
RICE UNIVERSITY

Efficient Implementation of First-class

Polymorphic Methods in Java

by

James Sasitorn

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Master of Science

Approved, Thesis Committee:

Robert Cartwright, Chair
Professor of Computer Science

Walid Taha
Assistant Professor of Computer Science

Keith Cooper
Professor of Computer Science

Houston, Texas

April, 2005

Efficient Implementation of First-class

Polymorphic Methods in Java

James Sasitorn

Abstract

This thesis describes a new implementation architecture for polymorphic methods in

Generic Java using the NextGen compiler framework. The standard Generic Java

(Java 1.5) compiler erases generic types at compilation. This transformation pro-

hibits type-dependent operations, limiting generic expressivity. Type erasure causes

unchecked warnings at compilation, and unexpected behavior or exceptions at run-

time. Alternative reflection-based implementations of Generic Java support type-

dependent operations at the cost of significant execution overhead. In contrast, this

work presents an efficient implementation of polymorphic methods using NextGen.

An extended NextGen compiler generates snippet environment template classes to

encode type-dependent operations for polymorphic methods. A customized class-

loader generates specialized template instantiations on demand. This demand-driven

code specialization provides an efficient mechanism to propagate runtime type infor-

mation, while maintaining backwards compatibility with existing libraries and Java

Virtual Machines. Benchmarks show runtime support for polymorphic methods in

NextGen outperforms reflection-based approaches, with runtime overhead compa-

rable to erasure-based Generic Java.

Acknowledgments

I would like to thank my advisor, Professor Robert ”Corky” Cartwright, for his guid-

ance and insight in my research. He embodies an uncanny fusion of the theoretical

and practical aspects of programming languages and software development.

I also would like to thank Professor Walid Taha for introducing me to the more

theoretical aspects of programming language semantics.

I’ve also had the privilege of working with many talented individuals in the Rice

JavaPLT team. In particular, I would like to thank Moez Abdel-Gawad and Michael

Jensen for our many insightful discussions on NextGen and software development.

Finally I would like to thank my family and friends for all their support in this

arduous endeavor.

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vi

1 Introduction 1

2 NextGen2 Fundamentals 3

2.1 GJ Implementation Scheme . 4

2.2 Implications of GJ Type Erasure . 5

2.3 NextGen Implementation Scheme 5

2.4 NextGen Support for Parametric Types 6

2.5 NextGen Support for Polymorphic methods 7

3 NextGen2 Design 9

3.1 Polymorphic Type-dependent Operations 9

3.2 Erasure of Polymorphic Methods . 9

3.3 Naive Implementation of Polymorphic Methods 11

3.4 NextGen2 Translation of Static Polymorphic Methods 12

3.4.1 Propagation of Runtime Types 14

3.5 Dynamic Polymorphic Methods . 14

3.5.1 Bridge Methods . 18

3.5.2 Consolidate snipet environments 19

3.5.3 Pathological Use of Reflection 19

v

4 Implementation 23

4.1 Code Maintance . 23

4.2 NextGen2 Compilation Model . 24

4.3 Type Flattening . 25

4.3.1 Encoding Parametric Types 26

4.4 Snippet Patching . 28

4.4.1 Snippet Environment Representation 28

4.4.2 Implementation . 29

4.4.3 Cross Package Instantiation 30

4.5 Pathological Reflection Implementation 31

4.6 NextGen2 Classloader . 32

5 Related Work 33

5.1 Heterogeneous Translations . 33

5.2 Homogenous Translations . 33

5.3 Modifications to JVM . 34

6 Performance 36

7 Conclusion 45

7.1 Future Extensions . 45

7.1.1 Performance Optimizations 45

7.1.2 Autoboxing of Primtives . 46

7.1.3 Primitives as Type Parameters 46

7.1.4 Mixin Classes . 47

Bibliography 49

Illustrations

2.1 Illegal Multiple Inheritance Class Hierarchy 6

2.2 Intuitive Parametric Type Hierarchy using Interfaces for Typing . . . 7

3.1 Static Polymorphic Method with type-dependent operations 10

3.2 Type-erasure of a Static Polymorphic Method 11

3.3 NextGen2 translation of Zip static polymorphic method 15

3.4 Snippet Environment Hierarchy for Method Overrides 17

3.5 Snippet Environment Hierarchy for Method Overrides 18

3.6 Snippet Environment Hierarchy for Method Overrides 19

3.7 Pathological reflection required for Method changeSecond 20

6.1 General Performance Results (ms) . 37

6.2 First Iteration of General Performance Results(ms) 38

6.3 Performance of Polymorphic Method Recursion (ms) 39

6.4 First Iteration of Performance of Polymorphic Recursion (ms) 40

6.5 Performance of Pedagogical Reflection (ms) 41

6.6 First Iteration of Performance of Pedagogical Reflection (ms) 42

6.7 JSR Performance Results(ms) . 43

Chapter 1

Introduction

Java has changed the nature of software programming with its support for object-

oriented design, comprehensive static type checking, ”safe” program execution, and

its unprecedented degree of portability. Despite these great strides, the absence of

generic types prior to Java 5 has prohibited the expression of many statically checkable

program invariants within the type system. Typically Java programmers simulate

parametric polymorphism by using the universal type Object, or any more suitable

bounding type, in place of a type parameter T, and then insert casts to convert the

erased object back to the particular instantation type. Aside from the clutter of

casting operations, this methodology obscures type abstractions and thus degrades

the precision of static type checking. Generic types allow classes and methods to be

parameterized with respect to type, thus providing type abstraction that could not

otherwise be expressed in a statically typed language.

The most recent major release of the Java platform (J2SDK 5.0) marks an impor-

tant step in the advancement of the Java language. Java 5.0 supports a second-class

formulation of Generic Java called GJ. GJ supports type parameterization of classes

and methods, but prohibits the use of parameterized types in type-dependent opera-

tions. The unsupported operations include parametric casts, parametric instanceof

operations, and new operations of ”naked” parametric type, e.g., new T(). This subtle

restriction is necessary since parametric type information is erased during compila-

tion. The compiler generates a single, type-erased class file for all instances of a

generic class.

These limitations fueled the development of an alternative, first-class formulation

1

2

of generics called NextGen, originally designed by Cartwright and Steele, that is

upward compatible with with GJ. NextGen overcomes the limitations inherent in

GJ by introducing light-weight classes that inherit common code from a type-erased

base class to represent each instantiation of a generic type. Although this mildly

heterogeneous implementation of genericity is more complex than GJ, it is just as

efficient and fully compatible with existing Java legacy code.

The original NextGen2 architecture supported polymorphic methods based on

the assumption that possible instantiations of generic classes and polymorphic method

instantiations could be statically bound. However, the design of generics in Java 5

allows cycles in the type application graph, thus enabling programs to create an

infinite number of class and method instantiations. Allen and Cartwright revised the

NextGen2 implementation architecture to create class instantiations on demand

using a custom classloader[2]. But their design for supporting polymorphic methods

was incomplete and unimplemented.

This thesis presents an efficient implementation of polymorphic methods using

NextGen. This new work, called NextGen2 to avoid any ambiguity, applies

the demand-driven code specialization techniques used for generic classes to pro-

vide support for type-dependent operations in polymorphic methods. Specifically,

NextGen2 creates light-weight templates called snippet environments to encap-

sulate the type-dependent operations used in polymorphic methods. Thus, type-

dependent operations are fully supported without any loss in compatibility with legacy

code or Java Virtual Machines (JVMs).

The remainder of this thesis is organized as follows. Chapter 2 introduces the

existing NextGen translation for parametric classes. Chapter 3 discusses the uses

of parametric methods and their design in the NextGen2 compiler. Chapter 4

provides more technical implementation details of this work in NextGen2. Chapter

5 provides an overview of other research in the field. Chapter 6 provides performance

benchmarks of polymorphic methods, and chapter 7 concludes.

