
The Soundness of Component NextGen

James Sasitorn Robert Cartwright
camus@rice.edu cork@rice.edu

Rice University
6100 S. Main St.

Houston TX 77005

July 21, 2007

Abstract

This technical report presents a type soundness proof for Core CGen, a small, formal language
designed for studying the addition of a component system based on genericity to a nominally typed object-
oriented language supporting first-class generics. Core CGen captures the most intricate aspects of the
Component NextGen programming language, an extension of the NextGen architecture that provides
efficient support for first-class generics in Java, and maintains full compatibility with existing Java Virtual
Machines. We begin by reviewing the semantics of Core CGen, and the proceed by establishing several
key lemmas. Finally, we conclude by establishing preservation and progress theorems.

1 Introduction

The Component NextGen programming language is an extension to Generic Java that add support for
components, while maintaining full compatibility with existing Java Virtual Machines (JVMs). CGen is an
extension of the NextGen language, a generalization of Java 5.0 that efficiently support first-class generic
types[4]. We have established that the CGen language design constitutes a feasible extension of Generic Java,
by describing how to implement it efficiently on top of the JVM in [6]. However, the new language features
of CGen introduce many subtle, technical issues. In particular, inheritance across component boundaries
can produce unexpected results. The name of a method introduced in a class may collide with the name
of a public or protected method in an imported superclass. To address this “accidental method capture”
problem, CGen uses a more intricate semantics for method lookup, in comparison to conventional Java.
Furthermore, by leveraging the nominal type system used for generic types, CGen can provide seamless
support for mutual recursive modules. But support for mutually recursive modules allows for cyclic class
hierarchies to be generated during modules linking. Because of these subtleties, proofs of type soundness
from FJ, FGJ, and CMG can not be directly applied to CCG. In this technical report, we argue that the
CGen design is sound by establishing a type soundness result for Core CGen, a small formal model of the
CGen language that captures the most subtle properties of the full language. Our presentation of this proof
assumes knowledge of the CGen language design, as presented in [6, 5]. The presentation of Core CGen
semantics in the proceeding sections is a review of the semantics presented in [5].

1

2 Core CGen

In order to identify and resolve the subtle technical issues in the CGen type system, we have distilled the
component framework into a small, core language called Core CGen, CCG for short. Indeed, many issues
described in [5] were uncovered during a formal analysis of Component NextGen.

The design of Core CGen is based on Featherweight GJ (FGJ) [3] and incorporates ideas from Core
MixGen [1]. In the remainder of this paper, we will refer to these two languages as FGJ, and CMG,
respectively. CCG excludes signatures for the sake of simplicity; degenerate modules are used in place of
signatures. This simplification follows the precedent established in Featherweight Java, FGJ, and CMG
which exclude interfaces and rely on degenerate classes in their stead.

CCG augments FGJ with the essential infrastructure to support CGen-style components:

• module definitions. These provide the crucial framework to bundle classes as components.

• bind definitions. These provide the ability to link (instantiate) modules with their dependencies. For
simplicity, CCG programs define a single set of bind declarations.

• Multiple constructors in class definitions. In FGJ each class defines a default constructor that takes
an initial value for each field as an argument. In CCG, we relax this restriction and permit multiple
constructors with arbitrary signatures. This allows (i) classes to satisfy the constraints required by
multiple bounding signatures, and (ii) different module implementations to provide different collections
of fields.

The following sections outline the syntax, type system, small-step semantics, and proof of type soundness
for CCG; the details of the proof are presented in Sections 2.9. The semantics and proof are similar to those
for MixGen in [2], except for the following:

• All class types in CCG are prefixed by their enclosing module instantiation. This convention is
analogous to using fully-qualified class names including a package prefix in Java.

• CCG must check that class hierarchies form a DAG when modules are linked together with respect to
the declared bind declarations.

• The small-step semantics for CCG carries a runtime “bound” environment, mapping type variables to
their bounds, to support bind declarations.

2.1 Syntax

The abstract syntax of CCG, shown in Table 1, consists of module declarations (MD), class declarations (CL),
constructors declarations (K), method declarations (M), expressions (e), types (T), and bind declarations
(BD). For the sake of brevity, extends is abbreviated by /. Throughout all formal rules of the language, the
following meta-variables are used over the following domains:

• d, e range over expressions.
• K ranges over constructors.
• m, M range over methods.
• N, O, P range over fully-qualified class types
• N, O, P range over module types

2

Syntax:

MD : := module D<X / N> / N {CL}

CL : := class C<X / N> / N {T f; K M}

K : := C(T x) {super(e);this.f = e′;}

M : := <X / N> T m(T x) {return e;}

e : := x

| e.f

| e.m<T>(e)

| new N(e)

| (N)e

T : := X | N

T : := X | N

N : := T.C<T>

N : := D<T>

BD : := bind N X = N;

Table 1: CCG Syntax

• X, Y, Z range over naked class type variables.
• X, Y, Z range over naked module type variables.
• R, S, T, U, V range over class types.
• R, S, T, U, V range over module types.
• x ranges over method parameter names.
• f ranges over field names.
• C, D range over class names.
• C, D range over module names

Following the notation of FGJ, a meta-variable with a horizontal bar above it represents a (possibly
empty) sequence of elements in the domain of that variable, and may include an arbitrary separator character.
For example, T denotes a sequence of types T0, ...Tn. As in CMG, we abuse this notation in different contexts.
For example, T f; denotes T0 f0;...Tn fn;. Similiarly, the expression X / N represents X0 / N0, ...Xn / Nn.

In CCG, sequences of classes, type variables, method names, and field names are required to contain no
duplicates. The set of type variables in each module includes an implicit variable thisMod which cannot
appear as a type parameter anywhere in the module. The set of variables in each class includes an implicit
variable this which cannot appear as a class name, field, or method parameter anywhere in the class.

Type variable bounds may reference other type parameters declared in the same scope; in other words
they may be mutually recursive. Every module definition declares a super module using /. Every class
definition declares a super class using /.

CCG requires explicit polymorphism on all parametric method invocations.

3

2.2 Valid Programs

A CCG program consists of a fixed module table, a fixed bind table and an expression, denoted (MT,BT, e).
A module table MT is a mapping from module names D to module declarations MD. A bind table BT is a
mapping from type variables X to bind declarations BD.

A valid module table MT must satisfy the following constraints: (i) for every D in MT, MT(D) =
module D..., (ii), Mod /∈ dom(MT), (iii) every module appearing in MT is in dom(MT), and (iv) the
subtyping relation <: induced by MT is antisymmetric and forms a tree rooted at Mod. The root module
Mod is modeled without a corresponding module definition in the module table and contains no classes.

A valid bind table BT must satisfy the following constraints: (i) for every X in BT, BT(X) =
bind N0 X = N; and (ii) every type variable X appearing in BT is in dom(BT). Given the set BT of binds
bind N0 X = N, the initial bound environment, mapping module type variables to their upper bounds is
defined as ∆BT = X / N. The bound environment ∆ is discussed below in Section 2.4.

Program execution consists of evaluating e in the context of MT and the initial bound environment ∆BT

for BT.

2.3 Valid Module Binds

To determine if a set of binds BT can be safely linked to produce an acyclic set of classes1, an im-
plicit class table CT, defining a mapping from fully-qualified class names to definitions, is generated by
evaluating MT in the presence of BT. For each bind declaration bind N0 X = D<T>; in BT where
MT(D) = module D<Y / N> / N {CL} and each class C<X / N> / N {...} ∈ CL:
CT(D<T>.C) = [Y 7→ bound∆BT

(T)]
class D<Y>.C<X / N> / N {...}.

The substitution above replaces module type parameters with their bind-ed instantiations so that the parent
type of a class in an instantiated module can be looked up in CT. The domain of CT is finite; It simply
consists of the set of classes defined in the module instantiations in the right hand sides of bind declarations.2

A valid class table must satisfy the following constriants: (i) every class name appearing in CT is in
dom(CT) and (ii) the set of class definitions must form a tree rooted at Object.3

The class Object is modeled as a top-level construct, located outside any module. Object contains no
fields or methods and it acts as if it contains a special, zero-ary constructor.

2.4 Type Checking

The typing rules for expressions, method declarations, constructor declarations, class declarations, and
module declarations are shown in Table 2. The typing rules in CCG includes two environments:

• A bound environment ∆ mapping type variables to their upper bounds. Syntactically, this is written
as X / N ∪ X / N. The bound of a type variable is always a non-variable. The bound of a non-variable
module type N is N, and a non-variable class type V.C<T> is the class type C<T> prefixed by the bound
of the enclosing module V.

