
Design Patterns for Lazy Evaluation

Dung (“ Zung”) Nguyen
Dept. of Computer Science

Rice University
Houston, TX 77251

dxnguyen@cs.rice.edu

Stephen B. Wong
Computer Science Program

Oberlin College
Oberlin, OH 44074

stephen.wong@oberlin.edu

Abstract

We propose an object-oriented (OO) formulation and
implementation of lazy/delayed evaluation by reusing and
extending an existing linear recursive structure (LRS)
framework with the help of the strategy, decorator and
factory design patterns. The result is a robust, flexible
framework that can handle both infinite and finite lists and
to which existing algorithms for finite lists can be applied
without modification. The OO techniques used to develop
this model are effective tools for teaching abstraction and
design of data structures.

1 Introduction

Lazy/delayed evaluation is a technique used to represent
large or infinite sequences (“streams”) by not evaluating
data terms until they are actually needed by the client code.
In current teaching, lazy evaluation is often discussed in the
context of functional programming languages such as
Scheme [1]. Though streams have proven to be a useful
and important concept, data structure texts in non-
functional languages such as Pascal, C/C++, Smalltalk, and
Java, avoid the topic altogether. This omission gives the
false impression that lazy evaluation is relegated to just the
functional programming domain.

We seek to dispel this misconception by presenting a
formulation and an implementation of lazy evaluation that
is based solely on the fundamentals of object-orientation:
encapsulation, inheritance, and polymorphism. The
implementation we propose here is an extension of the LRS
framework provided by Nguyen and Wong [3]. It
demonstrates the power of abstraction and how abstraction
can be captured through design patterns. And, while
illustrated using Java, our design solution can be
implemented in any language that supports OO concepts.

Figure 1 shows Nguyen and Wong’s LRS framework [3] in
UML notation. We have taken the liberty of renaming the
interface and some of the classes and their methods without
modifying any of their semantics. At the heart of this
framework are two design patterns:

• The state pattern to abstract and unify the different
primitive behaviors of an empty list (

��� � � � � � � �
) and a

non-empty list (
� � 	 ��� � � � � � � �

). The
 � � � � �
 � forwards
all requests to its current state, and behaves as if it
changes classes dynamically.

• The visitor pattern to decouple the extrinsic algorithms
performed on the LRS from the intrinsic structural
behaviors of the LRS. Algorithms are implemented as
visitors to the LRS and communicate with the LRS
host via the host’s public methods only. The LRS host
has a public hook method to execute any conforming
visiting algorithms.

Infinite lists differ from finite lists only in that the null case
is never encountered. Conceptually, only the running time

AState
getRest(owner: LRStruct) : LRStruct
getFirst(owner: LRStruct) : Object
setRest(tail: LRStruct, owner: LRStruct) : void
setFirst(dat: Object, owner: LRStruct) : void
insertAsFirst(dat: Object, owner: LRStruct) : void
removeFirst(owner: LRStruct) : Object
execute(visitor: IAlgo, param: Object, owner: LRStruct) : Object

«abstract state»

IAlgo
+nullCase(host: LRStruct, param: Object) : Object
+nonNullCase(host: LRStruct, param: Object) : Object

«visitor»

LRStruct
+insertAsFirst(dat: Object) : void
+removeFirst() : Object
+getFirst() : Object
+setFirst(dat: Object) : void
+getRest() : LRStruct
+setRest(tail: LRStruct) : void
setHead(head: AState) : void
getHead() : AState
+execute(visitor: IAlgo, param: Object) : Object

«host, context»

NonNullState
-_first: Object

«concrete state»

NullState
«conctete state. singleton»

state

rest

«uses»

Figure 1: The LRStruct framework.

and memory requirements of a finite list algorithm should
be affected when applied to an infinite list. Also, since lazy
evaluation is a very useful technique for representing very
large, but still finite data sets, the distinction between
“lazy” lists and “eager” lists should be transparent, that is,
they are abstractly equivalent. Thus, from our standpoint, if
we are to extend this framework to add the lazy evaluation
capability, we need only and should only extend the
structural design of the LRS leaving its public behaviors
and the interface with its algorithm visitors intact.