Chapter 2

NextGen2 Fundamentals

NextGen2 extends GJ to propagate parametric type information to the Java Virtual

Machine (JVM) runtime environment. NextGen2 supports the same basic source

language Generic Java, but with greater expressiveness. Generic Java is ordinary

Java (JDK 1.2- JDK1.4) extended to support parameterized types. The extension is

detailed in the JSR14[7] proposal to add generic types in Java 5. In Generic Java,

class and method definitions are augmented to include type parameters that can be

referred to in the enclosing body. Class declarations are generalized from:

Identifer

to

Identifier < TypeParameters >

where

TypeParameters → TypeParm | TypeParm, TypeParameters

TypeParm → TypeVar { TypeBound }

TypeBound → extends ClassType | implements InterfaceType

TypeVar → Identifier

and { } enclose optional phrases. Interface declarations are similarly generalized. In

addition, the definition of ReferenceType is generalized from

ReferenceType → ClassOrInterfaceType | ArrayType

to

3

4

ReferenceType → ClassOrInterfaceType | ArrayType | TypeVar

TypeVar → Identifier

ClassOrInterfaceType → ClassOrInterface { <TypeParameters> }

ClassOrInterface → Identifier | ClassOrInterfaceType.Identifier

and the syntax for new operations now includes the additional phrase

new TypeVar ({ ArgumentList })

The new generic RefernceType can appear in any context a class or interface

name can in ordinary Java except in the extends or implements clause of a class

definition. Method declarations are generalized with a slight variation. A method

declaration header is generalized from

{modifiers} Type Identifier ({ArgumentList})

to

{modifiers} {<TypeParameters>} Type Identifier ({ArgumentList})

and method invocations are modified from

{ScopeIdentifier .} Identifier ({ArgumentList})

to

{ScopeIdentifier .} {<TypeParameters>} Identifier ({ArgumentList})

2.1 GJ Implementation Scheme

The GJ proposal for Generic Java by Bracha, Odersky, Stoutamire, and Wadler pro-

vides the illusion of generic types by using type erasure[3]. Each parametric class

C<T> generates a single class file containing the erased base class C. Similarly, each

parametric method <T>m generates a single erased method m. The erasure of a para-

metric type T is obtained by replacing each type parameter t with its upper bound.

All references to parametric classes or methods are replaced with references to their

erased versions.

5

2.2 Implications of GJ Type Erasure

Erasure of parametric type information causes typing inconsistencies. Consider a

generic class S tack<T> that extends a generic class V ector<T>. Intuitively an in-

stantation S tack<E> should be a subtype of V ector<E>. Correct subtyping is pos-

sible under erasure; S tack is a subtype of V ector. However, by the same logic any

instantiation class S tack<F> is also considered a subtype of V ector<E>.

A more dramatic problem occurs on operations involving ”naked” parametric

types such as n ew T() and n ew T[]. The type parameter T is erased to its up-

per bound, in this case O bject. So these two operations are discretely erased to

n ew Object() and n ew Object[], respectively. This results in unexpected runtime

behavior and exceptions.

To minimize the problems of erasure, GJ prohibits operations that depend on run-

time information. These type-dependent operations occur when using new, instanceof,

or casting instructions with a naked type parameter or a generic type parameterized

by a type parameter. Even with these restrictions, some operations still cannot be

statically checked and cause unchecked warnings during compilation.

2.3 NextGen Implementation Scheme

The NextGen implementation of Generic Java corrects the inaccuracies in subtyp-

ing and eliminates the restrictions on type-dependent operations imposed by GJ.

NextGen improves on GJ type erasure by making the erased base class C abstract

and creating lightweight classes that extend C to represent instantiations C <E>. The

type-dependent operations in C <T> are not erased in C , but rather translated into

calls on synthetically generated snippet methods. The instantiation classes C <E>

overload these snippet methods in C to provide specialized code encapsulating the

type-dependent operations for C <E>.

6

2.4 NextGen Support for Parametric Types

While the use of lightweight template classes preserves runtime type information, it

also breaks intuitive subtyping relationships. The earlier example using S tack<T>

and V ector<T> illustrates the problem. The instantiations S tack<E> and V ector<E>

must inherit code and thus extend the base classes Stack and Vector, respectively.

Also, intuitively S tack<E> is a subtype of V ector<E>. Figure 2.1 shows this illegal

hierarchy. However, this multiple inheritance is impossible in the single inheritance

Object model in Java.

Vector<T>

Stack<T> Vector<Integer>

Stack<Integer>

Figure 2.1 : Illegal Multiple Inheritance Class Hierarchy

In the original NextGen paper, Cartwright and Steele demonstrated how mul-

tiple interface inheritance solves this multiple inheritance predicament[4]. By intro-

ducing an empty interface C <E>$ which is implemented by the instantiation class

C <E>, NextGen effectively decouples the generic instance C <E> from its associated

type. References to C <E> are replaced with references to C <E>$. Figure 2.2 shows

how 2.1 can reformulated into a single class inheritance hierarchy. Since Java allows

7

multiple inheritance of interfaces NextGen can provide correct runtime subtyping.

Furthermore, since these light-weight interfaces contain no fields or methods, their

use only marginally effects program code size. A more detailed discussion is available

in the earlier NextGen papers [4] [2].

<<Interface>>

Vector<nteger>$

<<Interface>>

Stack<Integer>$

Vector<T>

Stack<T>

Vector<Integer>

Stack<Integer>

Figure 2.2 : Intuitive Parametric Type Hierarchy using Interfaces for Typing

2.5 NextGen Support for Polymorphic methods

Earlier versions of NextGen did not provide comprehensive support for polymorphic

methods. The original NextGen2 design supported polymorphic methods based

on the assumption that possible instantiations of generic classes and polymorphic

method instantiations could be statically bound. However, the design of generics in

Java 5 allows cycles in the type application graph, thus enabling programs to create

an infinite number of class and method instantiations. Allen and Cartwright revised

the NextGen2 implementation architecture to create class instantiations on demand

8

using a custom classloader[2]. But their design for supporting polymorphic methods

was incomplete and unimplemented.

Chapter 3

NextGen2 Design

This chapter discusses how the NextGen compiler described in chapter 2 is extended

to support polymorphic methods in first-class genericity. Sections 3.1-3.2 discuss the

uses of polymorphic methods and the current support in the JVM. Sections 3.3-3.4

details the translation use in NextGen2 to support static polymorphic methods,

methods where dynamic dispatch is not possible. Finally, Section 3.5 extends the

static translation to support the case of dynamic polymorphic methods.

3.1 Polymorphic Type-dependent Operations

Polymorphic methods expand the number of generic types available in the body of

a method. This allows for type-dependent operations based on the parametric type

information of other generic class instantiations. As discussed in section 2.2, type-

dependent operations include new, instanceof, or casting instructions with a naked

type parameter or a generic type parameterized by a type parameter.

Figure 3.1 presents a simple example of List.zip, the function that creates a

new List containing a lexicographic pairing of the elements from the two input lists.

The type variables T and U are used in the type-dependent instantiations of new

Pair<T,U> and new List<Pair<T,U>>.