1Since mixin classes in MixGen syntactically encoded their parent instantiations, formalizing properties on acyclic type
hierarchies is relatively easy. CCG, just like FGJ, does not use a syntactic encoding.

2Modules do not contain any module type applications because they can only reference imported modules which are fully-
qualified.

3The special class object is not in CT, because Object is a keyword.

4

∆ ` T <: T[SCReflex]
∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
[SCTrans]

∆ ` T <: T[SMReflex]
∆ ` S <: T ∆ ` T <: U

∆ ` S <: U
[SMTrans]

∆ ` X <: ∆(X)[SCBound] ∆ ` X <: ∆(X)[SMBound]

bound∆(T) = D<T>
MT(D) = module D<Y / N> / N {CL}

class C<X / N> / N {...} ∈ CL

∆ ` T.C<S> <: [Y 7→ T][X 7→ S]N
[SClass]

MT (D) = module D<Y / N> / N {...}

∆ ` D<T> <: [Y 7→ T]N
[SModule]

bound∆(X) = ∆(X)

bound∆(V.C<T>) = bound∆(V).C<T>

bound∆(N) = N

Table 2: Subtyping and Type Bounds

• A type environment Γ mapping program variables to their static types. Syntactically, these mappings
have the form x : T

CCG contains two disjoint sets of types: module types and class types. Class types are always qualified
with their enclosing module instantiation. Class type variables are bound by class types and module type
variables are bound by module types. Figure 2 shows the rules for the subtyping relation <: . Subtyping in
CCG is reflexive and transitive. Classes and modules are subtypes of the instantiations of their respective
parent types.

2.5 Well-formed Types and Declarations

The rules for well-formed constructs appear in Table 3. Class and module instantiations are well-formed in
the environment ∆ if all instantiations of type parameters are subtypes of their bounds in ∆. Type variables
are well-formed if they are present in ∆.

A method m is well-formed with respect to its enclosing module D and class C if its constituent types are
well-formed; the type of the body in Γ is a subtype of the declared return type; and m is a valid override of
any method of the same name in the static type of parent class for C. An overriding method definition is
valid if it preserves the signature in the parent. This notion is formalized in section 2.6.

CCG allows multiple constructors in a class. As in FGJ, there is no null value in the language, so all
constructors are required to assign values to all fields. In order to avoid pathologies such as the assignment
of a field to the (yet to be initialized) value of another field, all expressions in a constructor are typed in an
environment binding only the constructor parameters (not the enclosing class fields, this, or thisMod).

A class definition CL is well-formed in the context of the enclosing module if the constituent elements are

5

well-formed; none of the fields known statically to occur in ancestors are shadowed4.; and every constructor
has a distinct signature.

Module definitions are well-formed if their constituent elements are well-formed; each member class has
a distinct name; and the module provides valid class overrides for all classes defined in its super module.
This notion is formalized in section 2.6.

Bind declarations are well-formed if the instantiated types are well-formed and subtypes of their formal
types with respect to ∆.

A program is well-formed if all module definitions are well-formed, the induced module table is well-
formed, the set of binds is well-formed, and the trailing expression can be typed with empty type environment
(Γ) and bound environment ∆BT .

2.6 Class and Module Auxiliary Functions

The auxiliary functions defining field name and value lookup, method typing, method lookup, valid method
overrides, constructor inclusion, and method inclusion appear in Table 5. The auxiliary functions defining
valid class overrides appear in Table 6. These functions are passed a bound environment ∆ to determine the
module bounds of type parameters.

The mapping fields returns only the fields directly defined in a class definition. The mapping fieldVals is
used to retrieve the field values for a given object. A static type is passed to fieldVals to disambiguate field
names in the presence of accidental shadowing.

Method types are resolved by searching upward the class inheritance chain (which may cross modules via
imports) starting from the provided static receiver type. The type of a method includes the enclosing module
and class instantiation in which the method occurs, as well as the parameter types and return types. The
included module and class names are used to annotate receiver expressions in the typing rules for method
invocation. As explained later in Section 2.7, the annotated type of the receiver of an application of method
m is reduced to a more specific type when the more specific type includes m (with a compatible method
signature) in the static type of its parent. Once the annotated type of a receiver is reduced to the most
specific type possible, lookup of m starts at the reduced annotated type.

For a given module D, a class definition CL defines a valid class override if CL provides a super set of the
fields, constructors, and methods provided by the class of the same name, if it exists, in the static type of
the super module for D.

2.7 Expression Typing

The rules for expression typing are given in Table 4. Naked type variables may occur in casts, but are
prohibited in new operations.

The expression typing rules annotate the receiver expression for field lookups and method invocations
with a static type. In the case of a field lookup, this static type is used to disambiguate the field reference in
the presence of accidental shadowing. Although classes are statically prevented from shadowing the known
fields of their ancestors, a mixin instantiation may accidentally shadow a field contained in its parent. In the
case of method invocations, the receiver is annotated with a static type to allow for a “downward” search of
a method definition at run-time, as explained in section 2.6.

Notice that the receiver expression of a method invocation is annotated not with its precise static type,
but instead with the closest supertype of the static type in which the called method is explicitly defined. The

4This restriction is not necessary in principle, but it significantly simplifies the proof of type safety.

6

∆ ` Object ok[WFObject] ∆ ` Mod ok[WFMod]
X ∈ dom(∆)

∆ ` X ok
[WFVar]

X ∈ dom(∆)

∆ ` X ok
[WFMVar]

bound∆(T) = D<T> ∆ ` D<T> ok

MT (D) = module D<Y / N> / N {CL}
class C<X / N> / N {...} ∈ CL

∆ ` S ok ∆ ` S <: [Y 7→ T][X 7→ S]N

∆ ` T.C<S> ok
[WFClass]

MT (D) = module D<Y / N> / N {CL}
∆ ` T ok ∆ ` T <: [Y 7→ T]N

∆ ` D<T> ok
[WFModule]

MT(D) = module D<Y / N> / N {CL} class C<X / R> / N {T f; K M} ∈ CL

∆ = Y / N + thisMod / D<Y> + X / R N = V.D<S> bound∆(V) = C<Z>
x ∩ this = ∅ ∆ ` override(C<Z>.D<S>, <X′ / R′> V′ m(T′ x))

∆1 = ∆ + X′ / R′ Γ = x : T′ + this: D<Y>.C<X>
∆1 ` R′ ok ∆1 ` R′ <: Object ∆1 ` V′ ok ∆1 ` T′ ok ∆1; Γ ` e ∈ U ∆1 ` U <: V′

<X′ / R′> V′ m(T′ x) {return e;} ok in D<Y / N>.C<X / R>

[TMethod]

MT(D) = module D<Y / N> / N {CL} class C<X / R> / N {T f; K M} ∈ CL

N = V.D<S> bound∆(V) = C<Z>
∆ = Y / N + thisMod / D<Y> + X / R Γ = x : V x ∩ this = ∅

∆ ` V ok ∆; Γ ` e′ ∈ U′ ` C<Z>.D<S> includes init(U′) ∆; Γ ` e ∈ U ∆ ` U <: T

C(V x){super(e′);this.f = e;} ok in D<Y / N>.C<X / R>

[TConstructor]

MT (D) = module D<Y / N> / N {CL}
K ok in D<Y / N>.C<X / R> M ok in D<Y / N>.C<X / R>

∆ = Y / N + thisMod / D<Y> + X / R ∆ ` R ok ∆ ` R <: Object ∆ ` N ok
∆ ` T ok X ∩ thisMod = ∅ f ∩ this = ∅

∆ ` D<Y>.C<X> <: V and ∆ ` fields(V) = T′ f′ implies f ∩ f′ = ∅
Ki = C(T x) {...} and Kj = C(T x′) {...} implies i = j

class C<X / R> / N {T f; K M} ok in D<Y / N>
[TClass]

∆0 ` N ok ∆0 ` N <: N0

bind N0 X = N; ok
[TBind]

CL ok in D<Y / N> N <: Mod Y ∩ thisMod = ∅
∆ = Y / N ∆ ` N ok ∆ ` N ok ∆ ` classOverride(N, CL)

CLi = class C<X / T> / N {...} and CLj = class C<X′ / T′> / N′ {...}
implies i = j

module D<Y / N> / N {CL} ok
[TModule]

Table 3: Well-formed Declarations

method found in that supertype is the only method of that name that is statically guaranteed to exist. During
computation, the annotated type is reduced whenever possible, modeling the downward search semantics of
hygienic mixin method overriding.

