
RETROSPECTIVE:

Soft Typing

Robert Cartwright and Mike Fagan
Department of Computer Science

Rice University
Houston, Texas 77005 mfagan@cs.rice.edu

1. HISTORY OF THE SOFT TYPING
CONCEPT

During the 80’s and early 90’s, high-level programming languages
supported two different type-checking philosophies: static typing,
and dynamic typing. Statically typed programming languages en-
sured that all programs conformed to a set of typing rules, which
implied that programs could not “go wrong”. Non-conforming pro-
grams were rejected. Dynamically typed programming languages,
in contrast, did not reject programs, but rather checked for “type
errors” during program execution. ML and Scheme were the pro-
totypical respresentatives of the static and dynamic approachs to
typing.

Each typing philosophy had distinct advantages and disadvan-
tages. Static typing does not require as much run-time type check-
ing, and the detection of non-conformance supplies programmers
with potentially valuable debugging information. The disadvantage
of static typing, however, is that are some well-written, meaning-
ful programs that never generate type errors at run time but do not
conform to a given system of static typing rules. Semantic type-
correctness is undecidable. As a result, a programmer must rewrite
such a program to conform to the type rules.

In contrast, dynamic typing permits all programs to be executed,
but fails to detect obvious type errors at compile time. Dynamic
typing is more flexible at the cost of failing to detect type errors
statically.

Soft typing seeks to combine the advantages of static typing with
the flexibility of dynamic typing. In other words, it provides the
expressiveness of a dynamically typed language but it detects and
flags potential type errors statically.

In our paper, we focused on a core functional language similar
to the functional core of both ML and Scheme, presuming that the
non-functional features could be handled by extensions to our type
system similar to those used in ML. Our key observation was that
a type inference engine could be used to insert dynamic run-time
checks where needed and inform a programmer that such checks
were necessary. The inference engine, however, did not reject pro-
grams.

At this stage, we noted that the standard ML Hindley-Milner
type inference algorithm could be used as a soft type engine for
a Scheme-like functional language. After trying the idea on some
typical example programs, however, we noted that many typical
Scheme programs would need unnecessary run-time checks. The
troublesome programs we considered used union types and recur-
sive types. Consequently, we next investigated ways to include true

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

union types (not discriminated union types as in ML) and recursive
types in our soft typing system.

The second phase of our soft typing research concerned our ef-
fort to add union types and recursive types to a Hindley-Milner type
inference engine. Recursive types could be added by using circular
unification instead of classical unification. Union types, however,
have a subtype relation that seems to be inconsistent with the dis-
joint class assumption of traditional unification methods. Using
a classical mathematical technique called slack variables, we could
convert subtype inequality constraints into equality constraints more
amenable to traditional unification. In addition, work by Rémy[6]
on record types for ML suggested an implementation technique for
our slack variable method.

2. WORK THAT INFLUENCED SOFT
TYPING

The major academic work that influenced our our soft typing work
were the classic static typing work on ML of Milner[4], Damas[2],
and Tofte[8]. In addition, Rémy[6] extended the ML system to in-
clude records by using a slack variable method. The concept of us-
ing slack variables for inequalities is one of the fundamental math-
ematical techniques used in the field of optimization[7]. Finally,
our information about circular unification for recursive types came
from Colmerauer[1].

3. CONTRIBUTIONS OF THE PAPER
Our 1991 PLDI paper made 2 contributions to the design and im-
plementation of programming languages:

1. The paper introduced the concept of soft typing as an alter-
native to purely static typing or purely dynamic typing. Soft
typing enables static error detection and removal of run-time
type checks that pure static typing enjoys. At the same time,
soft typing also retains the flexibility and expressiveness of
dynamic typing.

2. The paper develops a soft typing algorithm suitable for func-
tional programming languages that is an extension of Hindley-
Milner unification-based typing. The soft algorithm we de-
veloped extends Hindley-Milner to include union types and
recursive types.

ACM SIGPLAN 412 Best of PLDI 1979-1999

The type inference framework described in our paper can be used
to infer more precise types for statically typed functional languages
like ML. These more precise type can be used to detect more errors
statically than conventional ML type checking.