3.2 Erasure of Polymorphic Methods

Under type-erasure, the parametric source code in figure 3.1 is converted into the

version shown in figure 3.2. In the erased code, the parameter and return types are

all replaced by their parametric upper bound List. The most significant change is

9

10

class List<T> {
T first;
List<T> rest;

List(f, r) { first = f; rest = r; }

static <T, U> List<Pair<T,U>> zip (List<T> left, List<U> right) {
...
return new List<Pair<T,U>>(new Pair<T,U>(left.first, right.first),

List.<T,U>zip(left.rest, right.rest));
}

}

class Pair<A,B> {
A x;
B y;
Pair(x,y) { this.x = x; this.y = y; }

}

class Client {
public static void main(String[] args) {

List<Integer> i = new List<Integer>(new Integer(1), ...);
List<String> s = new List<String>("A", ...);

List<Pair<Integer, String>> p = List.<Integer, String>zip(i, s);
}

}

Figure 3.1 : Static Polymorphic Method with type-dependent operations

11

the conversion of List<Pair<Integer, String>> to List; this represents a loss of

two levels of type parameterization. In general, type erasure generates a hole in the

type system at each return from a function. As a result, erasure hinders concise and

expressive object-oriented design patterns in Generic Java.

class List {
Object first;
List rest;

List(f, r) { first = f; rest = r; }

static List zip (List left, List right) {
...
return new List(new Pair(left.first, right.first),

zip(left.rest, right.rest));
}

}

class Pair {
Object x;
Object y;
Pair(x,y) { this.x = x; this.y = y; }

}

class Client {
public static void main(String[] args) {

List i = new List(new Integer(1), ...);
List s = new List("A", ...);

List p = List.zip(i, s);
}

}

Figure 3.2 : Type-erasure of a Static Polymorphic Method

3.3 Naive Implementation of Polymorphic Methods

One possible implementation of polymorphic methods that supports runtime type-

dependent operations is to translate each method into a parameterized inner class

12

with a single execution method[10]. The inner class is parameterized by all the type

parameters of the original method and its enclosing class. At each related call site,

a generic instance of the related parametric inner class is generated and invoked. A

translation of List.zip is shown below.

static class List$zip<T,U> {

zip() { }

List execute (List<T> left, List<U> right) {

...

return new List<T,U>(new Pair(left.first, right.first),

zip(left.rest, right.rest));

}

}

The heavy-weight translation shown above parallels the heterogeneous transla-

tion of template classes in C++. Each distinct use of List.zip would generate a

complete copy of the List$zip template, resulting in excessive code duplication and

unnecessary time overhead.

So while this is not an ideal translation, this approach brings polymorphic meth-

ods into more familiar territory. Since NextGen already provides an efficient im-

plementation of generic classes that support type-dependent operations, an efficient

implementation of polymorphic methods should follow a similar approach. Specifi-

cally, it should leverage light-weight instantiation templates and snippetized code to

encapsulate type-dependent operations.

3.4 NextGen2 Translation of Static Polymorphic Methods

This section describes the NextGen2 transformation to support static polymorphic

methods. Static polymorphic methods include all polymorphic methods declared

13

private, static, or final. Then section 3.5 shows how this translation can be extended

to the dynamic case.

NextGen2 supports static polymorphic methods through a primarily homoge-

nous scheme of translating only the type-dependent operations into calls on a special-

ized snippet environment. The snippet environment is a light-weight singleton

containing only snippet methods for type-dependent operations, and a static field

bound to the only instance of the class. A snippet environment instance is created

at each polymorphic call site and passed as an argument to the method. The name

of the instantiated snippet environment encodes the instantiated type parameters,

as well as typing information related to the statically inferred receiver type. For the

sake of brevity, this chapter uses the naming convention of [ClassIdentifier]$env

to denote a snippet environment. Figure 3.3 shows an implementation of zip using

this approach.

While this transformation is more complicated than type erasure, it performs with

minimal additional overhead. The overhead of light-weight snippet environments

can be easily removed by specialized optimizations in the Just-In-Time (JIT) com-

piler.

While Generic Java programs create a large number of generic instantiations, these

instantiations are based on a small defined set of parametric types. Since instantiation

of snippet environments is deferred until runtime, NextGen2 generates instances

of a snippet environment only on demand. This demand-driven approach prevents

the accidental creation of infinite hierarchies that may arise in chains of polymorphic

recursion.

Since different type instantiations use distinct snippet environments, NextGen2

prefixes polymorphic method signatures using snippet environment interfaces. This

interface specifies the snippet calls used in the body of the method. The related snip-

pet environment template, and thus all snippet environment instances, implement

this interface to ensure correct static typing. This differs from the support for generic

14

classes, where interfaces are used simply to ensure correct typing of class hierarchies.

For polymorphic methods, the name of the interface encodes the upper bounds of

the polymorphic type parameters it represents. For simplicity, this chapter uses the

naming convention of [ClassIdentifier]env to denote these interfaces.

3.4.1 Propagation of Runtime Types

A subtlety in the NextGen2 translation is the propagation of snippet environments.

In figure 3.3, the recursive call is a polymorphic call using the same type parameters.

So in this case, passing the current snippet environment propagates the polymor-

phic parameterization.

Direct passing of a snippet environment characterizes a larger set of invoca-

tion call graphs typical in Object-oriented paradigms. NextGen2 passes a snippet

environment anytime a method invocation instantiates the same exact type param-

eters. This applies to recursive methods, helper methods, and chains of overloaded

methods that provide additional initialization.

In general, snippet environments provides the glue to carry polymorphic type

information from a call site to a subsequent method invocation. When the paramet-

ric types can be inferred statically, NextGen2 can explicitly generate the correct

snippet environment. When the parametric types cannot be inferred statically,

NextGen2 snippetizes the construction of snippet environments.

3.5 Dynamic Polymorphic Methods

In this section, the translation described in section 3.4 is extended to support the

dynamic case, a polymorphic method in the presence of object-oriented dynamic

dispatch. In other words, a polymorphic method in a class that can be overridden by

a subclass∗.

∗This is a strong semantic reason why static inner classes will not suffice: polymorphic methods

can be overriden in subclasses while inner classes cannot.

15

class List<T> {
T first
List<T> rest;

List(f, r) { first = f; rest = r; }

static <T,U> List<Pair<T,U>> zip (Listenv $env, List<T> left, List<U> right) {
...
return $env.new$List<Pair<T,U>>(new Pair<T,U>(this.first, other.first),

zip($env, left.rest, right.rest));
}

class Pair<A,B> {
A x;
B y;
Pair(x,y) { this.x = x; this.y = y; }

}

class Client {
public static void main(String[] args) {

List<Integer> i = new List<Integer>(new Integer(1), ...);
List<String> s = new List<String>("A", ...);

List<Pair<Integer, String>> p =
i.<String>zip(List$env<Integer,String>.ONLY, s);

}
}

interface Listenv {
List<Pair> new$List<Pair<T,U>> (Pair f, List<Pair> rest);

}

class List$env<Integer, String> {
List<Pair> new$List<Pair<T,U>> (Pair f, List<Pair> rest) {

return new List<Pair<Integer, String>> (f, r);
}

}

Figure 3.3 : NextGen2 translation of Zip static polymorphic method

16

Static polymorphic methods have a receiver type and parametric types, all of

which can be inferred statically from the call site. Dynamic polymorphic methods,

however, are associated with an object instance. So polymorphic type information

originates from two sources: the call site and the receiver type. While the call site

information is static, the receiver type information is dynamic.

As stated earlier, a snippet environment encodes the statically inferred receiver

type. Therefore, it cannot encapsulate type-dependent operations that depend on

the dynamic receiver type. NextGen2 could prohibit type-dependent operations in-

volving both sources of parametric types. Type-dependent operations using class-level

parameterization could then be handled using the basic NextGen approach: these

operations can be snippetized in the related generic instantation class. However,

this restriction seems severe since it prevents many intuitive uses of polymorphic

methods.

To better understand the complexities caused by dynamic dispatch, this section

will examine a dynamic version of List.zip originally introduced in figure 3.1. Sup-

pose a subclass RevList overrides the method zip to return a different ordering of

elements, e.g. a reversed list:

class List<T> {

...

<U> List<Pair<T,U>> zip (List<U> other) {

return new List<Pair<T,U>>(new Pair<T,U>(this.first, other.first),

rest.<U>zip(other.rest));

}

}

class RevList<T> extends List<T> {

...

<U> List<Pair<T,U>> zip (List<U> other) { ... }

}

17

A naive translation would prefix each method’s parameters with a distinct snippet

environment. This hierarchy is concisely described by the UML diagram in figure

3.4.