Like receiver expressions, the arguments in a new expression are annotated with static types. These
annotation are used at run-time to determine which constructor is referred to by the new operation. This is
because the semantics require an exact match. There could be cases where multiple constructors match the

7

∆; Γ ` x ∈ Γ(x)[TVar]

∆; Γ ` e ∈ S ∆ ` T ok

∆; Γ ` (T)e ∈ T

[TUCast]

bound∆(V) = D<Z> ∆; Γ ` e ∈ S

` D<Z>.C<T> includes init(S)

∆; Γ ` new V.C<T>(e) ∈ D<Z>.C<T> annotate [e :: S]
[TNew]

∆; Γ ` e ∈ T ∆ ` T <: N N = V.C<U>
bound∆(V) = D<Z> ∆ ` fields(N) = T f

∆ ` P <: N and fi ∈ (∆ ` fields(P)) implies P = N

∆; Γ ` e.fi ∈ Ti annotate [e :: D<Z>.C<U>]
[TField]

∆ ` T ok ∆; Γ ` e0 ∈ T0 ∆; Γ ` e ∈ R

bound∆(T0) = D<Z>.C<S>
∆ ` mtype(m, D<Z>.C<S>) = P.<X / N> S m(U x)

∆ ` T <: [X 7→ T]N ∆ ` R <: [X 7→ T]U

∆; Γ ` e0.m<T>(e) ∈ [X 7→ T]S annotate [e0 ∈ P]

[TInv]

bound∆(V) = D<Z> ∆ ` D<Z>.C<T> ok
∆; Γ ` e ∈ R ∆ ` R <: S ∆ ` S ok

` D<Z>.C<T> includes init(S)

∆; Γ ` new V.C<T>(e :: S) ∈ D<Z>.C<T>
[TAnnNew]

∆ ` fields(N) = T f ∆ ` N ok
∆; Γ ` e ∈ T ∆ ` T <: N

∆; Γ ` [e :: N].fi ∈ Ti

[TAnnField]

∆ ` T ok ∆; Γ ` e0 ∈ T0 ∆; Γ ` e ∈ R

∆ ` mtype(m, O) = P.<X / N> S m(U x)

∆ ` T <: [X 7→ T]N ∆ ` R <: [X 7→ T]U

∆; Γ ` [e0 ◦ O].m<T>(e) ∈ [X 7→ T]S
[TAnnInv]

Table 4: Expression Typing

required signature of a new expression.
In order to allow for a subject-reduction theorem over the CCG small-step semantics, it is necessary to

provide separate typing rules for annotated field lookup and method invocation expressions. Notice that it
is not possible to simply ignore annotations during typing since accidental shadowing and overriding would
cause the method and field types determined by the typing rules to change during computation. Just as type
annotations play a crucial rule in preserving information in the computation rules, they play an analogous
role in typing expressions during computation.

In FGJ, “stupid casts” (the casting of an expression to an incompatible type) were identified as a possible
result during subject reduction. In CCG, it is not possible to statically detect “stupid casts” in modules
because class types cannot be completely resolved until module linking at run-time. For the sake of brevity,
all casts are accepted during typing.

To avoid the complications of matching multiple constructors of an object, CCG requires an exact match
between the parameter types of a constructor and the static types of the provided arguments. Casts can be
inserted to coerce argument types.

2.8 Computation

The rules for Computation are contained in Figure 7. Computation is specified by a small-step semantics.
The static type of a receiver is used to resolve method applications and field lookups, static types must be
preserved during computation as annotations on receiver expressions. In contrast to FGJ and CMG, the
small-step semantics for CGen carry a bound environment ∆ during computation representing the available
bind declarations.

When evaluating the application of a method, the appropriate method body is found according to the
mapping mbody. The application is then reduced to the body of the method, substituting all parameters
with their instantiations, and this with the receiver. Because it is important that a method application is

8

∆ ` fields(Object) = •

bound∆(V) = D<Z> MT (D) = module D<Y / N> / N {CL}
class C<X / S> / U {T f; K M} ∈ CL

∆ ` fields(V.C<R>) = [Y 7→ Z][X 7→ R]T f

∆ ` fieldVals(new Object(), Object) = •

bound∆(V) = D<Z> bound∆(N) = D<Z>.C<R>
MT (D) = module D<Y / N> / N {CL}

class C<X / S> / U {...C(T x) {super(e);this.f = e′;}...} ∈ CL

∆ ` fieldVals(new V.C<R>(e′′ :: T), N) = [Y 7→ Z][X 7→ R][x 7→ e′′]e′

bound∆(V) = D<Z> MT (D) = module D<Y / N> / N {CL}
class C<X / S> / U {...C(T x) {super(e);this.f = e′;}...} ∈ CL

Y / N + X / S; x : T ` e ∈ V D<Z>.C<R> 6= N

∆ ` fieldVals(new [Y 7→ Z][X 7→ R]U([x 7→ e′′]e :: V), N) = e′′′

∆ ` fieldVals(new V.C<R>(e′′ :: S), N) = e′′′

bound∆(V) = D<Z> MT (D) = module D<Y / N> / N {CL}
class C<X / N> / T {T f; K M} ∈ CL

<Y′ / N′> T′ m(R x) {return e;} ∈ M

∆ ` mtype(m, V.C<U>) = D<Z>.C<U>.[Y 7→ Z][X 7→ U](<Y′ / N′> T′ m(R x))

bound∆(V) = D<Z> MT (D) = module D<Y / N> / N {CL}
class C<X / S> / T {T f; K M} ∈ CL

m is not defined in M

∆ ` mtype(m, V.C<U>) = ∆ ` mtype(m, [Y 7→ Z][X 7→ U]T)

bound∆(V) = D<Z> MT (D) = module D<Y / N> / N {CL}
class C<X / S> / T {T f; K M} ∈ CL

<Y′ / S′> T′ m(R x) {return e;} ∈ M

∆ ` mbody(m<V>, V.C<U>) = (x, [Y 7→ Z][X 7→ U][Y′ 7→ V]e)

bound∆(V) = D<Z> MT (D) = module D<Y / N> / N {CL}
class C<X / S> / T {T f; K M} ∈ CL

m is not defined in M

∆ ` mbody(m<V>, V.C<U>) = mbody(m<V>, [Y 7→ Z][X 7→ U]T)

∆ ` mtype(m, N) = P.<X / T> R m(U x) implies

T′, U′ = [X 7→ Y](T, U) and ∆ + Y / T′ ` R′ <: [X 7→ Y]R

∆ ` override(N, <Y / T′> R′ m(U′ x))

` Object includes init()

MT (D) = module D<Y / N> / N {CL}
class C<X / S> / S {...C(T x) {...}...} ∈ CL

` D<Z>.C<R> includes [Y 7→ Z][X 7→ R]init(T)

MT (D) = module D<Y / N> / N {CL}
class C<X / S> / T {...M...} ∈ CL

M = <X′ / S′> T′ m(R′ x) {return e;}

` D<Z>.C<R> includes [Y 7→ Z][X 7→ R]<X′ / S′> T′ m(R′ x)

Table 5: Class Auxiliary Functions

9

D<Y′>.C<T′> includes init(T)

` D<Y′>.C<T′> provides C(T x) {...}

D<Y′>.C<T′> includes <Y / T′> R′ m(U′ x)

` D<Y′>.C<T′> provides <Y / T′> R′ m(U′ x) {return e;}

MT (D) = module D<Y / N> / N {CL} and
class C<X / S> / U {T f; K M} ∈ CL implies

(S′, U′) = [Y 7→ Y′][X 7→ X′](S, U) and [Y 7→ Y′][X 7→ X′]T f; ⊆ T′ f′;

and D<Y′>.C<X′> provides [Y 7→ Y′][X 7→ X′](K, M)

∆ ` classOverride(D<Y′>, class C<X′ / S′> / U′ {T′ f′; K′ M′})

Table 6: Module Auxiliary Functions

not reduced until the most specific matching type annotation of the receiver is found, two separate forms
are used for type annotations. The original type annotation marks the receiver with an annotation of the
form ∈ T. This form of annotation is kept until no further reduction of the static type is possible. At this
point, the form of the annotation is switched to :: T . Because the computation rules dictate that methods
can be applied only on receivers whose annotations are of the latter form, we are ensured that no further
reduction is possible when a method is applied. The symbol ◦ is used to designate contexts where either
form of annotation is applicable.

2.9 Type Soundness

In this section we establish a proof of type soundness for Core CGen. The proof of type soundness for CCG
is based on the proofs for type soundness for FGJ and CMG. Since CCG uses separate type variables for
class and module paramterization, the proof contains many parallel lemmas showing key properties hold for
each case.

