
Safe Instantiation in Generic Java

January 31, 2003

Abstract

This paper presents the “safe-instantiation principle” a new design principle for evalu-
ating extensions of Java with support for generic types. We discuss the GJ and NextGen
formulations of Generic Java and the implications of safe instantiation on both approaches.
We then consider the implications of safe-instantiation for the addition of mixins to Java
via generic types. Finally, we defend the formulation of mixins as hygienic program con-
structs, arguing that a hygienic formulation is the only way to maintain safe instantiation
and type soundness in Java with mixins, and to prevent the introduction of insidious bugs
with no clearly defined point of blame.

1 Introduction

Despite its clear advantages over competing mainstream languages such as C++, the Java plat-

form is still in its early stages of evolution. From the perspective of both software engineering

and programming pedagogy, Java has a crude type system. Its most significant failing is the

lack of support for generic types. As has been shown in [5, 9, 10, 12], this omission restricts the

range of abstractions that programs can express and the precision of static type annotation and

checking. Furthermore, as shown in [6], excluding run-time type information in Generic Java

(via GJ-style “type-erasure”) would severely limit the advantages of adding generic types, as

compared to approaches such as the NextGen formulation of Generic Java, in which generic

type information is maintained at run-time. In [3], the power of the NextGen type system has

been extended to support the inclusion of naked type parameters in any context where ordinary

types may appear, including the extends clauses of class definitions. The extended language

has been formally modeled and proven sound, and a strategy for compatibly implementing the

language on the JVM has been presented in [3]. This new language has been dubbed MixGen

because it effectively allows class definitions with parameterized parent type, language con-

structors traditionally referred to as “mixins”. In this paper, we present the Safe Instantiation

1



Principle, a new criterion for evaluating various potential extensions of Java with generic types,

and we evaluate the GJ, NextGen, and MixGen languages with respect to this criterion.

2 The Safe Instantiation Principle

In order to motivate the Safe Instantiation Principle, consider a situation in which an applica-

tions programmer is attempting to make use of a generic class C<T> that he does not maintain.

Because Java supports separate class compilation, the only constraints on instantiations of T

that are accessible in general by the client programmer are the declared constraints, e.g., an

upper type bound on instantiations such as T extends Comparable. Also because of separate

compilation, it is impossible when compiling a generic class to determine all of the instantiations

of C that will occur at run-time. If a client programmer instantiates C<T> with a type argument

that satisfies the declared constraints but still causes an error such as a ClassCastException,

the client programmer may be left with no recourse but to report a “bug” to the maintainer of

C. But if the maintainer of C is unable to specify constraints that prohibit such instantiations, he

is powerless to prevent C’s misuse. Informal documentation may help to some extent, but if the

error caused by an instantiation has no immediate symptoms, diagnosis of the problem once it is

noticed can be exceedingly difficult. Similar difficulties with error diagnosis have provided some

of the most powerful arguments for type safety and against unsafe operations in languages such

as pointer arithmetic and manual storage management. For this reason, we propose that the

following principle should be adhered to by any extension of Java that supports generic types:

The Safe Instantiation Principle: Instantiating a parametric class with types that meet

the declared constraints on the parameters should not cause an error.

Fundamentally, the Safe Instantiation Principle is a prerequisite for type soundness in Generic

Java. If a generic type system does not enforce it, then the value of static type checking is

substantially reduced, just as it is reduced by unchecked template expansion in C++. But

although this principle may appear hard to disagree with, it is actually missing in many generic

extensions of the Java type system [7, 9, 10, 12]. In fact, this principle is deceptively difficult to

adhere to in Generic Java. In the remainder of this paper, we will examine three formulations

of Generic Java, and discuss the implications of safe instantiation on each of them.

3 GJ, Type Erasure, and Safe Instantiation

In the GJ formulation of Generic Java, which forms the basis for the JSR-14 prototype compiler

from Sun Microsystems and is scheduled for inclusion as part of the J2SE v1.5, generic type

2



information is kept only for static type checking. After type checking, all generic types are

“erased” and are therefore unavailable at run-time. For this reason, type-dependent operations

such as casts, instanceof checks, and new expressions are not safe in general in GJ [10]. As

was demonstrated in [6], the lack of run-time type information in GJ significantly impairs the

expressiveness of Generic Java. However, an orthogonal problem with GJ is that it fundamen-

tally violates safe instantiation. Although the compiler issues a warning when a generic class

includes unsafe operations, the programmer is not prevented from producing unsafe class files.

For this reason, a client programmer has no guarantee that the instantiation of a generic class

will not result in a type error, such as a ClassCastException, when the instantiation types are

misapplied in the body of the class. We do not know of any satisfactory way to implement

Generic Java via type erasure that respects Safe Instantiation, and we believe that this very fact

is a strong argument in favor of an approach such as NextGen that includes run-time type

information. However, as we will see, it is also easy to violate safe instantiation in the design of

NextGen if we are not careful.