This paper shows how this extension is accomplished
through the use of well-known design patterns [2]. The
design process described here can serve as a non-trivial
example illustrating to students how proper abstraction will
enhance extensibility and reduce code complexity, and how
design patterns help formulate the abstractions and
implement them in an effective and elegant way.

Section 2 describes our design goals and their rationales.
Section 3 formulates lazy evaluation as a “strategy” using
the strategy pattern. We then combine the factory method
pattern with the abstract strategy to manufacture lazy lists.
Section 4 shows how the decorator pattern is applied to
dynamically add and remove the lazy evaluation capability
to the

� � 	 ��� � � � � � � �
 (in Figure 1). Section 5 completes the

design process by creating a factory class to manufacture
eager and lazy lists and hide all implementation details of
an LRS from client codes. Section 6 illustrates our OO
implementation of lazy lists with several examples that lead
up to the well-known Sieve of Eratosthenes algorithm to
produce primes.

2 Design Considerations

We wish to impress upon students that good software
design creates code that is reusable and extensible and that
the key to creating good design is proper abstraction and
decomposition. The process of adding lazy evaluation
capability to the LRS framework in Figure 1 should serve
as a test for the framework’s flexibility (ease of
modification), and extensibility (ease of extension). It can
also serve as an illustration for proper code reuse. In light
of this, we have the following self-imposed design criteria.
Lazy evaluation should be added to the given LRS
framework in such a way that:
(a) All existing code need not be modified nor recompiled.
(b) All existing algorithms on ordinary finite lists should

behave correctly on the extended framework. This is
consistent with the abstract view that infinite lists,
lazily evaluated finite lists, and ordinary finite lists are
simply linear recursive structures.

(c) Whenever a LRS is created, it should appear to its
clients as if it already contains what it is supposed to
contain at the time of creation, irrespective of whether
or not it is being lazy evaluated. As a consequence, its
client need not be concerned whether or not the

evaluation of the underlying data structure is delayed
and should be able to manipulate it as if it exists in its
totality. For example, suppose a client executes an
algorithm on an infinite Fibonacci list to remove the
third element and follows that with an algorithm on
that same list to retrieve the 529th element. One would
expect to obtain the same results as when the same
algorithms are executed on a bounded Fibonacci list of
sufficient length. This requirement is to support the
view that a data structure need not and should not care
about the data it contains. The only responsibility the
structure has is to behave as advertised in its public
methods. The responsibility to put the appropriate data
in the structure lies with some other client of the
structure but not with the structure itself.

(d) For a lazy LRS, the portion of the structure that has
already been evaluated should have the same
performance as an eager LRS, solely for efficiency
purposes.

The first step toward achieving the above design goals is to
define a class with lazy evaluation capability, say

 � � �
 � � � � �
 � , by way of extending
 � � � � �
 � . In the OO
paradigm, there are two ways to extend a class: by
composition or by inheritance. We rule out composition
because the above constraints require that the new class
must appear as a
 � � � � �
 � to its clients, in particular to all
existing algorithm visitors. As a result, we are left with
defining
 � � �
 � � � � �
 � as a subclass of
 � � � � �
 � . By keeping
all public methods of this class identical to those of

 � � � � �
 � � its superclass, we make a
 � � �
 � � � � �
 � appear to
all clients simply as a
 � � � � �
 � .
In order to understand how to construct a
 � � �
 � � � � �
 � and
how it behaves, we need to analyze what lazy evaluation
entails, then identify and encapsulate the party that should
be responsible for this task.

3 Lazy Evaluation as a Strategy and a Factory

Since an empty LRS needs no lazy evaluation for the
obvious reason that there is nothing to evaluate, a

 � � �
 � � � � �
 � , say
 � must be non-empty by default.

contains a data element, called � � � � � , and, conceptually,
another
 � � � � �
 � called

� � � �
, which may be another

 � � �
 � � � � �
 � . Lazy evaluation postpones computing
 � � � � �
until
 � � � � � is needed. Upon inspection of the behavior of
an eager
 � � � � �
 � , only the calls
 � � � � � � � � � � ,
 � � � � � � � � � � , and

 � � � ��� � � � � � � � � � need to force the lazy evaluation mechanism
to compute
 � � � � � . For a
 � � �
 � � � � �
 � that represents an
arithmetic progression, lazy evaluation will return a