Lemma 1 (Weakening). Suppose ∆ + X / N ` N ok, ∆ + X / N ` N ok and ∆ ` U ok.

1. If ∆ ` S <: T, then ∆ + X / N ` S <: T and ∆ + X / N ` S <: T

2. If ∆ ` S <: T, then ∆ + X / N ` S <: T and ∆ + X / N ` S <: T

3. If ∆ ` S ok, then ∆ + X / N ` S ok and ∆ + X / N ` S ok.

4. If ∆ ` S ok, then ∆ + X / N ` S ok and ∆ + X / N ` S ok

5. If ∆; Γ ` e ∈ T, then

∆; Γ, x : U ` e ∈ T, ∆ + X / N; Γ ` e ∈ T and ∆ + X / N; Γ ` e ∈ T.

Proof. Each of the above cases is proved by straightforward induction on the derivation of the premise.

Lemma 2 (Class Type Substitution Preserves Fields). For bound environment ∆ s.t., types U and non-
variable class type N, where X 6∈ dom(∆), if ∆ ` fields(N) = T f then ∆ ` fields([X 7→ U]N) = [X 7→ U]T f

10

∆ ` mbody(m<V>, N) = (x, e0)

∆ ` [new V.C<S>(e :: P) :: N].m<V>(d) →
[x 7→ d][this 7→ new V.C<S>(e :: P)]e0

[RInv]

∆ ` e ∈ N ∆ ` N <: V.C<U> bound∆(V) = D<T>
MT(D) = module D<Y / N> / N {CL}

class C<X / S> / T {...} ∈ CL

∆ ` mtype(m, D<Z>.C<U>) = mtype(m, [Y 7→ Z][X 7→ U]T)

∆ ` [e ∈ [Y 7→ Z][X 7→ U]T].m<V>(d) → [e ∈ D<Z>.C<U>].m<V>(d)
[RInvSub]

∆ ` e ∈ N ∆ ` N <: V.C<U> bound∆(V) = D<T>
MT(D) = module D<Y / N> / N {CL}

class C<X / S> / T {...} ∈ CL

∆ ` mtype(m, D<Z>.C<U>) is undefined or

∆ ` mtype(m, D<Z>.C<U>) 6= mtype(m, [Y 7→ Z][X 7→ U]T)

∆ ` [e ∈ [Y 7→ Z][X 7→ U]T].m<V>(d) → [e :: [Y 7→ Z][X 7→ U]T].m<V>(d)
[RInvStop]

∆ ` N <: T

∆ ` (T)new N(e :: S) → new N(e :: S)
[RCast]

∆ ` fields(R) = T f

∆ ` fieldVals(new N(e), R) = e′

∆ ` [new N(e) :: R].fi → e′
i

[RField]

∆ ` ei → ei
′

∆ ` new T(..., ei :: S, ...) → new T(..., ei
′ :: S, ...)

[RCNewArg]

∆ ` e → e′

∆ ` [e ◦ N].m<V>(d) → [e′ ◦ N].m<V>(d)
[RCInvRecv]

∆ ` ei → ei
′

∆ ` [e ◦ N].m<V>(...ei...) → [e ◦ N].m<V>(...ei
′...)

[RCInvArg]

∆ ` e → e′

∆ ` ((S)e) → ((S)e′)
[RCCast]

∆ ` e → e′

∆ ` [e :: R].f → [e′ :: R].f
[RCField]

Table 7: Computation

Proof. Case analysis over the derivation of ∆ ` fields(N) = T f

Case ∆ ` fields(Object) = •: Trivial.

Case ∆ ` fields(V.C<S>) = [Y 7→ Z][R 7→ S]T f: Assume bound∆(V) = D<Z> and MT(D) = module D<Y / N> / N {CL}
and class C<R / S′> / T′ {...} ∈ CL. We must show that ∆ ` fields([X 7→ U]D<Z>.C<S>) =
[X 7→ U][Y 7→ Z][R 7→ S]T f. Since X 6∈ dom(∆), we know [X 7→ U]D<Z>.C<S> = D<[X 7→ U]Z>.C<[X 7→ U]S>.
Then we have fields(D<[X 7→ U]Z>.C<[X 7→ U]S>) = [Y 7→ [X 7→ U]Z][R 7→ [X 7→ U]S]T f. Since
X 6∈ dom(∆), this simplifies to [X 7→ U][Y 7→ Z][R 7→ S]T f.

Lemma 3 (Module Type Substitution Preserves Fields). For bound environment ∆, types U and non-
variable class type N, where X 6∈ dom(∆), if ∆ ` fields(N) = T f then ∆ ` fields([X 7→ U]N) = [X 7→ U]T f

11

Proof. Case analysis over the derivation of ∆ ` fields(N) = T f

Case ∆ ` fields(Object) = •: Trivial.

Case ∆ ` fields(V.C<S>) = [Y 7→ Z][R 7→ S]T f: Similiar to Lemma 2.

Lemma 4 (Class Type Substitution Preserves Method Types). For bound environment ∆, types U

and non-variable class type N, where X 6∈ dom(∆), if ∆ ` mtype(m, N) = N.<Y / R> T m(U′ x) then
∆ ` mtype(m, [X 7→ U]N) = [X 7→ U](N.<Y / R> T m(U′ x)).

Proof. The premise ∆ ` mtype(m, N) = N.<Y / R> T m(U x) matches only one of the two rules that defines
mtype. And this rule applies equally well to the substituted forms.

Lemma 5 (Module Type Substitution Preserves Method Types). For bound environment ∆, types U
and non-variable class type N, where X 6∈ dom(∆), if ∆ ` mtype(m, N) = N.<Y / R> T m(U′ x) then ∆ `
mtype(m, [X 7→ U]N) = [X 7→ U](N.<Y / R> T m(U′ x)).

Proof. Similar to Lemma 4.

Lemma 6 (Class Type Substitution Preserves Constructor Inclusion). For non-module types U and non-
variable class type N, if ` N includes init(S) then ` [X 7→ U]N includes [X 7→ U]init(S).

Proof. Since we know N = D<Z>.C<R>, we have D<Z>.C<R> includes [Y 7→ Z][Y 7→ R]init(S). Be-
cause [X 7→ U]D<Z>.C<R> = D<[X 7→ U]Z>.C<[X 7→ U]R>, we have D<[X 7→ U]Z>.C<[X 7→ U]R> includes [Y 7→
[X 7→ U]Z][Y 7→ [X 7→ U]R]init(S). But [Y 7→ [X 7→ U]Z][Y 7→ [X 7→ U]R]init(S) = [X 7→ U][Y 7→ Z][Y 7→ R]init(S),
finishing the case.

Lemma 7 (Module Type Substitution Preserves Constructor Inclusion). For module types U and non-
variable class type N, if ` N includes init(S) then ` [X 7→ U]N includes [X 7→ U]init(S).

Proof. Similar to Lemma 6.

Lemma 8 (Class Type Substitution Preserves Method Inclusion). For bound environment ∆, non-
module types U and non-variable class type N, where X 6∈ dom(∆), if ` N includes <Y / R> T m(U′ x) then
` [X 7→ U]N includes [X 7→ U](N.<Y / R> T m(U′ x)).

Proof. Similar to Lemma 6.

Lemma 9 (Module Type Substitution Preserves Method Inclusion). For bound environment ∆, mod-
ule types U and non-variable class type N, where X 6∈ dom(∆), if ` N includes <Y / R> T m(U′ x) then
` [X 7→ U]N includes [X 7→ U](N.<Y / R> T m(U′ x)).

Proof. Similar to Lemma 6.

Lemma 10 (Class Type Substitution Preserves Class Subtyping). For bound environment ∆ and non-module
types U, where X 6∈ dom(∆), if ∆ + X / N ` S <: T and ∆ ` U <: [X 7→ U]N then ∆ ` [X 7→ U]S <: [X 7→ U]T.

Proof. By structural induction over the derivation of ∆ + X / N ` S <: T

Case SC-Reflex: Trivial.

12

Case SM-Reflex: Impossible since S is not a module type.

Case SC-Trans: Follows immediately from the induction hypothesis.

Case SM-Trans: Impossible since S is not a module type.

Case SC-Bound: S = X. If X ∈ dom(∆), then it’s trivial. On the other hand if S = Xi, T = Ni, ∆ + X / N `
S <: Ni. Then [X 7→ U]S = Ui and [X 7→ U]T = [X 7→ U]Ni. But we’re given that ∆ ` U <: [X 7→ U]N.
Finally Lemma 1 finishes the case.

Case SM-Bound: S = X. Impossible since S is not a module type.