4 NextGen and Safe Instantiation

In the case of NextGen the key issue with safe instantiation is new expressions. NextGen

allows new operations on type parameters, but if their use is not restricted, a matching con-

structor for a new expression may not exist. Additionally, unless every instantiation of a type

parameter is concrete, a new operation may be attempted on an abstract class.

To address these threats to safe instantiation, we can augment the constraints on type pa-

rameters to include with clauses, in which we specify the constructors required by each type

parameter. with clauses for Generic Java were suggested informally by Agesen, Freund and

Mitchell in [1], and were modeled formally by Allen, Bannet, and Cartwright in [3]. By spec-

ifying a with clause on a type parameter, instantiations of the parameter that do not meet

the constraints of the with clause are prevented. For example, suppose we wanted to define

a generic class Sequence<T>, with a factory method newSequence(int n) that produced a new

sequence containing n default elements of type T. Naturally, the method newSequence will have

to construct new elements of type T. We can use a with clause to specify a legal constructor to

call as follows:1

class Sequence<T with {init()}> {

public Sequence() {...}

...

1Unlike GJ, NextGen allows static members to be within the scope of type parameters, preventing us from
having to declare a method-level type parameter in the definition of newSequence.

3



public static Sequence<T> newSequence(int n) {

if (n == 0) return new Sequence<T>();

else return Sequence<T>.newSequence(n - 1).cons(new T());

}

}

The with clause on type parameter T requires that every instantiation of T include a zeroary

constructor, preventing instantiations such as, e.g., Sequence<Integer>, but allowing instantia-

tions such as Sequence<String> or (because of the zeroary constructor defined in class Sequence),

Sequence<Sequence<String>>. Notice that a separate generic class may instantiate these type

parameters with type parameters of its own. For example, we might have:

class SequenceBox<R with{init()}> {

Sequence<R> value = new Sequence<R>();

...

}

In this example, the instantiation of type parameter T in class Sequence with type parameter

R in SequenceBox succeeds because the constructors specified in the with clause of R contain those

specified in the with clause of T. Because of separate class compilation, we have no information

other than the with clause of R to ensure that instantiation Sequence<R> is safe.2.

The other potential difficulty with new expressions in NextGen is the possibility of instan-

tiating type parameters with abstract classes. Fortunately, with clauses allow us to escape this

problem easily. Because the only purpose of with clauses in NextGen is to allow for new opera-

tions, we can require without loss of expressiveness that every instantiation of a type parameter

that includes a with clause must be concrete, guaranteeing safe instantiation. Unfortunately,

once we extend NextGen to MixGen, this simple solution is no longer sufficient.

5 MixGen and Safe Instantiation

In the MixGen extension to Generic Java, support is included for the occurrence of naked type

parameters in any context where an ordinary type can occur, including even the extends clause

of a class definition. As explained in [3], the ramifications of this seemingly benign extension are

profound in terms of analysis, design, and compatible implementation on the JVM. Additionally,

any extension of Java with support for mixins, either through generic types or through a separate

facility such as in Jam3 must address several significant implications for safe instantiation. In

2The semantics of with clauses are also complicated by the fact that they are within scope of the type pa-
rameters of a class definition, requiring substitution of actual for formal parameters before checking for matching
parameters. A formal semantics is presented in [3]

3Jam is an extension to Java 1.0 that includes a form of mixin. It was first presented in [7].

4



particular, the following three threats to safe instantiation arise:

1. The instantiation of a superclass might not contain a constructor matching the signature

of a superconstructor call in a mixin constructor.

2. A mixin’s parent may be instantiated with an abstract class, and an inherited abstract

method that is not overridden may be invoked on the mixin.

3. A mixin may “accidentally” override a method inherited from an instantiation of its su-

perclass, and the overridden method may contain an incompatible type signature.

In MixGen, the first two problems can be handled by with clauses, just as the two analogous

problems are handled in NextGen. However, one complication in the case of MixGen is that

we want to allow instantiated superclasses of concrete mixins to be abstract. Because we still

need to call superconstructors in the constructor definitions of mixins, we need to specify valid

constructor signatures in the with clauses of parametric parent types, and therefore we cannot

require the instantiation of every type parameter including a with clause to be concrete. But then

the instantiation of a type parameter with an abstract class may match all of the constructors

specified in the with clause and still cause an error when an inherited (non-overridden) abstract

method is invoked on a mixin instantiation. To solve this problem, we must extend with clauses

so that, in addition to specifying the required constructors of a type parameter, they also include

the set of allowed abstract methods in an instantiation.4 For example, suppose we defined a

generic mixin ScrollPane<T> intended to extend any subtype of an abstract class Pane. We

may want to allow a superclass to declare an abstract method scroll that is overridden in

ScrollPane. We can allow that as follows:

class ScrollPane<T with {init(), abstract scroll()}> extends T {

public ScrollPane() { super(); ... }

public void scroll() {...}

...