List<T>

zip(env: Listenv,left: List<T>,right: List<U>) : List<T,U>

RevList<T>

zip(env: RevListenv,left: List<T>,right: List<U>) : List<T,U>

<<Interface>>

Listenv

<<Interface>>

RevListenv
<<use>>

<<use>>

Figure 3.4 : Snippet Environment Hierarchy for Method Overrides

Now consider the call site:

List<Pair<Integer, String>> p = i.<String>zip(s);

Modifying the method signatures this way introduces two inconsistencies. First,

method overrides in Java require invariance; the signature of a method override must

match the signature of the original method.† So by prepending a different snippet

environment to each method, this breaks the type invariance necessary for the sub-

class RevList to override the implementation of zip in its parent. Second, the

snippet environment created at the call site is instantiated with respect to the

static receiver type and may not accurately reflect its dynamic type. In the example

above, if the variable i is statically typed to List<Integer> the actual receiver type

could either be List<Integer> or RevList<Integer>, and the snippet environment

would be of type Listenv or RevListenv, respectively.

These two problems are closely intertwined. The latter is crucial since it is the

mechanism by which NextGen2 propagates polymorphic method types.

†As of Java 1.4, invarience was relaxed slightly to allow a method override to narrow its return

type.

18

3.5.1 Bridge Methods

NextGen2 introduces bridge methods in each subclass to restore the polymorphic

method overrides from the parent class.‡ Bridge methods must generate the correct

snippet environment and invoke a forwarding call to the real method.

Figure 3.5 shows a bridge method in RevList that correctly overrides zip defined

in List. Since RevList preserves the type parameterization in List, it should be

possible to cast, and thus, forward a List$env snippet environment. However, for

this to work properly, Listenv must contain all the type-dependent operations, or

snippets, present in RevListenv. In other words, this means that Listenv must

be a subtype of RevListenv.

In general, dynamic dispatch forces a class’s snippet environment to be a sub-

type of all of its subclasses’ snippet environments. NextGen2 uses snippet

environment interfaces to provide correct typing. Then, after type checking NextGen2

propagates the snippets in each snippet environment, upward the class hierarchies,

to its related snippet environments. This is the reverse of the scheme used to

propagate snippets through the class heirarchy for parametric classes.

List<T>

zip(env: Listenv,left: List<T>,right: List<U>) : List<T,U>

RevList<T>

zip(env: Listenv,left: List<T>,right: List<U>) : List<T,U>

zip(env: RevListenv,left: List<T>,right: List<U>) : List<T,U>

<<Interface>>

Listenv

<<Interface>>

RevListenv
<<use>>

<<use>>

<<use>>

Figure 3.5 : Snippet Environment Hierarchy for Method Overrides

‡Bridge methods are already used in Java 5 to correct inconsistencies of method signatures caused

by type erasure

19

3.5.2 Consolidate snipet environments

When a subclass preserves class-level parameterization, NextGen2 can provide a

more optimized solution. Specifically, when the statically inferred receiver type pa-

rameterization expresses all the available parametric types, a single snippet environment

can correctly account for all possible dynamic dispatches and encapsulate all neces-

sary type-dependent operations. In the zip example, if RevList<T> is declared as

RevList<T> extends List<T>, then the instantation of type T can always be in-

ferred at the call site. Thus, as shown in figure 3.6, a single snippet enviornment

of type Listenv satisfies both executions of zip.

List<T>

zip(env: Listenv,left: List<T>,right: List<U>) : List<T,U>

RevList<T>

zip(env: Listenv,left: List<T>,right: List<U>) : List<T,U>

<<Interface>>

Listenv

<<use>>

<<use>>

Figure 3.6 : Snippet Environment Hierarchy for Method Overrides

3.5.3 Pathological Use of Reflection

However, if a subclass introduces new class-level type parameterization, a single

snippet environment may not be able to encode all the necessary type-dependent

operations. The following conditions must occur between a class A and its subclass

B:

• B introduces new class-level parameterization T.

• T is not mapped to parameterization in A via extends clause.

20

• B overrides polymorphic method m defined in A.

• Call site is statically typed receiver A.

• Call site is invoked with a dynamic receiver of class B.

Any snippet environment based on the statically inferred receiver type A at the

call site will not be able to encode type-dependent operations related to the type

parameter T. An example of this pathological case is shown in figure 3.7.

class Pair<S,T> {
S s; T t;
public Pair(S s, T t) {

this.s = s;
this.t = t;

}
public <X> Pair<S,X> changeSecond (X ob) {

return new Pair<S,X>(s,ob);
}

}

class Triple<S,T,U> extends Pair<S,T> {
U u;
public ReflectTriple(S s, T t, U u) {

super(s,t);
this.u = u;

}
public <X> Pair<S,X> changeSecond (X ob) {

return new Triple<S,X,U>(s,ob,u);
}

}

//call site
Pair myPair = ...;
myPair.changeSecond(new Boolean(true))

Figure 3.7 : Pathological reflection required for Method changeSecond

In these cases, NextGen2 uses reflection to determine the parameterized types

of the receiver, and to instantiate the corresponding snippet environment. There

21

are three points of modification where NextGen2 can perform reflection: (1) at the

call site, (2) in the method incatiion, and (3) in the snippet invocation.

1. At the call site: At a pathological call site, there is no way to distinguish

between receivers that require reflection and those that don’t. Therefore, under

this approach a snippet environment must always be generated using reflec-

tion immediately before dynamic method invocation. This would slow down

runtime performance, including the common non-reflection case.

2. In the method invocation: This approach requires using bridge methods, as

outlined in 3.5.1, to provide the glue for reflection. The bridge method must

use reflection to create the correct snippet enviornment and then pass it to

the real method. Thus, only the pathological case will slowdown runtime per-

formance. As a result, the performance penalty would depend on the number of

pathological snippets actually executed in the body of the polymorphic method.

3. In the snippet method: On unsupported type-dependent operations, NextGen2

could use reflection to invoke the correct snippet method. However, since

the snippet enviornment is generated in the snippet operation, it cannot be

reused. In otherwords, the execution of multiple pathological snippets in suc-

cession must each perform reflection. So runtime performance would be affected

only in the pathological case per each unsupported snippet invocation.

Since a snippet environment has no reference to the pertinent receiver object,

each snippet method signature must be altered to pass in the active receiver.

Unfortunately, passing the receiver on all snippet calls would further impact

runtime performance.

NextGen2 follows the second approach listed above. First, the NextGen2

compiler consolidates all snippet environments that can be shared in a class hier-

archy. Then, it generates bridge methods for any remaining pathological cases. In

22

these cases, the NextGen2 compiler outputs compiler warnings specifying a possi-

ble performance degradation. Thus, a programmer can detect pathological cases, and

possibly reformulate them using different design patterns.

Practically speaking, the pathological case rarely occurs in production level code.

Chapter 4

Implementation

NextGen2 uses an extended Java 5 compiler and a customized classloader to

provide the framework necessary to propagate runtime type information. Previous

versions of NextGen compiler were derivatives of the GJ compiler. The core func-

tionality of NextGen was ported from GJ to Java 5. Since Java 5 is also a derivative

of the GJ, the organization of the NextGen2 compiler follows that of NextGen. By

building on Java 5, NextGen2 can immediately (1) Perform accurate type checking

against the latest JSR14 specification, (2) Use support libraries in the JSR14 compiler

to minimize code redundancy and improve readability, and (3) Take advantage of a

more systematic compiler API with fewer bugs and inconsistencies.

4.1 Code Maintance

The cost of maintaining a full compiler is beyond the capabilities of the Rice JavaPLT

research group. To understand the javac compiler requires not only a wide breath of

knowledge on the diverse stages of compilation, but also a profound understanding

of the peculiarities of the underlying implementation. Furthermore, it is infeasible to

replicate the daily development of the javac compiler. There are numerous updates in

the underlying javac implementation to fix bugs and to improve the interoperability

between generic and non-generic code. Also, since the Java Programming language is

under constant evolution, ie the recent addition of wildcards, it would be impossible

to maintain a compatible compiler.