Case S-Class: S = D<Z>.C<V> where MT (D) = module D<Y / N> / N {CL}, class C<R / S> / T′ {...} ∈
CL, and [Y 7→ Z][R 7→ V]T′ = T. We must show that ∆ ` [X 7→ U]D<Z>.C<V> <: [X 7→ U][Y 7→ Z][R 7→ V]T′.
But notice that [X 7→ U]D<Z>.C<V> = D<[X 7→ U]Z>.C<[X 7→ U]V>. Next, by applying [S-Class], we
can further reason ∆ ` D<[X 7→ U]Z>.C<[X 7→ U]V> <: [Y → [X 7→ U]Z][R → [X 7→ U]V]T′. But,
[Y → [X 7→ U]Z][R→ [X 7→ U]V]T′ = [X 7→ U][Y 7→ Z][R 7→ V]T′, finishing the case.

Case S-Module: S = D<Z>. Impossible since S is not a module type.

Lemma 11 (Module Type Substitution Preserves Class Subtyping). For bound environment ∆ and module
types U, where X 6∈ dom(∆), if ∆+X / N ` S <: T and ∆ ` U <: [X 7→ U]N then ∆ ` [X 7→ U]S <: [X 7→ U]T.

Proof. By structural induction over the derivation of ∆ + X / N ` S <: T. The analysis is similar to Lemma
10. The only interesting case is:

Case SC-Bound: S = X. Since S is a class type we know S 6= Xi. Therefore, we have the trivial case
X ∈ dom(∆).

Lemma 12 (Class Type Substitution Preserves Module Subtyping). For bound environment ∆ and
non-module types U, where X 6∈ dom(∆), if ∆ + X / N ` S <: T and ∆ ` U <: [X 7→ U]N then ∆ `
[X 7→ U]S <: [X 7→ U]T.

Proof. By structural induction over the derivation of ∆ + X / N ` S <: T. The analysis is similar to Lemma
10. The only interesting case is:

Case S-Module: S = D<Z>, where MT (D) = module D<Y / N> / N {CL} and [Y 7→ Z]N = T. We must
show that ∆ ` [X 7→ U]D<Z> <: [X 7→ U][Y 7→ Z]N. But notice that [X 7→ U]D<Z> = D<[X 7→ U]Z>. Then
by [S-Module], ∆ ` D<[X 7→ U]Z> <: [Y → [X 7→ U]Z]N. But, [Y → [X 7→ U]Z]N = [X 7→ U][Y 7→ Z]N,
finishing this case.

Lemma 13 (Module Type Substitution Preserves Module Subtyping). For bound environment ∆
and module types U, where X 6∈ dom(∆), if ∆ + X / N ` S <: T and ∆ ` U <: [X 7→ U]N then
∆ ` [X 7→ U]S <: [X 7→ U]T.

13

Proof. By structural induction over the derivation of ∆ + X / N ` S <: T. The analysis is similar to Lemma
12.

Lemma 14 (Class Type Substitution Preserves Class Well-formedness). For bound environment ∆ where
X 6∈ dom(∆) and ∆ ` U ok, if ∆ + X / N ` S ok, ∆ ` U <: [X 7→ U]N then ∆ ` [X 7→ U]S ok.

Proof. By structural induction over the derivation of ∆ + X / N ` S ok

Case WF-Object: Trivial.

Case WF-Mod: Trivial.

Case WF-Var: ∆ + X / N ` S ok. If S ∈ dom(∆) this is trivial. Let S = Xi. Then [X 7→ U]S = Ui. But we
are give that ∆ ` U ok.

Case WF-MVar: Impossible since S is not a module type.

Case WF-Class: ∆ + X / N ` D<T>.C<S> ok. Immediate from Lemma 10 and the induction hypothesis.

Case WF-Module: Impossible since S is not a module type.

Lemma 15 (Module Type Substitution Preserves Class Well-formedness). For bound environment ∆ where
X 6∈ dom(∆) and ∆ ` U ok, if ∆ + X / N ` S ok, ∆ ` U <: [X 7→ U]N then ∆ ` [X 7→ U]S ok.

Proof. By structural induction over the derivation of ∆ + X / N ` S ok. Similar to Lemma 14.

Lemma 16 (Class Type Substitution Preserves Module Well-formedness). For bound environment ∆ where
X 6∈ dom(∆) and ∆ ` U ok, if ∆ + X / N ` S ok, ∆ ` U <: [X 7→ U]N then ∆ ` [X 7→ U]S ok.

Proof. By structural induction over the derivation of ∆ + X / N ` S ok. Similar to Lemma 15.

Lemma 17 (Module Type Substitution Preserves Module Well-formedness). For bound environment ∆
where X 6∈ dom(∆) and ∆ ` U ok, if ∆ + X / N ` S ok, ∆ ` U <: [X 7→ U]N then ∆ ` [X 7→ U]S ok.

Proof. By structural induction over the derivation of ∆ + X / N ` S ok. The only interesting cases are:

Case WF-MVar: ∆ + X / N ` S ok. If S ∈ dom(∆) this is trivial. Let S = Xi. Then [X 7→ U]S = Ui. But
we are give that ∆ ` U ok.

Case WF-Module: ∆ + X / N ` D<T> ok. Immediate from Lemma 11 and the induction hypothesis.

14

2.10 Module Hierarchies

We now build on our formalized notion of ground expressions and types and address the potential for cyclic
and infinite hierarchies in CCG. We begin our analysis first with modules, and then in Section 2.11 we
examine classes. The following lemmas are used to ensure that the constraints placed on module tables
prevents cyclic and infinite hierarchies.

Lemma 18 (Module Compactness). For bound environment ∆ and module type D<N> s.t. ∆ ` D<N> ok,
there is a finite chain of module types P0, ..., PN s.t. for all i s.t. 1 ≤ i ≤ N, ∆ ` Pi−1 <: Pi and PN = Mod.

Proof. A well-formed module table allows only one source for module parent types: modules can specify a
specific module in its extends clause. Thus, this condition is required directly on all module instantiations
for all well-formed module tables.

Lemma 19 (Antisymmetry). For module types C<N>, D<P>, s.t. ∆ ` C<N> ok, and ∆ ` D<P> ok, if
∆ ` C<N> <: D<P> then either ∆ 6` D<P> <: C<N> or C<N> = D<P>.

Proof. By structural induction on the derivation of ∆ ` C<N> <: D<P>.

Case SM-Reflex: Then C<N> = D<P>.

Case S-Class: Impossible since C<N> is a module type.

Case S-Module: Then D<P> is a parent of C<T>. Therefore, the constraints on module heirarchy also
require ∆ 6` D<P> <: C<N>.

Case SM-Trans: In this case, there exists some T s.t. ∆ ` C<N> <: T and ∆ ` T <: D<P>. If C<N> =
D<P>, we are done, so assume C<N> 6= D<P> By the induction hypothesis, either C<N> = T or
∆ 6` T <: C<N>. But if C<N> = T, then ∆ ` C<N> <: D<P> was already derived as a premise to
[SM-Trans], and then by the induction hypothesis, ∆ 6` D<P> <: C<N>. Finally, consider the case
that C<N> 6= T. Then we can show that by contradiction, if ∆ ` D<P> <: C<N>. implies that
∆ ` T <: C<N> which contradicts the induction hypothesis. So ∆ 6` D<P> <: C<N>.

Lemma 20 (Uniqueness). For module type C<N> s.t. ∆ ` C<N> ok, there is exactly one type P 6= C<N>
(i.e., the declared parent instantiation) s.t. both of the following conditions hold:

1. ∆ ` C<N> <: P

2. If ∆ ` C<N> <: O, C<N> 6= O, and ∆ ` O <: P then O = P.

Proof. Let P be the declared parent instantiation of C<N>. Suppose for a contradiction that there was a
type O 6= P s.t. ∆ ` C<N> <: O, and ∆ ` O <: P. Then there is some finite derivation of ∆ ` C<N> <: O.
Consider a shortest derivation of ∆ ` C<N> <: O, i.e., a derivation employing no more rule applications
than any other derivation. Such a derivation can’t conclude with [SM-Reflex] because C<N> 6= O, nor
[S-Class] because C<N> is a module type. Also, it can’t conclude with [S-Module] because P 6= O. Thus
it must conclude with [SM-Trans]. Then there is some type O′ s.t. ∆ ` C<N> <: O′ and ∆ ` O′ <: O.
Similarly, a shortest derivation of ∆ ` C<N> <: O′ can’t conclude with [SM-Reflex]; otherwise our derivation
of ∆ ` C<N> <: O is not the shortest derivation, nor [S-Class] since C<N> is a module type. Our derivation
of ∆ ` C<N> <: O′ can’t conclude with [S-Module]; otherwise O′ = P, which is impossible by Lemma

15

19. Thus, a shortest derivation of ∆ ` C<N> <: O′ must conclude with [SM-Trans]. Continuing in this
fashion, we can show that at each step in our derivation of ∆ ` C<N> <: O, the rule [SM-Trans] must be
employed, requiring yet another step in the derivation. Thus, no finite length derivation could conclude with
∆ ` C<N> <: O, so ∆ 6` C<N> <: O.