}

Then every instantiation of the parent type of ScrollPane must include a zeroary constructor,

and may not include any abstract methods other than scroll(). The instantiation of a type

parameter that includes a with clause may not include abstract methods not specified in the

with clause. If there is no with clause, the type parameter cannot occur as the parent type of a

class, and so we can safely allow it to be instantiated with an abstract class.

The third problem for mixins is more subtle. Because the programmer defining a mixin

does not know all of the instantiations of the mixin’s parent that will exist at runtime, there

4Note that this extension of with clauses maintains upward compatibility with NextGen.

5



is no way that he can know exactly what methods will be inherited at runtime. Therefore,

there is no way he can prevent the possibility of “accidentally overriding” an inherited method.

This problem was first discussed by Flatt, Krishnamurthi, and Felleisen, in [11]. In that work,

accidental overriding was presented as undesirable in the context of component-based software

engineering; a programmer should never override the functionality of a class unless he intends

to do so. But accidental overriding is also undesirable for a more fundamental reason: it is

intrinsically incompatible with both type soundness and safe instantiation. To see why, one only

needs to consider that if an accidentally overridden method is invoked on a mixin instantiation,

the return type of the method may be incompatible with the return type in the static type of the

receiver, breaking subject reduction, and violating safe instantiation. Furthermore, in Generic

Java, separate class compilation and the possibility of instantiating type parameters with yet

other type parameters eliminates any hope of statically detecting all such overrides.

The original solution to accidental overriding, as proposed by Felleisen et. al. and demon-

strated in MixedJava, is “hygienic mixins” [11]. Instead of allowing accidental overriding,

hygienic mixins allow a mixin instantiation to contain multiple methods of the same name, with

resolution of method application dependent on context. Hygienic mixins have been criticized by

Ancona, Lagorio, and Zucca, which they say, leads to “ambiguity problems typical of multiple

inheritance” [7].5 But in light of the fact that hygienic mixins are a necessary condition for safe

instantiation, we believe they are a necessary feature of any production extension of Java with

mixins. In MixGen, generic types are leveraged to simplify the semantics of hygienic mixins

as compared with their incarnation in MixedJava. Additionally, it is explained in [3] how the

MixGen formuilation of hygienic mixins can be implemented compatibly on the JVM, making

them an attractive candidate for a production extension of Java.

6 Conclusion

As the above case studies have shown, adhering to the Safe Instantiation Principle when formu-

lating a generic extension of Java is deceptively difficult. Nevertheless, we believe that adherence

to this principle is necessary to ensure that generic types will help to improve the robustness and

reliability of Java programs. We hope that the considerations presented here can be of use to

other designers when composing new additions to the Java type system, and to other languages.

5Consequently, hygienic mixins have been omitted from the Jam language. If an accidental overriding occurs
in which the signatures of the methods are incompatible, the program is rejected by the type checker. More
seriously, if the type signatures of the methods happen to match, the inherited method will be overridden without
signaling an error, causing an accidental altering of the semantics of the program. We believe that both of these
problems are incompatible with the construction of reliable large-scale software systems.

6



References

[1] O. Agesen, S.. Freund and J. Mitchell. Adding Type Parameterization to the Java Lan-

guage. In OOPLSA’97.

[2] D. Ancona and E. Zucca. A Theory of Mixin Modules: Basic and Derived Operators.

Mathematical Structures in Computer Science, 8(4):401–446, 1998.

[3] E. Allen, J. Bannet, R. Cartwright. First-class Genericity for Java. Submitted to ECOOP

2003.

[4] E. Allen, J. Bannet, R. Cartwright. Mixins in Generic Java are Sound. Technical Report,

Computer Science Department, Rice University, December 2002.

[5] E. Allen, R. Cartwright, B. Stoler. Efficient Implementation of Run-time Generic Types

for Java. IFIP WG2.1 Working Conference on Generic Programming, July 2002.

[6] E. Allen, R. Cartwright.The Case for Run-time Types in Generic Java. Principles and

Practice of Programming in Java, June 2002.

[7] D. Ancona, G.Lagorio, E.Zucca. JAM-A Smooth Extension of Java with Mixins. ECOOP

00, LNCS, Spring Verlag, 2000.

[8] J. Bloch, N. Gafter. Personal communication.

[9] R. Cartwright, G. Steele. Compatible Genericity with Run-time Types for the Java Pro-

gramming Language. In OOPSLA ’98 , October 1998.

[10] G. Bracha, M. Odersky, D. Stoutamire, P. Wadler. Making the Future Safe for the Past:

Adding Genericity to the Java Programming Language. In OOPSLA ’98, October 1998.

[11] M. Flatt, S. Krishnamurthi, M. Felleisen. A Programmer’s Reduction Semantics for Classes

and Mixins. Formal Syntax and Semantics of Java, volume 1523, June 1999.

[12] Martin Odersky and Philip Wadler. Pizza into Java: Translating Theory into Practice. In

POPL 1997, January 1997, 146–159.

[13] Sun Microsystems, Inc. JSR 14: Add Generic Types To The Java Programming Language.

Available at http://www.jcp.org/jsr/detail/14.jsp.

7