4. SUBSEQUENT WORK THAT BUILT ON
SOFT TYPING

Subsequent work that used our initial soft typing work as base falls
into four categories:

1. work that extended the programming language features that
could be softly typed;

2. work that improved soft typing algorithm;

3. work that used different (that is, not Hindley-Milner) type
systems to develop soft typing systems; and

4. work that used soft typing to infer more precise types for
statically typed languages.

Wright and Cartwright extended the soft typing algorithm to cover
mutation operations and call/cc operations of the Scheme pro-
gramming language[9]. Wright and Cartwright’s work on Scheme
also produced an improved soft typing algorithm by a more clever
use of the slack variable idea.

Flanagan et al used set-based analysis (SBA) to develop a more
precise but more costly soft typing system for Scheme, which was
published in PLDI.[3]. The SBA approach requires O(n3) time (in
the length of the program) without polyvariance (the flow-based
analog of parametric polymorphism in type inference) and expo-
nential time when polyvariance is incorporated. In contrast, our
soft type inference algorithm runs in essentially linear time (in
practice) just like conventional Hindley-Milner type inference. The
DrScheme programming environment encorporates the SBA algo-
rithm in a static debugger1 based on this technology.

Pessaux and Leroy[5] applied our Hindley-Milner soft typing to
the problem to analyzing exceptions in ML programs. Exceptions
are not addressed by the standard ML type system. Our soft typing
extension of the Hindley-Milner system, however, enabled Pessaux
and Leroy to extend the ML system to analyze exceptions.

REFERENCES
[1] Alain Colmerauer. Prolog and infinite trees. In K. L. Clark and

S. A. Tarnlund, editors, Logic Programming, pages 231–251.
Academic Press, 1982.

[2] Luis Damas and Robin Milner. Principal type-schemes for
functional programs. In Conference Record of the Ninth
Annual ACM Symposium on Principles of Programming
Languages, 1982.

[3] C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and
M. Felleisen. Catching bugs in the web of program invariants.
In Proceedings of the 1996 Conference on Programming
Language Design and Implementation (PLDI), 1996.

[4] Robin Milner. A theory of type polymorphism in
programming. Journal of Computer and System Sciences,
1978.

[5] F. Pessaux and X. Leroy. Type-based analysis of uncaught
exceptions. In Symposium on the Principles of Programming
Languages, 1999.

1Early versions were called MrSpidey. The most recent version is
called MrFlow.

[6] Didier Rémy. Typechecking records and variants in a natural
extension of ml. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages,
1989.

[7] R. A. Tapia. On the role of slack variables in quasi-newton
methods for unconstrained optimization. In Numerical
Optimization of Dynamical Systems. L. C. W. Dixon, 1980.

[8] Mads Tofte. Operational Semantics and Polymorphic Type
Inference. PhD thesis, University of Edinburgh, 1987.

[9] A. Wright and R. Cartwright. A practical soft type system for
Scheme. In Proceedings of Conference on LISP and
functional Programming, 1994.

ACM SIGPLAN 413 Best of PLDI 1979-1999

ACM SIGPLAN 414 Best of PLDI 1979-1999

ACM SIGPLAN 415 Best of PLDI 1979-1999

ACM SIGPLAN 416 Best of PLDI 1979-1999

ACM SIGPLAN 417 Best of PLDI 1979-1999

ACM SIGPLAN 418 Best of PLDI 1979-1999

ACM SIGPLAN 419 Best of PLDI 1979-1999

ACM SIGPLAN 420 Best of PLDI 1979-1999

ACM SIGPLAN 421 Best of PLDI 1979-1999

ACM SIGPLAN 422 Best of PLDI 1979-1999

ACM SIGPLAN 423 Best of PLDI 1979-1999

ACM SIGPLAN 424 Best of PLDI 1979-1999

ACM SIGPLAN 425 Best of PLDI 1979-1999

ACM SIGPLAN 426 Best of PLDI 1979-1999

ACM SIGPLAN 427 Best of PLDI 1979-1999

ACM SIGPLAN 428 Best of PLDI 1979-1999