An optimal solution would decouple the NextGen2 extensions from the main-

tenance of the underly java compiler. One option is to implement NextGen2 as a

23

24

source-level preprocessor used before javac [2]. However, this approach is infeasible

because NextGen name-mangling techniques are illegal in GJ identifiers. A second

option is to implement NextGen2 as a post-processor on Java bytecode. Unfor-

tunately, most of the run-time type information has already been removed by the

compiler, and the resulting bytecode relies on erased types. A third option is to per-

form only a minimal amount of direct modifications to the Java Compiler and then

perform the remaining transformations on the bytecode level. In this implementation,

the NextGen compilation phase encodes the runtime type information needed for

bytecode translation. This frees NextGen from complete depending on the javac

compiler, and the quarks and complexities of its data structures and APIs.

The NextGen2 compiler follows the third approach listed above. Details are

provided in the following sections.

4.2 NextGen2 Compilation Model

From the user’s point of view using NextGen2 requires a minimial adjustment

from their current java model: The command ngc replaces javac, and nextgen re-

places java. The compilation of generic java code generates extra class files for the

NextGen2 templates.

Internally, NextGen2 adds two stages of processing to the normal Java 5 compi-

lation process: a ”type flattening” stage to encode parametric types, and a ”snippet

patching” stage to collect snippetized type-dependent operations. Both stages follow a

mutation-based Visitor pattern to destructively transform segments of code. Since un-

related code is unaltered, this approach eliminates the need for a post-processing stage

to patch jump targets used in the original NextGen compiler. In conjunction, these

two stages snippetize type-dependent operations and generate the template classes

used to represent uninstantiated parametric classes and methods environments.

A template class has strings in its constant pool that contain embedded references

to the type parameters related to the class’s instantiation. These references specify

25

an index of the form {0},{1}, etc, referencing a class-level parameterization. The

NextGen2 classloader replaces these references with the actual type parameters

(represented as mangled strings) to generate specific template instantiations.

All classfiles genered by NextGen2 contain a special NextGen Attribute for

versioning. This versioning marker is orthogonal to the major and minor version used

to mark JVM compliance. This allows NextGen2 to distinguish between different

versions of NextGen2 modified files, and also other third-party modifications.

The next three sections will explain the details of type flattening, snippet patching,

and classloading.

4.3 Type Flattening

NextGen2 performs type flattening after type checking. In this stage, NextGen2

replaces parametric types with their NextGen mangled representation, and snippe-

tizes type-dependent operations. The basic type flattening scheme is as follows:

1. Recursively traverse the code.

2. Encode type-dependent operations into a snippet method call. NextGen2

hashes the generated method names to ensure uniqueness.

3. Generate the corresponding snippet method in the related template class. For

class level snippets, NextGen2 stores the snippet in the class’s template

class. For parametric methods, NextGen2 stores the snippets in the cor-

responding snippet enviornment.

4. When translating polymorphic methods, prepend the method parameters with

the corresponding snippet environment interface.

5. On method invocations of polymoprhic methods, generate code to instantiate

a snippet environment and pass it as a parameter into the method call.

26

After traversing the code, NextGen2 stores the newly generated template classes

for parametric classes and the snippet environments for polymorphic methods.

4.3.1 Encoding Parametric Types

NextGen2 must generate distinct class identifiers for the templates used to encode

runtime type information. The class identifiers include the character sequence ”$$”,

which by convention does not appear in Java source code. The use of two ”$” charac-

ters distinguishes NextGen2 classes from mangled inner classes which use a single

”$”. For a generic class A<S,T>, NextGen2 creates the following two additional

classes:

• A<S,T>, the light-weight template class

• A<S,T>$, its corresponding typing interface

where S, T are fully quantified class identifiers. All references to generic types are

then encoded to valid java identifiers using the following translation scheme:

• Left angle bracket ’<’ to ”$$L”

• Right angle bracket ’>’ to ”$$R”

• Comma ’,’ to ”$$C”

• Period (dot) ”.” to ”$$D”

So the class

Pair<java.lang.String, java.lang.Integer>

would be encoded as:

Pair$$Ljava$$Dlang$$DString$$Cjava$$Dlang$$DInteger$$R

27

The encoding for snippet environments builds on the encoding for generic types.

A polymorphic method m<T> in class A<S> generates two classes: a snippet environment

and its corresponding interface. While the previous chapter used the identifiers

[ClassIdentifier]$env and [ClassIdentifier]env, the precise naming scheme

is:

• A≤S≥<bounds(T)>$$E<T>, a snippet environment

• A≤S≥<bounds(T)>$$E, its corresponding typing interface

where bounds(T) are the full class identifiers for the upper bounds of the type pa-

rameters T. The indentifiers are then encoded using the following translation scheme:

• Left small angle bracket ’≤’ to ”$$l”

• Right small angle bracket ’≥’ to ”$$r”

and $$E can be either:

• ”$$ES” denotes a static method environment

• ”$$ED” denotes a dynamic method environment

Recall the dynamic zip example introduced in section 3.5. The the call site:

List<Pair<Integer, String>> p = i.<String>zip(s);

will produce the following snippet environment and interface:

List<java.lang.Integer>≤java.lang.Object≥$$ED<java.lang.String>

List<java.lang.Integer>≤java.lang.Object≥$$ED

which is encoded as:

List$$Ljava.lang.Integer$$R$$ljava.lang.Object$$r$$ED$$Ljava.lang.String$$R

List$$Ljava.lang.Integer$$R$$ljava.lang.Object$$r$$ED

28

As shown above, the NextGen2 encoding scheme for polymorphic methods gen-

erates snippet environments based on the enclosing class and the type parameters

in scope. Therefore, methods that have the same type parameters, and probably a

related function, share a common snippet environment.

4.4 Snippet Patching

After NextGen2 flattens parametric types and snippetizes type-dependent opera-

tions, a post-processing ”snippet patching” stage traverses class hierarchies and prop-

agates snippets in related templates.

Since a class inherits code from its superclass, snippets in parametric classes must

be propagated down the class hierarchy. If the type-dependent operation is defined

in a polymorphic method, the snippets related to the method maybe needed in the

snippet environment of the superclass. This of course depends on the typing rela-

tionship between the snippet classes as discussed earlier in section 3.5.1. The exam-

ple used in this earlier section involved a class Revlist that overrided a polymorphic

method zip defined in its superclass List. If these two classes used separate snippet

environments, all the snippets in RevListenv would be propagated to Listenv.

4.4.1 Snippet Environment Representation

NextGen2 generates an auxiliary class files for each template class. Therefore, each

polymorphic method generates one class file for its snippet environment and another

for the snippet environment interface.

Since all NextGen2 templates are extremely light weight, an alternative repre-

sentation could be to store �snippet environments as attributes in the original base

class. While there are variations of this scheme, the primary objective would be to

trade disk access for load-time computation. The former would require loading addi-

tional classfiles, while the latter requires a more sophisticated classloader to perform

code generation.

29

4.4.2 Implementation

Snippet patching uses the Byte Code Enginnering Langauge (BCEL) to operate on

the bytecode generated by the compilation process. Manipulating snippets at the

bytecode level provides a more simplistic interface over an AST-based algorithm. To

copy a snippet method from one template to another, the Snippet Patacher needs to

make a single pass over the constant pool and then copy each method and its related

constants to the destination template.

The algorithm for propagating class-level snippets follows a straight-forward de-

scending search specified in [2]. Support for polymorphic methods uses a more in-

tricate, upward search based on method overrides. This search is used to determine

the class hierarchy of the newly-compiled snippet environments, and to propagate

snippets downward through these hierarchies. The algorithm performs the following:

1. Search the the list of recently compiled classes for polymorphic methods. The

first parameter in the method’s signature indicates the snippet environment

generated by type flattening. The pair (method, snippet env) is hashed for

future reference.

2. For each method, check if the method definition is new, or if it implements or

overrides a definition in a super type. If an earlier definition exists, hash the

pair (super env, sub env). These results define the class hierarchies of the newly

generated snippet environments.

3. Then, for each distinct snippet environment, propagate the snippets down-

wards using the hierarchies from the previous step.

