Efficient Implementation of Run-time
Generic Types for Java

Eric Allen, Robert Cartwright, Brian Stoler

Rice University
6100 Main St.

Houston TX 77005
{eallen, cork, bstoler}@cs.rice.edu

Abstract:

Key words:

We describe an efficient compiler and run-time system for NextGen, a
compatible extension of the Java programming language supporting run-time
generic types designed by Cartwright and Steele. The resulting system is
comparable in performance with both standard Java and the GJ extension of
Java, which does not support run-time generic types. Our implementation of
NextGen consists of a compiler extending the GJ compiler and a special class
loader that constructs type instantiation classes on demand. The compiler
relies on the implementation strategy proposed by Cartwright and Steele with
one major exception: to support polymorphic recursion in the definition of
generic classes, the compiler generates templates for instantiation classes
which are constructed on demand by the class loader. We include an extensive
set of benchmarks, specifically developed to stress the use of generic types.
The benchmarks show that the additional code required to support run-time
generic types has little overhead compared with ordinary Java and GJ.

JAVA GJ NEXTGEN GENERIC TYPES TYPE DEPENDENT OPERATION
JVM EXTENSIONS COMPATIBILITY SPECIFICATION DESIGN
IMPLEMENTATION CLASS LOADER REFLECTION ERASURE
PERFORMANCE BENCHMARKS RUN-TIME OBJECT-ORIENTED
PROGRAMMING PARAMETRIC POLYMORPHISM POLYMORPHIC
RECURSION POLY]J C#.



2 Eric Allen, Robert Cartwright, Brian Stoler

1. INTRODUCTION

One of the most common criticisms of the Java programming language is
the lack of support for generic types. Generic types enable a programmer to
parameterize classes and methods with respect to type, identifying important
abstractions that otherwise cannot be expressed in the language. Moreover,
generic type declarations enable the type checker to analyze these
abstractions and perform far more precise static type checking than is
possible in a simply typed language such as Java [6]. In fact, much of the
casting done in Java is the direct consequence of not having generic types.
In the absence of generic types, a Java programmer is forced to rely on a
clumsy idiom to simulate parametric polymorphism: the universal type Object
or suitable bounding type is used in place of a type parameter T, and casts are
inserted to convert values of the bounding type to a particular instantiation
type. This idiom obscures the type abstractions in the program, clutters the
program with casting operations, and significantly degrades the precision of
static type checking.

Despite the obvious advantages of adding generic types to Java, such an
extension would be of questionable value if it meant sacrificing
compatibility either with the Java Virtual Machine (JVM) or the wealth of
Java legacy code. Fortunately, as the GJ source language and compiler [2]
have shown, it is possible to compile Java with generic types into bytecode
for the existing JVM. However, the GJ compiler imposes significant
restrictions on the use of generic types because it relies on #ype erasure to
implement genericity. In particular, it forbids all program operations that
depend on run-time generic type information. The prohibited operations
include:

=  parametric casts,

=  parametric instanceof tests',

=  parametric catch operations, and

= new operations of “naked” parametric type such as
new T() and new T[].

We call such operations #ype dependent. In addition, GJ prohibits per-
type-instantiation of static fields; static fields in a generic class are shared by
all instantiations of the generic class.

The GJ compiler does not support type dependent operations because it
relies on type erasure to map generic operations into ordinary Java bytecode.
In essence, GJ implements generic types using the programming idiom
described above. At the source level, the awkwardness of the idiom is
largely hidden; the only observable effect is the prohibition against type



Generic Types for Java 3

dependent operations. But at the byte code level, the generic structure of the
program has been erased.

NextGen is a more ambitious extension of Java, based on the same
source language as GJ, developed by Cartwright and Steele [3] that
overcomes the limitations of GJ by introducing a separate Java class for each
distinct instantiation of a generic type; all generic type information is
preserved by the compiler and is available at run-time. Hence, type
dependent operations are fully supported by NextGen. On the other hand,
NextGen retains essentially the same level of compatibility with legacy code
as GJ. For these reasons, we believe that NextGen could serve as the basis
for an important step forward in the evolution of the Java programming
language.

