildcard capture was re�ned to produce variables whose bounds include

both those of the wildcard and those of the corresponding type parameter. This

enhancement has a number of interesting side e�ects: �rst, intersection types are

necessary to express the upper bound of some variables; second, a variable may have

both an upper and a lower bound; and third, such variables may appear in their own

upper bounds. Perhaps spurred by the requirement for intersections produced by

capture, the language was also extended to allow intersection types as the bounds

of declared type variables. In addition, the join operation was allowed to produce

recursive types, an approach that was avoided in the Aarhus�Sun paper due to its

complexity [19].

Torgersen, Ernst, and Hansen [20] complemented the speci�cation with a formal

discussion of wildcards as implemented in Java, and presented a core calculus extend-

ing Featherweight GJ [7] with wildcards. Their calculus, for the sake of generality,

allows arbitrary combinations of upper and lower bounds on both declared type vari-

ables and wildcards. Their paper does not, however, discuss how such generality

might a�ect the full Java language, and type inference in particular.
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Symbol Naming Conventions

Throughout this document, variables with certain names are used to represent

values in a certain domain, as outlined below. The �variable� column lists the preferred

variable name; �alternates� lists additional names that may be used when multiple

names are needed.

Variable Alternates Domain See Also

i j, k Indices into a list

n m Maximum indices into a list

T L, P,Q,R, S, U, V Types Section 2.1.1

B A Base types Section 2.1.1

Γ Type environments Section 2.1.2

X Y,Z Type variables Section 2.4

σ Substitutions Section 2.4

K Type constructors Section 2.5.1

x y, z Type constructor parameters Section 2.5.1

a c Type constructor arguments Section 2.5.1

ϕ ρ Logical formulas Section 2.5.1
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Variable Alternates Domain See Also

α γ Inference variables Section 3.1

P Programs Section 3.2

C D Class names Section 4.1.1

w Wildcards or types Section 4.1.1

p Primitive types Section 4.1.1

M Method names Section 4.1.1



Appendix B

Code Analysis with DynamicJava

DynamicJava is an open-source interactive interpreter for Java. It was adopted

by the DrJava IDE as the evaluation engine for its �interactions pane� feature [1].

The source has since been modi�ed extensively as a component of DrJava, in par-

ticular to support generic type checking and other features of Java 5 (the original

authors do not actively maintain the project).

For the purposes of this thesis, DynamicJava was extended to support static

analyis in a batch mode, rather than the usual checking that occurs immediately be-

fore interpreting a snippet of code. In addition to simple error checking (mimicking

a compiler front-end), the batch mode allows di�erent type systems and other con-

�gurable options to be used to analyze the same program. A report comparing the

results (two annotated abstract syntax trees) is then generated.

B.1 Running the Batch Processor

The DynamicJava sources are available at http://drjava.org (currently under the

�Components� link). To invoke the batch processor, run the following class with a

list of source �le or directory names:

edu.rice.cs.dynamicjava.sourcechecker.SourceChecker

http://drjava.org
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B.1.1 Options

By default, this checks the given sources with each of a hard-coded set of option

con�gurations and compares their results. A single con�guration can be invoked by

itself using a �-opt name � argument. The following con�gurations were developed:

jls An implementation of error checking per the Java Language Speci�ca-

tion [6] (simpli�ed to ignore some classes of errors, such as unassigned

variables); modi�ed to mimic Sun's javac compiler where di�erence

from the speci�cation became apparent.

ext Error checking with an �extended� type system, following the improve-

ments described in chapter 4.

jls-inferred The jls con�guration, modi�ed to ignore all explicit type argument

annotations on constructor and method invocations.

ext-inferred The ext con�guration, similarly modi�ed to ignore all explicit type

argument annotations.

Custom con�gurations can be de�ned by modifying the source code.

When sources need to be checked against existing class libraries, the �-cp path �

argument can be used to specify a class path, as in javac.
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B.1.2 Output

Upon invocation, the batch processor uses progress indicators to provide feedback

during analysis.1 If any errors are found, they are then printed, along with the

corresponding source location.