 � � � � �
 � whose � � � � � is the next element in the progression.
For a
 � � �
 � � � � �
 � that represents the infinite sequence of
primes sorted in increasing order, lazy evaluation will
produce a
 � � � � �
 � whose � � � � � is the next prime. Thus, lazy
evaluation is an abstract algorithm that embodies the
infinitely many ways to compute the

� � � �
 of a
 � � �
 � � � � �
 � ,

and, in the pattern language, is said to be a “strategy” for a

 � � � � �
 � , the “context,” to compute its

� � � �
.

Figure 2 illustrates the strategy pattern [2]. In this pattern,
lazy evaluation is represented as an abstract class (or a Java

interface) called �
 � � � � � � l with an abstract method called	 � � �
 � � to compute and return a
 � � � � �
 � , which may or
may not be a
 � � �
 � � � � �
 � . Thus both finite and infinite
lists can be generated. The
 � � �
 � � � � �
 � doesn’ t care how
the
� � � �

 is calculated, only that it can be calculated. The job
of actually calculating the

� � � �
 is delegated to a concrete

�
 � � � � � � l strategy. Each specific lazy evaluation algorithm
is encapsulated in a concrete subclass of �
 � � � � � � � . The
concrete strategy is passed to the
 � � �
 � � � � �
 � during its
construction.

Since a
 � � �
 � � � � �
 � must appear as a
 � � � � �
 � to all clients,
common OO design practices of information hiding suggest
the use of the factory method pattern [2] to manufacture

 � � �
 � � � � �
 � objects instead of allowing clients to directly
use its constructor. This hides the details of the specific
subclass construction from the clients. A factory method
would instantiate a
 � � �
 � � � � �
 � with the correct concrete
�
 � � � � � � � installed. Since the �
 � � � � � � � already knows how
to do this with its

	 � � �
 � ��� � method, it is the natural
candidate for the responsibility to create its own context.
Thus we add the abstract method

��� � �
 � ��� � to �
 � � � � � � � � � �� �

 concrete implementation of �
 � � � � � � � to manufacture

an appropriate
 � � �
 � � � � �
 � with itself installed as the lazy
evaluation strategy. The �
 � � � � � � � interface is now:
! " # $ % & ' ($�) * ' + , - . ' / 0* 1 2 # % 3 (# 4 ' 5 $ * 1 2 6 7 8* 1 2 # % 3 (# " $ 9 # * 1 2 6 7 8:
In retrospect, we see that �
 � � � � � � � is a factory for
inductively manufacturing
 � � � � �
 � objects, where��� � �
 � ��� � is the base case construction and

	 � � �
 � ��� � is the
inductive case construction. The details of how

��� � �
 � ��� �
is implemented will be gradually made clear in the next
three sections.

4 Decorating the ;�< = ;?> @ @ A B C B D object

The state pattern of the existing framework suggests the
addition of a new “ lazy” state, say
 � � � � � 	 ��� � � � � � � � , for

 � � �
 � � � � �
 � because all operations are delegated to the

internal state. When a
 � � �
 � � � � �
 � ,
 , is instantiated, its
state is a
 � � � � � 	 ��� � � � � � � � object. Since
 is non-empty by
default, a
 � � � � � 	 ��� � � � � � � � object must appear to its clients
as a

� � 	 ��� � � � � � � �
 object for all existing legacy code to work

properly. A safe way to achieve this is to hold an instance
of a

� � 	 ��� � � � � � � �
 and delegate calls to it. Since
 forwards

all requests to its current lazy state, should a request require

 � � � � � , the lazy state needs to hold a concrete �
 � � � � � � �
strategy and use it to compute
 � � � � � . Moreover, once
 � � � � �
is computed,
 should become eager in order to satisfy the
performance requirement, and thus its state must become a� � 	 ��� � � � � � � �

 object. We thus need to have the capability to
dynamically add/remove responsibilities to/from the� � 	 ��� � � � � � � �

 object without disturbing the existing
framework. The decorator pattern [2] can help us achieve
this design goal. The decoration is transparent to all clients
and enables the desired state transition from lazy to eager.
Figure 3 illustrates the decorator pattern applied to� � 	 ��� � � � � � � �

.