2. DESIGN FUNDAMENTALS

The NextGen formulation of generic Java is an implementation of the
same source language as GJ, albeit with fewer restrictions on program
syntax. In fact, NextGen and GJ were designed in concert with one another
[2, 3] so that NextGen would be a graceful extension of GJ. We call this
common source language Generic Java. In essence, Generic Java is
ordinary Java (JDK 1.2/1.3/1.4) generalized to allow class and method
definitions to be parameterized by types.

2.1 Generic Classes

In Generic Java, class definitions may be parameterized by type variables
and program text may use generic types—consisting of applications of
parameterized class names to type arguments—in place of conventional
types. Specifically, in a class definition (§8.1 of the JLS [5]), the syntax for
the class name appearing in the header is generalized from

Identifier
to

Identifier { < TypeParameters >}

TypeParameters — TypeParm | TypeParm , TypeParameters
TypeParm — TypeVar { TypeBound}

TypeBound — extends ClassType | implements InterfaceType
TypeVar — Identifier



4 Eric Allen, Robert Cartwright, Brian Stoler

where braces {} enclose optional phrases. For example, a vector class
might have the header

class Vector<T> .

Interface definitions are similarly generalized. In addition, the definition
of ReferenceType (§4.3 of the JLS) is generalized from

ReferenceType — ClassOrlnterfaceType | ArrayType
to

ReferenceType — ClassOrlinterfaceType | ArrayType | TypeVar
TypeVar — Identifier

ClassOrlinterfaceType — ClassOrlnterface { < TypeParameters > }
ClassOrinterface — Identifier | ClassOrinterfaceType . Identifier

Finally, the syntax for new operations (§15.8 of the JLS) is generalized to
include the additional form

new TypeVar ({ ArgumentList}).

In essence, a generic type (ReferenceType above) can appear anywhere that a
class or interface name can appear in ordinary Java—except as the
superclass or superinterface of a class or interface definition. In these
contexts, only a ClassOrinterfaceType can appear. This restriction means that a
“naked” type variable cannot be used as a superclass or superinterface.

The scope of the type variables introduced the header of a class or
interface definition is the body of the definition, including the bounding
types appearing in the header. For example, a generic ordered list class
might have the type signature

class List<A, B implements Comparator<A>>

where Ais the element type of the list and Bis a singleton® ordering class
for A.

In a generic type application, a type parameter may be instantiated as any
reference type. If the bound for a type parameter is omitted, the universal
reference type Object is assumed.



Generic Types for Java 5

2.2 Polymorphic Methods

Method definitions can also be parameterized by type. In Generic Java,
the syntax for the header of a method definition is generalized to:

{Modifiers} {< TypeParameters >} Type Identifier ( {ArgumentList })

where Type can be void as well as a conventional type. The scope of the
type variables introduced in the type parameter list (TypeParameters above) is
the header and body of the method. When a polymorphic method is
invoked, no type instantiation information is required in most cases. For
most polymorphic method applications, Generic Java can infer the values of
the type arguments from the types of the argument values in the invocation.’
Generic Java also provides a syntax for explicitly binding the type arguments
for a polymorphic method invocation, but none of the current compilers (GJ,
JSR-14*, and NextGen) support this syntax yet.

2.3 The GJ Implementation Scheme

The GJ implementation scheme developed by Odersky and Wadler [2, 9]
supports Generic Java through type erasure. For each parametric class C<T>,
GJ generates a single erased base class C; all of the methods of C<T> are
implemented by methods of € with erased type signatures. Similarly, for
each polymorphic method m<T>, GJ generates a single erased method m.

The erasure of any parametric type T is obtained by replacing each type
parameter in T by its upper bound (typically Object). For each program
expression with erased type v appearing in a context with erased type n that
is not a supertype of v, GJ automatically generates a cast to type .