Unless a �-opt� argument was given, this process is repeated for each option

con�guration. Once the analysis completes, a report is then generated, comparing the

annotated abstract syntax trees produced by each con�guration. Where di�erences

are encountered that follow a recognized pattern (the type of an expression doesn't

match, for example), they are accumulated into a list of statistics; if the pattern isn't

recognized, a message is logged.

The printed list of statistics includes counts for (and, if the �-verbose� argument

is used, a list of) the following:

Errors Statements that contain errors are recorded and not processed

further. The report distinguishes between errors that are com-

mon to both con�gurations, those that only occur under the �rst

(�left�) con�guration, and those that only occur under the second

(�right�).

Ideally, analyzing code that cleanly compiles under javac should

produce no errors under the jls con�guration. However, limi-

1As DynamicJava was designed to handle only small code snippets at a time, processing signif-

icant source trees may require an embarssingly large amount of time and memory.
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tations in the jls implementation can lead to some unexpected

errors. In particular, jls di�ers from the language speci�cation

or javac in the following ways:

• Unchecked conversion from a raw to a parameterized class

type is not supported (with the exception of unchecked casts).

• Name resolution and identi�cation of certain �elds as static

constants sometimes fails.

• Resolution of overloaded methods with variable-length ar-

guments follows the speci�cation in unusual cases in which

javac fails to do so.

• In certain type inference cases involving type parameters that

only appear in a method's return type, javac uses an unclear

process to infer a better type than the speci�ed result Object.

Errors that occur under ext but not jls highlight use cases in

which the modi�ed type system fails to handle legal existing code.

(As a known bug, the implementation sometimes fails to identify

a member of a union type.)

Finally, errors produced by jls-inferred and ext-inferred can

be used to identify cases in which explict type arguments are un-

necessary (for example, if ext-inferred has �ve fewer errors than
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jls-inferred, there are �ve cases in which the improved infer-

ence algorithm eliminated the need for explicit type arguments).

Feature usage This includes counts for declarations of polymorphic methods, in-

vocations of polymorphic methods (either with or without explicit

type arguments), and wildcard instances (unbound, upper-bound,

or lower-bound).

Mismatched types Whenever the type inferred for an expression di�ers under two

con�gurations, that di�erence is recorded. Often, the di�erence

has no visible e�ect in the given sources, because the context of

the expression does not distinguish between the two types.

Note that if the di�erence in types leads to a di�erent method

being selected by overload resolution, that fact will be logged sep-

arately in the output.

Extra casts If a cast expression is necessary under the �rst con�guration but

not under the second (that is, a di�erence in the expression's type

makes it a downcast under the �rst con�guration and an upcast

under the second), it is recorded as a �left extra cast.� The di�er-

ence in the opposite direction is recorded as a �right extra cast.�
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B.2 Analyzed Code Samples

Section 4.3 discusses the results of running the DynamicJava batch processor on

the sources of a handful of projects. Instructions for reproducing this analysis are

outlined below.

Fortress Version 4337, available at http://projectfortress.sun.com. Because

Fortress is implemented in both Java and Scala, the compiled Scala

classes in ProjectFortress/build must be added to the class path for

analysis. Other class path dependencies include jar �les appearing in

ProjectFortress/third_party and the JDK library tools.jar, dis-

tributed with Java.

A problem encountered in analyzing the Fortress sources is that the

amount of code and the unusually large number of classes are too much for

a system with 4 GB of memory to handle in a reasonable amount of time.

As a result, the generated sources (packages com.sun.fortress.nodes

and com.sun.fortress.parser) were excluded from analysis, and the

additional sources were split into tractable pieces. This works because

ProjectFortress/build already includes class �les for all classes ex-

cluded from a particular run.

OpenJDK Version 7 build b78, available at http://openjdk.java.net. Only the

langtools source tree was analyzed (found in langtools/src/share

/classes). No external dependencies need to be listed in a class path.

http://projectfortress.sun.com
http://openjdk.java.net
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DrJava Revision 5211, available at http://drjava.org. Some source �les must

be generated before analysis via ant generate-source. The JDK library

tools.jar, distributed with Java, must appear on the class path, in

addition to the jar �les located in the lib directory.

PLT Revision 5175, available at http://drjava.org. No external dependen-

cies need to be listed in a class path.

http://drjava.org
http://drjava.org
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