We define the
 � � � � � 	 ��� � � � � � � � as follows.
(/ ' E E * ' + , F G " F 3 / / 2 # ' # $ $ 9 # $ " H E I 2 # ' # $ 0) * ' + , - . ' / ! * ' + , - . ' / 8KJ J # L $ E # % ' # $ M , NF G " F 3 / / 2 # ' # $�" G " F 3 / / 2 # ' # $ 8 J J # L $ H $ (G % ' # $ H (G 4 O G " $ " # N
* 1 2 # % 3 (# M $ # 1 $ E # 6 * 1 2 # % 3 (# G P " $ % 7 0$. ' / 6 G P " $ % 7 8% $ # 3 % " 6 " G " F 3 / / 2 # ' # $ N M $ # 1 $ E # 6 G P " $ % 7 7 8:
O % ! . ' # $. G ! H $. ' / 6 * 1 2 # % 3 (# G P " $ % 7 0G P " $ % N E $ # Q $ ' H�6 " G " F 3 / / 2 # ' # $ 7 8KJ J G P " $ % R $ (G 4 $ E $ ' M $ % NG P " $ % N E $ # 1 $ E # 6 ! * ' + , - . ' / N " $ 9 # * 1 2S6 7 7 8 J J G P " $ % N % $ E # ! E (G 4 O 3 # $ H N:J J (G " E # % 3 (# G % ' " H G # L $ % 4 $ # L G H E G 4 ! # # $ H:

As prescribed by the decorator pattern, all the primitive
methods of a
 � � � � �
 � that need to access

� � � �T� � � � � � � � � � ,� � � � � � � � � and
� � ��� � � � � � � � � �) first prepare the

� US	 � �

 � � � � �
 �

with
� � � � � � �

 and then forward the request to the enclosed� � 	 ��� � � � � � � �
 object to perform the actual operation.

 � � � � � 	 ��� � � � � � � � � � � � � � � first switches the
� US	 � �

 to its eager� � 	 ��� � � � � � � �
state, and then calls on its lazy evaluation

strategy to compute the next
 � � � � �
 � , making it the
� � � �

of
the
� US	 � �

. The methods that do not require
� � � �

need not be
decorated and are simply forwarded to the enclosed� � 	 ��� � � � � � � �

component. Figure 4 depicts a snapshot of the

LazyLRStruct
«context»

Where needed, use iLazyEval.nextLRS()
to compute the next rest.

ILazyEval
«abstract strategy»

+nextLRS() : LRStruct

StrategyA
«concrete strategy»

StrategyB
«concrete strategy»

«uses»

Figure 2: The strategy design pattern.

AState
operation()

«abstract state»

NonNullState
operation()

«decoree»
LazyNonNullState

operation()
eval()

operation() {
 eval();
 nonNullState.operation();
}

«decorator»

-nonNullState: NonNullState

Figure 3: The decorator design pattern.

dynamic behavior of the decorating
 � � � � � 	 ��� � � � � � � � as it
sheds its decoration and computes the LRS’s

� � � �
.

5 Factory for V W A B X > Y B objects

Upon reviewing our current design, we see the role of the

 � � �
 � � � � �
 � class strictly as a means to properly construct
a
 � � � � �
 � with a
 � � � � � 	 ��� � � � � � � � as its current state, and
with the appropriate �
 � � � � � � � and initial value installed.
Other than this,
 � � �
 � � � � �
 � adds no behaviors to a

 � � � � �
 � . Indeed, the clients do not care about the

 � � �
 � � � � �
 � class; they only want to see
 � � � � �
 � . Since
the concrete �
 � � � � � � � classes are external to the list by
virtue of being strategies, they should not be burdened with
the responsibilities of the construction details of a

 � � �
 � � � � �
 � , other than to provide the initial value and a
lazy evaluation strategy. To this end, we create a factory
class called
 � � � � �
 � � �
 � � � � that is capable of instantiating a

 � � � � � 	 ��� � � � � � � � object with an initial value and a concrete
�
 � � � � � � � strategy, and installing the resulting decorated� � 	 ��� � � � � � � �

 component as the initial state of a
 � � � � �
 � . As
a consequence, the
 � � �
 � � � � �
 � class is no longer needed
and can be removed from the design. By enclosing

 � � � � �
 � � �
 � � � � in the same package with
 � � � � �
 � ,

 � � � � �
 � � �
 � � � � will have the necessary and sufficient
access to the relevant methods and constructors of the
relevant classes to carry out its manufacturing task.

