
Abstract Factories and the Shape Calculator
Eric Cheng, Dung “Zung” Nguyen, Mathias Ricken, Stephen Wong

Dept. of Computer Science
Rice University

Houston, TX 77005
+1 713-348-3835

ericc@rice.edu, dxnguyen@rice.edu, mgricken@rice.edu, swong@rice.edu

ABSTRACT
The Shape Calculator is an assignment targeted at CS1 students
in an objects-first curriculum. It can serve as a powerful yet
entertaining example of the advantages of object-orientation.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
Programming

General Terms
Design.

Keywords
CS1/CS2, objects-first, design patterns, abstract coupling, loose
coupling, pedagogy, assignments, software quality.

1. INTRODUCTION
In our submission, we describe the Shape Calculator, an
assignment that has been used in our institution’s COMP 201
objects-first introductory course. It is sufficiently complex yet
entertaining for the students, which makes it suitable as a
compelling example for the benefits of object-oriented design
and programming.

The Shape Calculator is a GUI application that can compute the
area of an arbitrary shape. The class representing this shape can
be compiled at a later time and loaded into the program at
runtime.

2. ASSIGNMENT DESCRIPTION
Create a GUI application that computes the area of an arbitrary
shape that can be dynamically loaded at run time. The shape can
have an arbitrary set of configuration properties (e.g. width,
height, color, etc.). This assignment is designed as an
introduction to GUI programming in Java, where the GUI
programming, which besides being a valuable skill unto itself, is
used to emphasize and illustrate compelling usage of

encapsulation, inheritance and polymorphism.

3. WHAT MAKES IT SO NIFTY?
This assignment is interesting and useful for several reasons:

• The assignment mixes fun with theory--motivates the
students to learn important concepts and techniques.

• With straightforward code, the assignment demonstrates
powerful OO capabilities that are very difficult to replicate
using procedural techniques.

• The exercise covers a broad spectrum of skills and concepts
without being overwhelming (see the list of skills list in
section 5).

• The assignment focuses on the thought processes involved
with the design of OO systems.

• It is orchestrated step-by-step process that gradually gives
more rein to the students.

• Students create a fully functional, complete, non-trivial GUI
program from scratch, not just a "toy" function in a pre-built
system.

4. TARGET AUDIENCE
The target audience for this assignment is CS1 students in an
objects-first curriculum. The Rice students working with this
assignment are nine weeks into CS1 and have already seen
polymorphism, several elementary design patterns (see
prerequisites in section 7), lists and recursion.

5. IDEAS AND SKILLS INVOLVED
When working on this exercise, students gain understanding in
the following areas:

• How to create a simple window frame and populate it with
panels, buttons, labels and text fields.

• Using anonymous inner classes as event listeners in GUIs.
• Using abstract factories to manufacture products whose

concrete type is immaterial to the client.
• Using anonymous inner classes to define concrete

instantiations, especially in the context of factories.
• Using the closure properties of anonymous inner classes to

directly access both instance and final local variables.
• Using graphics calls to paint a simple shape onto a

component.
• Understanding the service nature of a component in a

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

mailto:ericc@rice.edu
mailto:dxnguyen@rice.edu
mailto:mgricken@rice.edu
mailto:swong@rice.edu

framework, e.g. painting service of a GUI component.
• Numerous demonstrations of polymorphic behavior,

especially those that cannot be replicated with conditional
statements.

• Using an incremental process to build a complex software
system by gradually adding components and capabilities.

• Using simple exception handling.

6. LENGTH OF ASSIGNMENT
At our institution, the assignment is a laboratory exercise (1.5
hrs) that extends into a week-long homework assignment (3-6
hrs).

7. PREREQUISITE MATERIAL
The students should be familiar with and had some programming
experience with:

• Polymorphism and inheritance
• Abstract structure and behavior
• Singleton design pattern
• Delegation model programming

They need only be acquainted with and not necessarily adept at:

• Factory design pattern
• Composite design pattern
• Syntax for anonymous inner classes

8. DIFFICULTIES TO WATCH FOR
Instructors using this assignment should be aware of the
following difficulties:

• Understanding the service-oriented aspect of screen painting.
Students often struggle with the inverted control aspects of a
component in the GUI framework.

• Understanding the communications aspects of closures in
anonymous inner classes.
o Why local variables are required to be final.
o Utilizing direct access to variables that are outside the

anonymous inner class but within its closure.

9. INSTRUCTION MATERIALS
The assignment, a demo, the solution, and supporting lectures
have been submitted to the Educator’s Symposium. The actual
assignment at our institution can be found at
http://www.owlnet.rice.edu/~comp201/04-spring/labs/lab09/ .

http://www.owlnet.rice.edu/~comp201/04-spring/labs/lab09/