⊗
Therefore, type O does not exist.

2.11 Class Hierarchies

The presence of recursive modules in CGen allows for the possibility of cyclic class hierarchies. We must
ensure that the constraints placed on modules and bind declarations prevents cyclic class hierarchies from
forming. We can guarantee the sanity of CCG class hierarchies with the following three lemmas:

Lemma 21 (Compactness). For bound environment ∆ and class type T.C<N> s.t. ∆ ` T.C<N> ok, there is
a finite chain of class types P0, ..., PN s.t. for all i s.t. 1 ≤ i ≤ N , ∆ ` Pi−1 <: Pi and PN = Object.

Proof. There are two sources for parent types for classes in a well-formed module table: (1) from either a
locally defined class or (2) from a class introduced by a module import. We consider the later case to be a
mixin type because its parent type is determined during module linking (instantiation).

In the case of non-mixin instantiations, the condition is required directly in the subclassing chain. In the
case of mixin instantiations, we can show this condition holds through by contradiction. Assume there exists
a mixin instantiation N where this required condition does not hold. This implies that the parent must be
a mixin instantiation; otherwise the lemma would obviously be satisfied by the parent instantiation, and by
[S-Class] for N as well. Lets call the parent type to be N′. By recursively following our argument, we can
show that the parent type of N′ should likewise be a mixin instantiation N′′, and so on. Recall that for an
instantiated module D<T>, the imported modules T are determined with respect to a bound environment
∆. Since modules are linked through bind declarations, this implies the available bind declarations link a set
of modules to create a cyclic class hierarchy . However, the restrictions on bind declarations, as discussed
in Section 2.3 ensures that the set of linked modules generates an acyclic class hierarchy CT.

⊗
Thus, the

condition holds for all mixin instantiations as well as non-mixin class instantiations.

Lemma 22 (Antisymmetry). For class types T.C<N>, U.D<P> s.t. ∆ ` T.C<N> ok, ∆ ` U.D<P> ok, if
∆ ` T.C<N> <: U.D<P> then either ∆ 6` U.D<P> <: T.C<N> or T.C<N> = U.D<P>.

Proof. By structural induction on the derivation of ∆ ` T.C<N> <: U.D<P>. The interesting cases are:

Case SC-Reflex: Then T.C<N> = U.D<P>.

Case S-Class: Then U.D<P> is the parent of T.C<N>.

Case SC-Trans: In this case, there exists some V s.t. ∆ ` T.C<N> <: V and ∆ ` V <: U.D<P>. If T.C<N> =
U.D<P>, we are done, so assume T.C<N> 6= U.D<P> By the induction hypothesis, either T.C<N> = V or
∆ 6` V <: T.C<N>. But if T.C<N> = V, then ∆ ` T.C<N> <: U.D<P> was already derived as a premise
to [SC-Trans], and then by the induction hypothesis, ∆ 6` U.D<P> <: T.C<N>. Finally, consider the
case that T.C<N> 6= V. Then we can show that by contradiction, if ∆ ` U.D<P> <: T.C<N>. implies
that ∆ ` V <: T.C<N> which contradicts the induction hypothesis. So ∆ 6` U.D<P> <: T.C<N>.

Lemma 23 (Uniqueness). For a given class type T.C<N> s.t. ∆ ` T.C<N> ok, there is exactly one type
P 6= T.C<N> (i.e., the declared parent instantiation) s.t. both of the following conditions hold:

16

1. ∆ ` T.C<N> <: P

2. If ∆ ` T.C<N> <: O, T.C<N> 6= O, and ∆ ` O <: P then O = P.

Proof. Let P be the declared parent instantiation of T.C<N>. Suppose for a contradiction that there was a
type O 6= P s.t. ∆ ` T.C<N> <: O, and ∆ ` O <: P. Then there is some finite derivation of ∆ ` T.C<N> <: O.
Consider a shortest derivation of ∆ ` T.C<N> <: O, i.e., a derivation employing no more rule applications
than any other derivation. Such a derivation can’t conclude with [SC-Reflex] because T.C<N> 6= O. Also,
it can’t conclude with [S-Class] because P 6= O. It cannot conclude with [S-Module] since T.C<N> is a class
type. Thus it must conclude with [SC-Trans]. Then there is some type O′ s.t. ∆ ` T.C<N> <: O′ and
∆ ` O′ <: O. Similarly, a shortest derivation of ` T.C<N> <: O′ can’t conclude with [SC-Reflex]; otherwise
our derivation of ∆ ` T.C<N> <: O is not the shortest derivation. Also, our derivation of ∆ ` T.C<N> <: O′

can’t conclude with [S-Class]; otherwise O′ = P, which is impossible by Lemma 22. Thus, a shortest derivation
of ∆ ` T.C<N> <: O′ must conclude with [SC-Trans]. Continuing in this fashion, we can show that at each
step in our derivation of ∆ ` T.C<N> <: O, the rule [S-Trans] must be employed, requiring yet another step in
the derivation. Thus, no finite length derivation could conclude with ∆ ` T.C<N> <: O, so ∆ 6` T.C<N> <: O.
Therefore, type O does not exist.

2.12 Preservation

With these lemmas in hand, we now proceed to show that substitution preserves typing in CGen.

Lemma 24 (Class Type Substitution Preserves Typing). For bound environment ∆ and annotated non-
module types U s.t. ∆ ` U ok and X 6∈ ∆, if ∆ + X / N; Γ ` e ∈ S, ∆ ` U / [X 7→ U]N then ∆; [X 7→ U]Γ `
[X 7→ U]e ∈ [X 7→ U]S.

Proof. By structural induction over the derivation ∆ + X / N; Γ ` e ∈ S.

Case T-Var: e = x, ∆ + X / N; Γ ` e ∈ Γ(x). Then ∆; [X 7→ U]Γ ` x ∈ [X 7→ U]Γ(x).

Case T-Cast: e = (S)e′ where ∆; Γ ` e′ ∈ T. By Lemma 14, ∆ ` [X 7→ U]S ok. By the induction hypothesis
∆; [X 7→ U]Γ ` [X 7→ U]e′ ∈ [X 7→ U]T. Then by [T-Cast], ∆; [X 7→ U]Γ ` [X 7→ U]e ∈ [X 7→ U]S.

Case T-Ann-New, T-Ann-Field: Similar. The antecedents of these rules apply to the substituted forms
by straightforward application of the induction hypothesis, and supporting substitution lemmas.

Case T-Ann-Invk: e = [e0 ◦ O].m<T>(e) ∈ [X 7→ U]S. All the antecedents in [T-Ann-Invk] except for
the method substitution type apply by straightforward application of the induction hypothesis, and
supporting substitution lemmas. So we need to show that:

∆ ` mtype(m, [X 7→ U]O) = [X 7→ U]P.<X / R> T m(U′ x).

There are two cases:

Subcase O = P: The by Lemma 4, ∆ ` mtype(m, [X 7→ U]O) = [X 7→ U]O.<X / R> T m(U′ x).

Subcase O 6= P: Because the annotated type of the receiver in the original invocation expression from
which e was reduced was determined by [T-Invk], it must have matched P. The only reduction of the
original expression which could have modified the annotated type is [R-Inv-Sub]. But the antecedents
of [R-Inv-Sub] ensure that an annotated type S is reduced to T only if ∆ ` mtype(m, S) = mtype(m, T).
Therefore, ∆ ` mtype(m, O) = mtype(m, P) and the case is finished by Lemma 4.

17

Lemma 25 (Module Type Substitution Preserves Typing). For annotated types U s.t. ∆ ` U ok and
X 6∈ dom(∆), if ∆ + X / N; Γ ` e ∈ S, ∆ ` U / [X 7→ U]N then ∆; [X 7→ U]Γ ` [X 7→ U]e ∈ [X 7→ U]S.

Proof. By structural induction over the derivation ∆ + X / N; Γ ` e ∈ S. Similar to Lemma 24.

Lemma 26 (Term Substitution Preserves Typing). For annotated expression e, annotated expressions e,
and types T s.t. ∆ ` T ok, if ∆; x : T ` e ∈ S and ∆ ` e ∈ R where ∆ ` R <: T then ∆ ` [x 7→ e]e ∈ S′ where
∆ ` S′ <: S.