24 Implications of Type Erasure in GJ

The combination of type erasure and inheritance creates an interesting
technical complication: the erased signature of a method inherited by a
subclass of a fully instantiated generic type (e.g., Set<Integer>) may not match
the erasure of its signature in the subclass. For example, consider the
following generic class:

class Set<T> {
public Set<T> adjoin(T newElement) { ... }



6 Eric Allen, Robert Cartwright, Brian Stoler

The compilation process erases the types in this class to form the
following base class:

class Set {
public Set adjoin(Object newElement) { ... }

Now suppose that programmer defines a subclass of Set<Integer>, and
overrides the adjoin method:

class MySet extends Set<Integer> {
public Set<Integer> adjoin(Integer newElement) { ... }

which erases to the base class:

class MySet extends Set {
public Set adjoin(Integer newElement) { ... }

The type of the newElement parameter to adjoin in the base class MySet does
not match its type in the base class Set.

GJ addresses this problem by inserting additional methods called bridge
methods into the subclasses of instantiated classes. These bridge methods
match the erased signature of the method in the superclass, overloading the
program-defined method of the same name. Bridge methods simply forward
their calls to the program-defined method, casting the arguments as
necessary. In our example above, GJ would insert the following bridge
method into the base class MySet:

public Set adjoin(Object newElement) {
return adjoin((Integer)newElement);

}

Polymorphic static type-checking guarantees that the inserted casts will
always succeed. Of course, this strategy fails if the programmer happens to
define an overloaded method with the same signature as a generated bridge
method. As a result, Generic Java prohibits method overloading when it
conflicts with the generation of bridge methods.



Generic Types for Java 7

2.5 Restrictions on Generic Java Imposed by GJ

Because the GJ implementation of Generic Java erases all parametric
type information, GJ restricts the use of generic operations as described
above in Section 1. In essence, no operations that depend on run-time
generic type information are allowed.

2.6 The NextGen Implementation Scheme

The NextGen implementation of Generic Java eliminates the restrictions
on type dependent operations imposed by GJ. In addition, the
implementation architecture of NextGen can support several natural
extensions to Generic Java, including per-type static fields in generic classes
and interfaces, co-variant subtyping of generic classes, and mixins. Because
these features are not part of the existing Generic Java language, we will
elaborate upon them only briefly, in Section 5.

3. NEXTGEN ARCHITECTURE

NextGen enhances the GJ implementation scheme by making the erased
base class € abstract and extending C by classes representing the various
instantiations of the generic class C<T>, e.g., C<Integer>, that occur during the
execution of a given program. These subclasses are called instantiation
classes. Each instantiation class C<E> includes forwarding constructors for
the non-private constructors of C and code for the type dependent operations
C<E>. In the base class C, the type dependent operations of C<T> are replaced
by calls on synthesized abstract methods called snippet methods [3]. These
snippet methods are overridden by appropriate type specific code in each
instantiation class C<E> extending C. The content of these snippet methods in
the instantiation classes is discussed later in this section.

3.1 Modeling Generic Types in a Class Hierarchy

The actual implementation of instantiation classes is a bit more complex
than the informal description given above. Figure 1 shows the hierarchy of
Java classes used to implement the generic type Vector<T> and the
instantiations Vector<Integer> and Vector<String>.

Vector<T>

Vector<Integer> Vector<String>

Figure 1. Naive implementation of generic types over the

existing Java class structure.



8 Eric Allen, Robert Cartwright, Brian Stoler

Vector<T>

Stack<T> Vector<Integer>

Stack<Integer>

Figure 2. 1llegal Class hierarchy in naive JVM Class
Representation.

When one generic class extends another, the simple JVM class hierarchy
given in Figure 1 cannot represent the necessary subtyping relationships.
For example, consider a generic class Stack<T> that extends a generic class
Vector<T>. Any instantiation Stack<E> of Stack<T> must inherit code from the
base class Stack which inherits code from the base class Vector. In addition, the
type Stack<E> must be a subtype of Vector<E>. Hence, the instantiation class for
Stack<E> must be a subclass of two different superclasses: the base class Stack
and the instantiation class for Vector<E>. This class hierarchy is illegal in Java
because Java does not support multiple class inheritance. Figure 2 shows
this illegal hierarchy.