4. For each pair in (super env, sub env), check if the sub environment interface is

defined as an interface to the super environment interface. If it is not, add it.

5. Save each completed snippet enviornment and interface.

30

The algorithm above uses a subtle property of the classloader: Elements in the

classpath shadow earlier definitions. At compilation, ngc writes new versions of each

snippet environment to the build directory. Storing new versions in the build di-

rectory is ideal since there is no guarantee that existing libraries or jars are writable.

This strategy works since the classpath used for compilation is nearly identical to

the one used for execution. Thus, more recent snippet environments definitions

shadow earlier definitions.

4.4.3 Cross Package Instantiation

The NextGen2 design presented in chapter 3 does not specify where the instan-

tiation classes for snippet environments are placed in the Java namespace. The

most intuitive location would be in the same package.∗ However, this placement can

cause a cross-package instantiation problem where a private type is used by a snippet

environment that resides outside the package boundary[10].

The simplest solution to this instantiation problem is to automatically widen a

private class to public visibility if it is passed as a type argument in the instantiation

of a generic type residing in another package. This tradeoff for simplicity at the cost

security has precedent in Java. When an inner class refers to private members of its

enclosing class, javac automatically widens the visibility of the relevant members by

generating getters and setters with package visibility. Although more secure imple-

mentations are possible, the Java designers decided to sacrifice some visibility for the

sake of performance.

One solution proposed in [4] is to use an initialization protocol to pass a envi-

ronment containing the necessary snippets to the constructor of the instantiation

snippet environment. However, in NextGen2, snippet environments are them-

selves containers with minimal typing restraints: each environment instance imple-

ments a single typing interface. Thus, the actual location of the snippet environment

∗A static inner class would be ideal, but they are translated into toplevel classes by the compiler.

31

is not important. So the NextGen2 compiler can widen the private class to package

visibility and then instantiate the snippet environment in the same package as the

private class. This approach requires the same number of snippet environments as

simply widening visibility from private to public. Therefore, NextGen2 can support

cross package instantiation problem for polymorphic methods without any additional

overhead.

4.5 Pathological Reflection Implementation

As discussed in section 3.5.3, the reflection code is located in a bridge method defined

in the template class of a parametric class. The reflection code must infer the poly-

morphic types of the relevant receiver and snippet environment. To minimize the

impact of reflection in pathological method invocations, the NextGen2 ClassLoader

includes a HashMap of snippet environment class identifiers to their singleton ob-

jects. Shown below is the core functionality to support pathological polymorphic

methods.

String senv = snippetEnv.getClass().toString();

String clazz_suffix = clazz.substring(senv.indexOf("$$l"), clazz.length());

String s4 = "$$SNIPPET_STRING$$" + s1;

Object env = edu.rice.cs.nextgen2.classloader.

NextGenLoader.reflectionTable.get(s4);

if (env != null) {

return meth2((Integer) env, a1, a2);

}

env = Class.forName(s4).getDeclaredField("ONLY").get(null);

edu.rice.cs.nextgen2.classloader.NextGenLoader.reflectionTable.put(s4,env);

return meth2((Integer)env, a1, a2);

where "$$SNIPPET STRING$$" is filled in with the identifier of the current template

class.

32

4.6 NextGen2 Classloader

At runtime, the NextGen2 classloader intercepts JVM requests to load a class with

a mangled identifier. It then loads the corresponding template files to generate the

requested class or interface. It searches the identifiers in the constant pool replacing

each reference tag {n}, where n is an integer, with the corresponding type specified

by the mangled class indentifer. The NextGen2 classloader sticks closely to the

original NextGen classloader defined in [2].

Instantiating a snippet environment used by a polymorphic method follows

the same protocol as that of instantiating a class used to represent a generic type.

The only caveat pertains to providing support for the pathological case of polymor-

phic invocation. In this case, the NextGen2 classloader must also replace {n}

occurances in the String used by the reflection code. This corresponds to the

"$$SNIPPET STRING$$ placeholder used In the reflection code shown in section 4.5.

Chapter 5

Related Work

To properly qualify the mildly heterogeneous approach used in NextGen, its nec-

essary to look at other research in generics and polymorphic methods. The current

research falls into three basic groups: 1) heterogeneous translations, 2) homogenous

translations, and 3) adding extensions to the underlying runtime virtual machine.

5.1 Heterogeneous Translations

The first support for generics in Java was developed by Agesen, Freund, and Mitchell[1].

Their approach followed a heterogeneous technique similar to the preprocessing done

with C++ templates. To support the Java compilation model, they pushed the gen-

eration of template instances from linking, a stage absent in the compilation of Java

source, to load time. While this reduces the number of classfiles necessary at runtime,

it significantly slows down runtime performance. Any purely heterogeneous transla-

tion must generate complete, exact copies of a template per each distinct instantiation

type. This code explosion also hinders potential performance optimization by the

Just-In-Time (JIT) compiler. Furthermore, this simplistic approach breaks intuitive

subtyping relationships between generic instantiations.

In regards to polymorphic methods, their initial research excluded any implemen-

tation or design.

5.2 Homogenous Translations

While the GJ erasure-based infrastructure is insufficient to propagate runtime type

information, a homogenous translation proposed by Viorli and Natali, called LM

33

34

(Load-Time Management), uses the Java Reflection APIs to carry parametric type

information[12]. LM supports parametric methods by passing an extra parameter

on parametric method invocations, and then using reflection to implement type-

dependent operations.[11]. The extra parameter indexes into a Virtual Parametric

Method Table (VPMT) associated with every potential, dynamic receiver type, and

stores the parametric type information available at the call site.

While the use of reflection in LM avoids code duplication, its results in a significant

performance penalty. Implementing parametric types through reflection creates a

heavy-weight representation of types. The benchmarks in Chapter 6 includes an

analysis comparing LM’s homogenous approach to NextGen2’s heterogeneous one.

5.3 Modifications to JVM

The PolyJ extension of Java, developed at MIT, provides runtime support for generic

types by modifying the underlying Java Virtual Machine (JVM)[9]. They propose

adding two additional bytecode operations to provide the framework necessary to

maintain runtime types. While their research focuses on parametric classes, an ex-

tension to support polymorphic methods could use these two bytecode operations

and/or possibly other modifications to the Java bytecode or JVM. From a design

perspective, these modifications are necessary to cleanly reflect the abstraction intro-

duced by generic types. However, any dichotomy in the runtime VM would violate

the Java paradigm of ”Write Once, Run Anywhere”. The version of PolyJ distributed

on their website maintains compatibility with the JVM by using a heterogeneous ap-

proach similar to NextGen2. It uses ”trampoline” classes to encode runtime type

information and perform type-dependent operations.

A critical evaluation of these techniques used in Generic Java can be found in

research to support generic types on the .NET Common Language Runtime(CLR)

by Kennedy and Syme[6]. Since they were free to modify the CLR, their design

is less constrained with compatibility and more with efficiency. Surprisingly, their

35

implementation is very similar to NextGen’s base class code-sharing and lightweight

template classes. They follow a mainly homogenous approach to maximize code

and representation sharing across instantiations, but use distinct vtables for each

generic type instantiation. The vtable is also modified to include a dictionary of

type handlers used to store the instantiated type parameters and type-dependent

operations. This dictionary of type handlers is used also to support type instantiations

of static polymorphic methods. However, their current implementation does not

support dynamic polymorphic methods.

PolyJ and C# provide support for generic types and polymorphic methods at the

JVM level. LM supports polymorphic methods using Java Reflection; In other words,

maintaining types at the meta-level. In contrast, NextGen is implemented as close

as possible to the JVM level, without violating the Java ”Write Once, Run Anywhere”

paradigm. This approach provides efficient support for polymorphic methods without

breaking backwards compatibility.