 � � � � �
 � � �
 � � � � is defined as a singleton and has two factory
methods. One method creates eager (empty)
 � � � � �
 �
objects and the other creates lazy
 � � � � �
 � objects with a
given initial value and a concrete lazy evaluation strategy:
O ' (5 ' M $�* 1 2 # % 3 (# 3 % $ 8! 4 O G % # * ' + , * 1 2 - . ' / 3 ' # G % E N) * ' + , - . ' / 8
O 3 R / ! ((/ ' E E * 1 2 Z ' (# G % , 0J J E ! " M / $ # G " O ' # # $ % " (G H $ G 4 ! # # $ HO 3 R / ! (* 1 2 # % 3 (# 4 ' 5 $ * 1 2 6 7?0 % $ # 3 % " " $ P[* 1 2 # % 3 (# 6 7 8 :
O 3 R / ! (* 1 2 # % 3 (# 4 ' 5 $ * 1 2 6 \ R] $ (# ! " ! # ^ ' # _) * ' + , - . ' / / ' + , - . ' / 7?0* 1 2 # % 3 (# / / % E `�" $ P[* 1 2 # % 3 (# 6 7 8/ / % E N E $ # Q $ ' H�6 " $ P[* ' + , F G " F 3 / / 2 # ' # $ 6 ! " ! # ^ ' # _ / ' + , - . ' / 7 7 8% $ # 3 % " 6 / / % E 7 8: :

In the end, the construction of a lazy list is a double layer
of factories that demonstrates information hiding via proper
levels of encapsulation.

6 Examples

To create a lazy list, all we need is to create a concrete
�
 � � � � � � � and hand it to the
 � �?� �
 � � � � singleton. Here we
present examples of lazy evaluators that will generate an
arithmetic progression, a list which filters all multiples of
an integer from a given source list, and an infinite list of
prime numbers using the Sieve of Eratosthenes algorithm.

A lazy evaluator that creates an infinite arithmetic
progression (
 � � � � 	
 � � � �) is straightforward:
O 3 R / ! ((/ ' E E * ' + ,) " (- . ' / ! 4 O / $ 4 $ " # E) * ' + , - . ' / 0O % ! . ' # $�! " # . ' / _ ! " (% $ 4 $ " # 8
J J (G " E # % 3 (# G % (G H $ G 4 ! # # $ H N
O 3 R / ! (& ! " ' / * 1 2 # % 3 (# " $ 9 # * 1 2 6 7?0. ' / a `�! " (% $ 4 $ " # 8% $ # 3 % " 4 ' 5 $ * ' + , * 1 2S6 7 8:
O 3 R / ! (& ! " ' / * 1 2 # % 3 (# 4 ' 5 $ * ' + , * 1 2 6 7?0% $ # 3 % " * 1 2 Z ' (# G % , N 2 ! " M / $ # G " 6 7 N 4 ' 5 $ * 1 2S6 " $ P[) " # $ M $ % 6 . ' / 7 _ # L ! E 7 8: :

A filtering lazy evaluator (
 � � � � � � � � � � � � �) removes multiples
of a given � �
 � � � from a given source list (