Proof. By structural induction over the derivation of ∆; x : T ` e ∈ S.

Case T-Var: e = xi. Then ` [x 7→ e]e = ei. Since ∆ ` ei ∈ Ri, we have S′ = Ri.

Case T-Cast: e = (S)e′. By the induction hypothesis, ` [x 7→ e]e′ is well-typed, so ∆ ` [x 7→ e]e ∈ S.

Case T-Ann-New: e = new S(e′ :: R). But [x 7→ e]new S(e′ :: R) = new S([x 7→ e]e′ :: R). By the induction
hypothesis, ∆ ` [x 7→ e]e′ ∈ R′ where ∆ ` R′ <: R. So, by [T-Ann-Field], ∆ ` new S([x 7→ e]e′ :: R) ∈ S.

Case T-Ann-Field: e = [e′ :: N].f. Term substitution does not effect the annotation N or field f. From the
induction hypothesis we know ∆ ` e′ ∈ N′ where ∆ ` N′ <: N. So by [T-Ann-Field], ∆ ` [x 7→ e]e ∈ S.

Case T-Ann-Invk: e = [e0 ◦ O].m<T>(e′). By the induction hypothesis, [x 7→ e]e0 is well-typed, as well
as [x 7→ e]e′. The other premises of [T-Ann-Invk] are not affected by term substitution, and the static
type of the invocation is determined solely by m and the annotated type of the receiver, neither of
which are modified by term substitution. So, by [T-Ann-Invk], ∆ ` [x 7→ e]e ∈ S.

With these lemmas in hand, we are now in a position to establish a subject reduction theorem.

Theorem 1 (Subject Reduction). If ∆ ` e ∈ T and ∆ ` e→ e′ then ∆ ` e′ ∈ S where ∆ ` S <: T.

Proof. By structural induction over the derivation of ∆ ` e→ e′.

Case R-Cast: e = (O)new N(e :: S). By [T-Cast], ∆ ` e ∈ O. By [R-Cast], ∆ ` N <: O. Finally, by
[T-Ann-New], ∆ ` new N(e :: S) ∈ N, which finishes the case.

Case R-Field: e = [new T0.C<T>(e) :: D′<V′>.C′<T′>].fi. By [R-Field], e′ = ∆ ` fieldVals(new T0.C<T>(e ::
R), D′<V′>.C′<T′>)i. Let ∆ ` fields(D′<V′>.C′<T′>) = S f and bound∆(T0) = D<V>. By [T-Ann-Field],
∆ ` e ∈ Si. Let

MT (D) = module D<Y / N> / N {CL}
class C<X / N> / N {...C(U x){...}...} ∈ CL,
MT (D′) = module D′<Y′ / N′> / N′ {CL′}
class C′<X′ / N′> / N′ {...} ∈ CL′,

We show by induction over the derivation of e′ = ∆ ` fieldVals(new T0.C<T>(e :: R), D′<V′>.C′<T′>)i

that ∆ ` S <: Si. There are two possibilities:

18

Subcase D<V>.C<T> = D′<V′>.C′<T′>: Because we are given that ∆ ` e → e′, it must be the
case that ∆ ` fieldVals(new T0.C <T>(e), D<V>.C<T>)i = [Y 7→ V][X 7→ T][x 7→ e]e′i where e′ are the
expressions assigned to the fields of class C in the matching constructor. By [T-Constructor], we know
that ∆+Y / N+thisMod / D<Y>+X / N; x : T ` e′i ∈ S′i where Si = [Y 7→ N][X 7→ N]S′i. Since ∆ ` T ok,
we know by Lemma 24, 25 and 26 that ∆ ` [Y 7→ V][X 7→ T][x 7→ e]e′i ∈ [Y 7→ V][X 7→ T]S′i.

Subcase D<V>.C<T> 6= D′<V′>.C′<T′>: Then ∆ ` fieldVals(new T0.C <T>(e), D′<V′>.C′<T′>) =
fieldVals(new [Y 7→ V][X 7→ T]N([x 7→ e]e′′)), where e′′ are the arguments passed in the super-
constructor call within the matching constructor of C. But by the induction hypothesis, ∆ `
fieldVals((new [Y 7→ V][X 7→ T]N([x 7→ e]e′′)) ∈ S′ where ∆ ` S′i <: Si, finishing the case.

Case R-Invk: e = [new T0.C<T>(e) :: P].m<U>(d), ∆ ` mbody(m<U>, P) = (x, e0) where bound∆(T0) =
D<V>. Let

∆ ` mtype(m, P) = D<V>.D <R>.[Y 7→ V][X 7→ R]<X′ / T′> S′ m(U′ x)
MT (D) = module D<Y / N> / N {CL}
class D<X / S> / T {...} ∈ CL

By [T-Ann-Inv], ∆ ` e ∈ [Y 7→ V][X 7→ R][X′ 7→ U]S′. Let ∆1 = ∆ + Y / V + thisMod / D<V> +
X / R + X′ / U, and Γ = x : U′ + this : D<V>.D <R>. By [T-Method], ∆1; Γ ` e0 ∈ S′′ where
∆1 ` S′′ <: S′. By Lemma 24 and 25, ∆1; Γ ` [Y 7→ V][X 7→ R][X′ 7→ U]e0 ∈ [Y 7→ V][X 7→ R][X′ 7→ U]S′′

and by Lemma 10 and 11, ∆1 ` [Y 7→ V][X 7→ R][X′ 7→ U]S′′ <: [Y 7→ V][X 7→ R][X′ 7→ U]S′. Also,
by [T-Ann-Invk], ∆ ` e ∈ U′′ where ∆ ` U′′ <: [Y 7→ V][X 7→ R][X′ 7→ U]U′. Then by applying
Lemma 26, ∆ ` [Y 7→ V][X 7→ R][X′ 7→ U][x 7→ e][this → new T0.C<T>(e)]e0 ∈ S′′′, where ∆ `
S′′′ <: [Y 7→ V][X 7→ R][X′ 7→ U]S′′. Using the transitivity of subtyping, ∆ ` S′′ <: [Y 7→ V][X 7→ R][X′ 7→ U]S′,
finishing this case.

Case R-Inv-Sub: e = [e′′ ∈ [Y 7→ V][X 7→ R]O].m<R>(d). e′ = [e′′ ∈ D<V>.C<R>].m<R>(d). Let ∆ `
mtype(m, [Y 7→ V][X 7→ R]O) = P.<X′ / T′> R m(U x). By [T-Ann-Invk], ∆ ` e ∈ [Y 7→ V][X 7→ R][X′ 7→ T′]R.
But by [R-Inv-Sub], ∆ ` mtype(m, [Y 7→ V][X 7→ R]O) = mtype(m, D<V>.C<R>), finishing the case.

Case R-Stop: e = [e′′ ∈ [X 7→ V]O].m<V>(d). This rule alters the type annotation for the receiver. However,
since [T-Ann-Invk] works on either form of annotation, the type of the expression is preserved.

Case RC-Cast: e = (S)e0, e′ = (S)e′0. By the induction hypothesis, e′ is well-typed, so the type of e′0 is S
by [T-Cast].

Case RC-Field: e = (e :: N).fi. Because [T-Ann-Field] determines the field type based solely on the
annotated static type (which is not altered by [RC-Field]), the type of e′ is identical to that of e.

Case RC-New-Arg: e = new T(e :: S). Let ei be the reduced subexpression of e, and let ei reduce to e′i in
e′. Let ∆ ` ei ∈ R. By the induction hypothesis, ∆ ` e′i ∈ R′ where ∆ ` R′ <: R. Then [T-Ann-New]
applies just as well to e′ as to e with the static type preserved.

Case RC-Inv-Recv, RC-Inv-Arg: e = [e0 ∈ N].m<V>(d). Let ei be the reduced subexpression in e, and
let ei be reduced to e′i in e′. In both of theses cases, the induction hypothesis ensures that e′i satisfies
the required properties of ei in [T-Ann-Invk]. But since the type determined by [T-Ann-Invk] depends
solely on m and N, and neither m nor N is altered by these reductions, the static type is preserved.

19

Notice that the preservation theorem above (as well as the supporting lemmas) establish preservation for
annotated terms. But since terms are not annotated until type checking, it is important to establish that
the types of the annotated terms match their types before annotation. This property is established with the
following two lemmas (the first is merely a small supporting lemma for the second).