Chapter 6

Performance

The NextGen2 benchmarks measure the overhead of supporting polymorphic method

in the context of first-class genericty. Since no established benchmark for Generic

Java currently exists, we had to develop our own specialized benchmark to analyze

the performance of NextGen2. Each test was engineered in Generic Java. The

benchmarks were then hand-translated into an equivalent non-generic Java source to

provide a fair comparison with standard Java code. While the JSR14 compiler has

an option to output non-generic source code, the output is not necessarily valid Java

source code. The benchmarks consists of the following programs, all of which involve

generics:

• Bool: A Boolean expression simplifier. This program parses in a large number

of boolean expressions into an AST and simplifies them. The expressions are

simplified through a series of passes by a generically typed visitor. This bench-

mark consists of 730 lines of code in 25 classes, 7 of these classes make heavy

use of generics. While all the generically type visitor makes extensive use of

polymorphic methods, it does not perform any type-dependent operations.

• Zip1 Small program that repeatedly constructs small lists of 100 elements, and

then zips them together. This case analyzes the initial overhead of calling a

polymorphic method. This test consists of 80 lines of code in 3 classes, 2 of

these make heavy use of generics and polymorphic methods.

• Zip2: Small program that repeatedly constructs lists of 1000 elements, and

then zips them together. This case shifts focus more toward the performance of

36

37

Figure 6.1 : General Performance Results (ms)

recursive methods. This test consists of 80 lines of code in 3 classes, 2 of these

make heavy use of generics and polymorphic methods.

• Zip3: Constructs a single pair of 1000 element lists, and then repeatedly zips

them together. This case analyzes the potential of current Just-In-Time (JIT)

optimzations. This test consists of 80 lines of code in 3 classes, 2 of these make

heavy use of generics and polymorphic methods.

• Reflect1: Baseline test analyzing the performance of the case of pedagogi-

cal reflection. It constructs a list of pairs, and calls a functional operation

changeSecond to change the type of the second element in each pair. This test

consists of 100 lines of code in 4 classes, 3 of these make heavy use of generics

and polymorphic methods.

• Reflect2 Second test analyzing the performance of the case of pedagogical re-

flection. This test inserts a 5% probability of pedagogical reflection. It performs

38

Figure 6.2 : First Iteration of General Performance Results(ms)

just like Reflect1: It constructs a list of pairs, and calls a functional operation

changeSecond to change the type of the second element in each pair. Ap-

proximately 5% of the list are a subtype of pair that introduces an additional

class-level type parameter. This test consists of 100 lines of code in 4 classes, 3

of these make heavy use of generics and polymorphic methods.

• Reflect3 Third test analyzing the performance of the case of pedagogical re-

flection. This test inserts a 5% probability of pedagogical reflection. It performs

just like Reflect1: It constructs a list of pairs, and calls a functional operation

changeSecond to change the type of the second element in each pair. Ap-

proximately 10% of the list are a subtype of pair that introduces an additional

class-level type parameter. This test consists of 100 lines of code in 4 classes, 3

of these make heavy use of generics and polymorphic methods.

• JSR14 2.2 The task of compiling a compiler represents a very robust use of

generics. The JSR14 compiler uses a series of Tree generic visitors to compile

39

Figure 6.3 : Performance of Polymorphic Method Recursion (ms)

a Java source program to bytecode. The JSR14 compiler consists of approx-

imately 25,784 lines of code in 225 classes. Nine classes make light use of

generics, 59 classes make moderate use of generics, and 8 of these make heavy

use of generic type and polymorphic methods.

Each benchmark was executed twenty-one times using the Sun 1.4.1 server Java

Virtual Machine (JVM) on a 2 Ghz, Intel Pentium 4 with 512 MB of RAM running

Redhat Linux 8.0. The NextGen2 benchmarks focus on the server JVM since the

client JVM does not perform any Just-In-Time (JIT) optimizations. The expectation

is that by design, the NextGen2 code augmentations can be offset by specialized

JIT optimizations.

The first iteration of each benchmark was dropped because it deviated significantly

from the remaining 20 iterations. We believe this deviation results from the overhead

of JVM startup and initial JIT compilation of the code, both of which are not directly

relevant to what we are trying to measure. After dropping the first run, the variance

40

Figure 6.4 : First Iteration of Performance of Polymorphic Recursion (ms)

among iterations for each benchmark was less than 10%. For thoroughness, this thesis

also includes performance metrics of the first iteration of each test.

The slower performance of NextGen2 reflects the overhead of polymorphic meth-

ods, and also the overhead of generic instantiation classes. This is to be expected

since an implementation of polymorphic methods under first-class genericity requires

a parametric representation of types. In general though, the majority of the op-

erations in a program will not depend on runtime type information, and therefore,

support for first-class genericity is not costly when amortized over a large number of

instructions [12].

Figures 6.1-6.2 show that, given the current level of JIT optimizations, NextGen2

performs competitive to Java and Generic Java. Surprisingly, the results for zip3

show a 5% performance gain in the case of recursive polymorphic methods. An anal-

ysis of the metrics for zip1, zip2, and zip3 suggest this speedup results from JIT

optimizations. In comparison to zip1 and zip2, the zip3 benchmark focuses only on

the recursive invocation of zip; successive iterations reuse the same set of Lists to

41

Figure 6.5 : Performance of Pedagogical Reflection (ms)

invoke zip. Since the trend in the NextGen2 performance differs from that of GJ

or Java, its safe to assume that the NextGen2 translation provides a basis for new

JIT optimizations.

Figures 6.3-6.4 compares NextGen2 against LM using the tests zip1,zip2, and

zip3. Because of the larger space requirements for classes in LM, the structure of the

test zip3 was rewritten to improve garbage collection during execution. This change

is reflected in the different results for zip3 shown in figures 6.1-6.2 and 6.3-6.4.

Since these zip benchmarks use only new operations and polymorphic method

invocations, they provide a fair comparison between NextGen2 and LM.∗. LM new

operations require an extra parameter to store runtime types, while NextGen2 must

load specialized instantiation classes. Polymorphic method invocation in LM requires

passing a method descriptor (an integer index). This should be as fast, if not faster

∗Instanceof tests in LM require an O(n) worst case iteration, where n is the level of parameteri-

zation. NextGen2 can perform instanceof tests in O(1) time.

42

Figure 6.6 : First Iteration of Performance of Pedagogical Reflection (ms)

than passing a local final field in NextGen2.

In general, NextGen2 performs at least 20% faster than LM. The overhead of

the LM approach can be attributed to two factors. First, LM classes maintain a

reference to a type descriptor object that stores generic type informatiion. For a

small collection class like Pair with only two fields, this increases object size by 50%.

Second, the dynamic nature of LM preempts many JIT optimizations. During the

execution of zip, a new Pair is created on each call. At each constructor invocation,

LM must perform a lookup to retrieve the type descriptor for the new object, and

thus determine its type parameterization:

((MD)td.MDs[0].elementAt(p)).friendTD[1]

Although this value never changes, LM must recompute it at each iteration. NextGen2

on the other hand, relies on static class identifiers, allowing for potential JIT opti-

mizations.

43

Figure 6.7 : JSR Performance Results(ms)

In the case of zip3, LM requires twice the time as GJ or NextGen2. A possible

explanation for the extremely high overhead is that the higher space needs of LM

resulted in some objects being stored in virtual memory and swapped to disk.

Figures 6.5-6.6 shows how the performance of NextGen2 degrades in the ped-

agogical case. NextGen2 performance degrades linearly since reflection code is

executed in the bridge methods for a polymorphic method. Figure 6.5 implies that

NextGen2 produces an inefficient implementation when the probability of reflection

is greater than 5%. On the average though, NextGen2 is still more efficient than LM

when the probability of reflection is less than 7-9%. An analysis of only the first run

performance, shown in figure 6.6, show a perplexing result. LM performs 4-5 times

slower than NextGen2 and GJ in the tests reflect2 and reflect3. A conjecture is that

constructor supercall chains are inefficiently handled in LM; each supercall stores a

reference to the ”farther” of the current type descriptor. Since the exact cause of this

slowdown cannot be determined by this benchmark alone, a more in-depth analysis

44

will be included in future work.