� �

), which may

be finite, infinite, eager, or lazy.
O 3 R / ! ((/ ' E E * ' + , Z ! / # $ % - . ' / ! 4 O / $ 4 $ " # E) * ' + , - . ' / 0O % ! . ' # $) " # $ M $ % & ' (# G % 8O % ! . ' # $�* 1 2 # % 3 (# E % (8 J J b L $�/ ! E # & % G 4�P L ! (L ' / / 4 3 / # ! O / $ E G & & ' (# G % ' % $�% $ 4 G . $ H N
J J (G " E # % 3 (# G % (G H $ G 4 ! # # $ H N
O 3 R / ! (* 1 2 # % 3 (# " $ 9 # * 1 2 6 7�0 % $ # 3 % " 4 ' 5 $ * ' + , * 1 2c6 7 8 :[J J E ' 4 $ ' E R ' E $ (' E $ d
O 3 R / ! (* 1 2 # % 3 (# 4 ' 5 $ * ' + , * 1 2 6 7�0E % (`?6 * 1 2 # % 3 (# 7 E % (N $ 9 $ (3 # $�6 2 5 ! O * $ ' H e 3 / E N 2 ! " M / $ # G " 6 7 _ & ' (# G % 7 8! & 6 6 6 f G G / $ ' " 7 E % (N $ 9 $ (3 # $ 6) E F 3 / / N 2 ! " M / $ # G " 6 7 _ " 3 / / 7 7 N R G G / $ ' " g ' / 3 $ 6 7 7% $ # 3 % " E % (8 J J $ " H G & E % (`�$ 4 O # ,�/ ! E #$ / E $ 0hJ J E % (N & ! % E # ! E " G PS# L $�" $ 9 # " G " i 4 3 / # ! O / $ G & & ' (# G % ! " E % (N\ R] $ (# " $ 9 # g ' / ` E % (N % $ 4 G . $ Z ! % E # 6 7 8% $ # 3 % " * 1 2 Z ' (# G % , N 2 ! " M / $ # G " 6 7 N 4 ' 5 $ * 1 2S6 " $ 9 # g ' / _ # L ! E 7 8: : :

In
 � � � � � � � � � � � � � � ��� � �
 � � �
 � ��� � , ��� � j
 � � k l�� � � and � � ��� � � are
ordinary � m � � � algorithms to skip leading multiples of an
integer in a finite, eager list and to check for an empty list,
respectively, and are re-used unmodified here. Thus if the
source is finite, the filtered list will be finite. If the source
list is infinite, the filtered list will be infinite in this case,
though it could conceivably be terminated by another type
of filter evaluator. We have implemented a more
sophisticated OO design of the lazy filter evaluator using
predicate objects as strategies for filtering. However, space
constraints prevent us from presenting it here.

Before:

After:

Figure 4: A lazy LRS before and after the evaluation of
its X D n B .

We conclude with the classic Sieve of Eratosthenes
(
 � � � � � � � � � � � �). Our sieve works by making use of filters
of type
 � � � � � � � � � � � � � shown above, and by layering filters
upon filters, using the latest value returned by the stacked
filters to create the next one.
O 3 R / ! ((/ ' E E * ' + , 2 ! $. $ - . ' / ! 4 O / $ 4 $ " # E) * ' + , - . ' / 0O % ! . ' # $�* ' + , Z ! / # $ % - . ' / / ' + , Z ! / # $ % - . ' / 8O % ! . ' # $) " # $ M $ % " $ P g ' / `?" $ P[) " # $ M $ % 6 o 7 8
O 3 R / ! (* ' + , 2 ! $. $ - . ' / 6 7?0* 1 2 # % 3 (# E % (`?6 " $ P[* ' + ,) " (- . ' / 6 o _ p 7 7 N 4 ' 5 $ * ' + , * 1 2S6 7 8 J J E % (` o _ q _ r _ s _ t/ ' + , Z ! / # $ % - . ' / `?" $ Pu* ' + , Z ! / # $ % - . ' / 6 " $ P g ' / _ E % (7 8 J J & ! / # $ % G 3 # $. $ " v E:
O 3 R / ! (* 1 2 # % 3 (# " $ 9 # * 1 2 6 7 0" $ P g ' / `?6) " # $ M $ % 7 / ' + , Z ! / # $ % - . ' / N " $ 9 # * 1 2 6 7 N M $ # Z ! % E # 6 7 8/ ' + , Z ! / # $ % - . ' / `?" $ P[* ' + , Z ! / # $ % - . ' / 6 " $ P g ' / _ / ' + , Z ! / # $ % - . ' / N 4 ' 5 $ * ' + , * 1 2c6 7 7 8% $ # 3 % " 4 ' 5 $ * ' + , * 1 2S6 7 8 :
O 3 R / ! (* 1 2 # % 3 (# 4 ' 5 $ * ' + , * 1 2 6 7�0% $ # 3 % " * 1 2 Z ' (# G % , N 2 ! " M / $ # G " 6 7 N 4 ' 5 $ * 1 2S6 " $ P g ' / _ # L ! E 7 8: :