Lemma 27 (Class Locations of Method Type Signatures). For non-variable type O and environment ∆
where ∆ ` O ok, if mtype(m, N) = O.<X / T> R m(U x) then for any type O′ s.t. ∆ ` N <: O′ <: O, if ∆ `
mtype(m, N) = mtype(m, O′) then O′ = O, i.e., O is the closest superclass containing m with a matching method
signature.

Proof. Trivial induction on the derivation of mtype(m, N) = O.<X / T> R m(U x)

Theorem 2 (Preservation of Types Under Annotation). For environments ∆, Γ,

1. If ∆; Γ ` e.fi ∈ T then ∆; Γ ` [e :: N].fi ∈ T.

2. If ∆; Γ ` new R(e) ∈ T then ∆; Γ ` new R(e :: N) ∈ T.

3. If ∆; Γ ` e.m<V>(e) ∈ T then ∆; Γ ` [e ◦ N].m<V>(e) ∈ T.

Proof. By analysis over the typing rules that generate annotations.

1. ∆; Γ ` e.fi ∈ T. The only distinction between the antecedents of [T-Field] and [T-Ann-Field] is that
the type N, which is the type used for field accesses, is explicitly determined using the receiver in
[T-Field]. By using Lemma 23, we have the condition that there is no proper subtype P of N s.t.,
∆ ` fields(P) includes fi, thus ensuring N is unique. This unique type is used to annotate the receiver,
and therefore the same type referred to in [T-Ann-Field]. Thus, ∆; Γ ` [e :: N].fi ∈ T. Because none of
the argument expressions have been reduced, their static types will match the annotated types exactly
and ∆ ` e ∈ N. The other antecedents of [T-New] match antecedents of [T-Ann-New] exactly.

2. ∆; Γ ` new R(e) ∈ T. Because none of the argument expressions have been reduced, their static types
will match the annotated types exactly with ∆ ` e ∈ N. The other antecedents of [T-New] match
antecedents of [T-Ann-New] exactly.

3. ∆; Γ ` e.m<V>(e). Again, no reduction has occurred, so by Lemma 27 the annotated type O will
match the closest supertype of the bound of the the static type T0 of the receiver that contains m.
Then ∆ ` mtype(m, O) = mtype(m, bound∆(T0)) and the case is finished by [T-Ann-Invk].

2.13 Progress

Lemma 28 (Field Values). For bound environment ∆, non-variable type N, If ∆ ` fields(N) = T f and
∆ ` new P(e :: R) ∈ P where ∆ ` P <: N then ∆ ` fieldVals(new P(e :: R), N) = e′ where |e′| = |f|.

Proof. Induction over the derivation of fields(N) = T f.

20

Case N=Object: The definition of includes specifies that Object includes only the zero-ary constructor.
Since the rules of subtyping specify that Object is a subtype of only itself, ∆ ` fields(Object) =
fieldVals(new Object(), Object) = •.

Case N= T.C<R>, fields(N) = [Y 7→ V][X 7→ R]T f: We proceed by structural induction on the derivation of
∆ ` P <: N. The relevant cases are:

Subcase SC-Reflex: By [T-Constructor], every valid constructor in a class must initialize all fields
f with expressions e.

Subcase SC-Trans: Follows immediately from the induction hypothesis.

Subcase SC-Bound: Impossible since this theorem applies only to non-variable type.

Subcase S-Class: N is the instantiated parent class of P. In this case, only one definition of fieldVals
applies. So we know that ∆ ` fieldVals(new P(e :: S), N) = fieldVals(new N(e′′), N) = e′ where
e′′ is a subset of e used in the super call. By reasoning analogous to case [S-Reflect], we know
|e′| = |f| (note that we cannot employ the induction hypothesis directly since the induction is
over the derivation of ∆ ` P <: N, not the derivation of fieldVals).

Lemma 29 (Method Bodies). If ∆ ` mtype(m, N) = P.<X / T> R m(U x) and ∆ ` V <: [X 7→ V]T then there
exists some e s.t., ∆ ` mbody(m<V>, N) = (x, e).

Proof. Trivial induction over the derivation of ∆ ` mtype(m, N) = P.<X / T> R m(U x).

With these lemmas, we now proceed to define a progress theorem for CGen. The theorem relies on the
following definitions.

Definition 1 (Value). A well-typed expression e is a value iff e is of the form new T.C<T>(e) where
bound∆(T) = D<V> and all e are values.

Definition 2 (Bad Cast). A well-typed expression e is a bad cast iff e is of the form (T)e′ where ∆ ` e′ ∈ S
and ∆ 6` S <: T.

Notice that bad casts include both “stupid casts” (in the parlance of FGJ) and invalid upcasts. Now let
∗→ be the transitive closure of the reduction relation →. Then we can state a progress theorem for CCG as
follows:

Theorem 3 (Progress). For program (MT,BT, e) s.t. ∆BT ` e ∈ R, if ∆BT ` e
∗→ e′ then either e′ is a

value, e′ contains a bad cast, or there exists e′′ s.t. ∆BT ` e′ → e′′.

Proof. Because ∆BT ` e
∗→ e′ we know that e′ is well-typed. We proceed by structural induction over the

form of e′.
Case e′ = [new N(e :: S) :: P].f: We know that by [T-Ann-Field] that ∆BT ` fields(P) = T f where f = fi.

By Lemma 28, ∆BT ` fieldVals(new N(e), P) = e′′ and |e′′| = |f|. Then by [R-Field], ∆ ` e′ → e′′i .
Case e′ = [d :: P].f, d is not a new expression: By [T-Ann-Invk], d is well-typed, so by the induction

hypothesis, either d is a value, d contains a bad cast, or there exists a d′ s.t., ∆bdd ` d→ d′. But since d is
not a new expression, it can’t be a value. If it contains a bad cast, then so does e′ and we are done. And if
∆BT ` d→ d′ then by [RC-Field], ∆BT ` [d :: P].f→ [d′ :: P].f.

21

Case e′ = [d◦P].m<T>(e), d is not a new expression: Analogous to the case above. Case e′ = [new N(e) ::
P].m<T>(e). By [T-Ann-Invk], ∆BT ` mtype(m, P) = O.<X / T> R m(U x) Then by Lemma 29, ∆BT `
mbody(m, P) = (x, e′′), and by [R-Invk], ∆BT ` e′ → e′′.

Case e′ = [new N(e) ∈ P].m<T>(e): By [T-Ann-Invk] and [T-Ann-New], ∆BT ` new N(e) ∈ N. By
Theorem 2, ∆BT ` N <: P. If ∆BT ` mtype(m, N) = mtype(m, P) then ∆BT ` e′ → [new N(e) ∈ N].m<T>(e)
by [R-Invk-Sub]. Otherwise ∆BT ` e′ → [new N(e) :: P].m<T>(e) by [R-Invk-Stop], finishing the case.

Case e′ = new N(e :: T): Then either e′ is a value and we are finished, or there is some ei in e that is
not a value. Then by the induction hypothesis, either ei contains a bad cast (and then so does e′), or there
exists some e′i s.t. ∆BT ` ei → e′i. Then by [RC-New-Arg], ∆BT ` new N(e :: T) → new N(e0 :: T0, ...e′i ::
Ti, ...eN :: TN), finishing the case.

Case e′ = (N)e′′: Because e′ is well typed, we know there is some P s.t., ∆BT ` e′′ ∈ P. If ∆BT 6` P <: N
then e′ is a bad cast and we are done. Otherwise ∆BT ` e→ e′′ by [R-Cast].

2.14 Type Soundness

Theorem 4 (Type Soundness). For program (MT,BT, e) s.t. ∆BT ` e ∈ T, evaluation of (MT,BT, e)
yields one of the following results:

1. ∆BT ` e
∗→ v where v is a value of type S and ∆BT ` S <: T.

2. ∆BT ` e
∗→ e′ where e′ contains a bad cast,

3. Evaluation never terminates, i.e., for every e′ s.t. ∆BT ` e
∗→ e′ there exists e′′ s.t. ∆BT ` e′ → e′′.

Proof. Immediate from Theorems 1, 2, and 3.

References

[1] E. Allen, J. Bannet, and R. Cartwright. First-class genericity for Java. In OOPSLA, 2003.

[2] E. Allen, J. Bannet, and R. Cartwright. Mixins in Generic Java are sound. Technical report, Rice
University, 2003.

[3] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ. In
OOPSLA, 1999.

[4] J. Sasitorn and R. Cartwright. Efficient first-class generics on stock Java virtual machines. In SAC, 2006.

[5] J. Sasitorn and R. Cartwright. Component NextGen: A sound and expressive component framework for
Java. In OOPSLA, 2007.

[6] J. Sasitorn and R. Cartwright. Deriving compnents from genericity. In SAC, 2007.

22