The JSR14 benchmark in figure 6.7 shows that a JSR14 compiler compiled with

NextGen2 performs competitive to a GJ version. This result affirms the belief that

the cost of maintaining runtime type information, and thus supporting first-class

genericity in Java, is not costly in large applications, since it is amortized over a large

number of operations.

Chapter 7

Conclusion

This thesis has presented a comprehensive design and a solid implementation of first-

class polymorphic methods in Generic Java using the NextGen compiler framework.

The NextGen2 design supports static and dynamic polymorphic methods with min-

imal runtime overhead. Most importantly, NextGen2 support for first-class gener-

icity works on existing Java Virtual Machines and is compatible with all legacy code.

While previous versions of NextGen were mainly proof of concept, the latest ver-

sion provides a complete, production quality alternative to the current erasure-based,

second-class genericity found in Java 5.

7.1 Future Extensions

A comprehensive implementation of polymorphic classes and methods provides a

framework for a richer level of genericity than currently possible in Generic Java.

This section discuss some of these features, and how the NextGen2 compiler can be

extended to support them.

7.1.1 Performance Optimizations

Since NextGen2 now has a complete implementation of Generic Java, it’s an oppor-

tune time to reflect and improve on our current implementation. On a high-level, we

need to see if hashing, or other space-time tools, can speed up code in the compiler,

classloader, and the template classes generated by NextGen2. On a low-level, we

need to explore the internals of the JVM, and research possible JIT optimizations in

NextGen2.

45

46

7.1.2 Autoboxing of Primtives

One of our long range goals is to unify Java’s disjoint typing system of value types

and reference types. The JSR201[8] specification for autoboxing uses the defacto

heavy-weight wrapper classes: Integer, Float, Double, etc. This implementation ties

autoboxing not to an interface, but to an actual implementation, thus eliminating the

ability to determine an autoboxed constant from a manually boxed one. Therefore un-

der this approach, it is impossible to provide intuitive semantics for the double-equals

notion of equality on primitives. NextGen2 provides and opportunity to implement

autoboxing in an intuitive way. Our approach would be to use light-weight wrap-

per classes for autoboxing: JInteger, JFloat, JDouble, etc. The distinction between

JInterger and Integer allows us to provide a double-equals semantics consistent with

primitive equality. For example:

if (a == z) ...

could be translated into the following:

if ((a instance of JPrimitive)

? a.equals(z)

: a == z)

7.1.3 Primitives as Type Parameters

NextGen2’s heterogeneous implementation of generic types provides hooks that

allow the inclusion of primitives as type parameters. A naive approximation would

be to use a primitives boxed representation in current generic templates. A more

sophisticated approach would be to provide optimized versions of generic code to

take advantage of primitive bytecode operations.

Since Java has only eight primitive types, mapped to only four distinct JVM

representations, code explosion would be minimal. To minimize code duplication, the

NextGen2 classloader could specialize the standard class template at load time. In

47

any case, any space concerns are minor in comparison to the gains resulting from the

elimination of autoboxing constructs.

Most importantly, more research is needed in determining intuitive subtyping

between generic classes using primitives and those without. For example, should

List¡int¿ be considered a subtype of List<Object> and List<Integer>? In both

cases, NextGen2 would need to generate bridge methods that would autobox a

primitive value into the Object world.

Despite these issues, the ability to abstract classes and methods over all types,

and to perform meaningful operations on these parametric types would prove a boon

to developers.

7.1.4 Mixin Classes

While NextGen2 provides support for runtime type-dependent operations, it cur-

rently does not provide complete support for every intricacy of first-class generictiy.

Specifically, the NextGen framework disallows mixins, classes that extend one of

their type parameters. Mixins provide a disciplined alternative to multiple imple-

mentation inheritance. The mixin class itself defines a uniform class extension that

can be applied to any class that fulfills its inheritance requirements. Although simi-

lar results can be obtained using object composition (e.g., the Decorator pattern [5]),

mixins provide precise typing and a more accurate interface. For example, a deco-

rated object can be typed only against the original decorator class. Mixins, on the

other hand, can be typed against both the mixin class and the mixed-in parent class.

This essentially provides a mechanism to add incremental functionality to existing

classes. A mixin that time stamps object creation is shown below:

class TimeStamped<T> extends T {

long time;

TimeStamped() {

super();

48

time = System.currentTimeMillis();

}

Most importantly, mixins provide the infrastructure to support a true module

system in Java. Currently, the Java package system uses hard-coded references to

specific external class names. These references prevent the reuse of a package in

different contexts, and prevent programmers from using or even testing a package

in isolation. With mixins, a programmer can remove these hard-coded references,

and connect modules parametrically. In other words, mixins allow an application to

be decoupled into logically independent components. Thus, a module’s contextual

requirements could be completely captured by its visible interfaces.

Bibliography

[1] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type parameter-

ization to the Java language. In ACM Symposium on Object Oriented Program-

ming: Systems, Languages, and Applications (OOPSLA), pages 49–65, Atlanta,

GA, 1997.

[2] E. Allen, R. Cartwright, and B. Stoler. Efficient implementation of run-time

generic types for Java. In IFIP WG2.1 Working Conference on Generic Pro-

gramming, 2002.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making

the future safe for the past: Adding genericity to the Java programming language.

In Craig Chambers, editor, ACM Symposium on Object Oriented Programming:

Systems, Languages, and Applications (OOPSLA), pages 183–200, Vancouver,

BC, 1998.

[4] Robert Cartwright and Guy L. Steele, Jr. Compatible genericity with run-time

types for the Java programming language. In Craig Chambers, editor, ACM

Symposium on Object Oriented Programming: Systems, Languages, and Appli-

cations (OOPSLA), Vancouver, British Columbia, pages 201–215. ACM, 1998.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[6] A. Kennedy and D. Syme. Design and implementation of generics for the .net

common language runtime. In PLDI, 2001.

49

50

[7] Sun Microsystems. Sun Microsystems, Inc. JSR 14: Add generic types to the

Java Programming Language, 2001.

[8] Sun Microsystems. Sun Microsystems, Inc. JSR 201: Extending the Java Pro-

gramming Language with Enumerations, Autoboxing, Enhanced for loops and

Static Import, 2004.

[9] A. Myers, J. Bank, and B. Liskov. Parameterized types for Java. In POPL, 1997.

[10] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice.

In Proceedings of the 24th ACM Symposium on Principles of Programming Lan-

guages (POPL’97), Paris, France, pages 146–159. ACM Press, New York (NY),

USA, 1997.

[11] Mirko Viroli. Parametric polymorphism in java: an efficient implementation for

parametric methods. In Selected Areas in Cryptography, pages 610–619, 2001.

[12] Mirko Viroli and Antonio Natali. Parametric polymorphism in Java: an approach

to translation based on reflective features. ACM SIGPLAN Notices, 35(10):146–

165, 2000.

	Abstract
	Acknowledgments
	List of Illustrations
	Introduction
	NextGen2 Fundamentals
	GJ Implementation Scheme
	Implications of GJ Type Erasure
	NextGen Implementation Scheme
	NextGen Support for Parametric Types
	NextGen Support for Polymorphic methods

	NextGen2 Design
	Polymorphic Type-dependent Operations
	Erasure of Polymorphic Methods
	Naive Implementation of Polymorphic Methods
	NextGen2 Translation of Static Polymorphic Methods
	Propagation of Runtime Types

	Dynamic Polymorphic Methods
	Bridge Methods
	Consolidate snipet environments
	Pathological Use of Reflection

	Implementation
	Code Maintance
	NextGen2 Compilation Model
	Type Flattening
	Encoding Parametric Types

	Snippet Patching
	Snippet Environment Representation
	Implementation
	Cross Package Instantiation

	Pathological Reflection Implementation
	NextGen2 Classloader

	Related Work
	Heterogeneous Translations
	Homogenous Translations
	Modifications to JVM

	Performance
	Conclusion
	Future Extensions
	Performance Optimizations
	Autoboxing of Primtives
	Primitives as Type Parameters
	Mixin Classes

	Bibliography