7 Conclusion

We have illustrated the process of applying design patterns
to formulate and add lazy evaluation to an existing LRS
framework without modifying and recompiling any of the
existing code. The extension is illustrated in Figure 5. In
short, we needed only add one class,
 � � � � � 	 ��� � � � � � � � , to
decorate an existing class, and one interface, �
 � � � � � � � , to
represent the strategy for lazy evaluation. A factory class,

 � �?� �
 � � � � , was created for the purpose of information
hiding only. The key to this extension process was the
proper abstraction of the problem. We studied lazy
evaluation in terms of its abstract relationship to a LRS.
Proper abstractions combined with sound software
engineering practices naturally lead to robust, extensible
decompositions. We related those decompositions to
standard design patterns and recognized that lazy
evaluation could be viewed as an abstract strategy,
�
 � � � � � � � , for the

� � 	 ��� � � � � � � �
component of a
 � � � � �
 � .

Adding a factory method to �
 � � � � � � � for the purpose of
information hiding, brought out the inductive list building
nature of the lazy evaluation process. Robustness and
performance considerations induced the usage of the
decorator pattern to wrap the

� � 	 ��� � � � � � � �
component, and

then dynamically shed the lazy evaluation responsibilities
after the next

� � � �
 had been calculated. Finally, further

information hiding considerations lead to encapsulating the
entire LRS framework within a factory, including the lazy
evaluation, and the elimination of an unnecessary class
(
 � � �
 � � � � �
 �).
As illustrated in the preceding sections, the coding for the
extended framework and for many of the concrete lazy
evaluators is quite simple. This is a result of having
incorporated the invariant behaviors of lazy evaluation into
the LRS framework while encapsulating and separating the
variant portions as an abstract lazy strategy. Whether or

not a student has seen a functional implementation of lazy
evaluation, this OO version enhances his/her understanding
and appreciation of key OO concepts such as inheritance,
polymorphism, and design patterns. It also enhances the
student’s understanding of programming in general by
providing an alternative viewpoint into a topic presented in
another context. The process illustrated in this paper
entails repeated abstraction and decomposition. It helps the
student develop his/her problem solving skills because it is
an iterative process driven by the search for the abstraction
that best models the problem and simplifies the solution.

Acknowledgment

We thank Robert "Corky" Cartwright who shared his Java
code for the Sieve of Eratosthenes using functional
Scheme-like style and inspired us to write this paper.

References

[1] Abelson, H., and Sussman, G. Structure and
Interpretation of Computer Programs, 2nd ed., MIT
Press, 1996.

[2] Gamma, E, Helm, R, Johnson, R, and Vlissides, J.
Design Patterns, Elements Of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[3] Nguyen, D. and Wong, S. Design Patterns for
Decoupling Data Structures and Algorithms, SIGCSE
Bulletin, 31, 1, March 1999, 87-91.

ILazyEval
+nextLRS() : LRStruct
+makeLazyLRS() : LRStruct

«abstract strategy»

LazyFilterEval LazyIncEvalLazySieveEval

AState

IAlgo

LazyLRStruct
{not needed}

LazyNonNullState
getRest(owner: LRStruct) : LRStruct
setRest(tail: LRStruct, owner: LRStruct) : void
setFirst(first: Object, owner: LRStruct) : void
insertAsFirst(dat: Object, owner: LRStruct) : void
removeFirst(owner: LRStruct) : Object
getFirst(owner: LRStruct) : Object
execute(visitor: IAlgo, param: Object, host: LRStruct) : Object
eval(owner: LRStruct) : void

«concrete state, context, decorator»

LRSFactory
+makeLRS() : LRStruct
+makeLRS(initDat: Object, lazyEval: ILazyEval) : LRStruct

LRStruct

NonNullState NullState

state

decoree

rest

src

«uses»

«instantiates»

«uses»
«uses»

SkipLeadMuls IsNull

Figure 5: The Lazy LRS framework (original classes
outlined in dashed lines).