Fortunately, Cartwright and Steele showed how we can exploit multiple
interface inheritance to solve this problem[3]. The Java type corresponding
to a class instantiation C<E> can be represented by an empty instantiation
interface C<E>$ which is implemented by the class C<E>. The $ at the end of
the interface name distinguishes it from the name of corresponding
instantiation class and the names of other classes or interfaces (assuming
source programs follow the convention of never using $ in identifiers). Since



Generic Types for Java 9

interface
Vector<T> Vector<Inteaer>$
Vector<Inteaer>
interface
Stack<T> Stack<Inteaer>$

N

Figure 3. Simple Parametric Type Hierarchy and its JVM Class Representation.

Stack<Inteaer>

a Java class can implement an interface (actually an unlimited number of
them) as well as extend a class, the multiple inheritance problem disappears.
Also, since these interfaces are empty, their construction does not
appreciably affect program code size. Figure 3 represents the same type
structure as Figure 2 while conforming to the restriction of single class
inheritance.

The following rules precisely describe how the NextGen implementation
translates generic classes to ordinary Java classes. For each generic class
C<T>:

= QGenerate an abstract snippet method in C<T> for each application of a
type dependent operation.

= Replace each such application with an application of the new snippet
method, passing in the appropriate arguments.

= Erase all types in the transformed class C<T> to produce the base class C
for C<T>.

= For every instantiation C<E> of C<T> encountered during program
execution, generate an instantiation interface for C<E> and all
superclasses and superinterfaces of C<E> in which any of the type
parameters of C<T> occur.



10 Eric Allen, Robert Cartwright, Brian Stoler

= For every instantiation C<E> of C<T> encountered during program
execution, generate an instantiation class for C<E> and all superclasses of
C<E> in which any of the type parameters of C<T> occur.

= Insert the appropriate forwarding constructors and concrete snippet
methods into each instantiation class C<E>. The concrete snippet methods
override the inherited abstract snippet with code that performs the
appropriate type dependent operation. The forwarding constructors
simply invoke super on the constructor arguments.

Much of the complexity of this process is a result of steps four and five.
One might think that the compiler could determine an upper bound U on the
set of possible generic types in a program and generate class files for each
instantiation in U.” However, early in the process of building a compiler for
NextGen, we discovered that the set of all possible generic types across all
possible program executions is infinite for some programs. These infinite
sets of instantiations are possible because Generic Java permits polymorphic
recursion, i.e., a generic class C<T> may refer to non-ground type-
applications of itself (or type application chains leading to itself) other than
C<T>. For example, consider the following parametric class:

class C<T>{
public Object nest(int n) {
if (n==0) return this;
else return new C<C<T>>().nest(n-1);
}
}

Consider a program including class C<T> that reads a sequence of integer
values from the console specifying the arguments for calls on the method
nest for a receiver object of type C<String>. Clearly, the set of possible
instantiations across all possible input sequences is infinite.

We solved this problem by deferring the instantiation of generic classes
until run-time. NextGen relies on a customized class loader that constructs
instantiation classes from a template class file as they are demanded by the
class loading process. The customized class loader searches the class path to
locate these template files as needed, and uses them to generate loaded class
instantiations. A template class file looks exactly like a class file for a
corresponding instantiation class except that the constant pool may contain
some references to type variables. The class loader replaces these references
(using string substitution) to form instantiation classes. To reduce the
overhead of loading instantiation classes on demand, the customized class



Generic Types for Java 11

loader maintains a cache of the template class files that have been read
already.

In the case of user-defined generic interfaces, the naive translation shown
in Figures 1 and 2 suffices; no supplementary classes or interfaces are
required because Java supports multiple interface inheritance.

3.2 Snippet Methods

As mentioned above, expressions involving type dependent operations
are replaced with calls to abstract snippet methods, which are overridden in
each instantiation class. The snippet methods in each instantiation class C<E>
must perform the type dependent operations determined by the types E. For
new operations and catch operations, the generation of the appropriate type
dependent code is straightforward. But a small complication arises in the
case of casts and instanceof tests on C<E>. In a naive implementation, the
body of a snippet method corresponding to a cast or instanceof test of type
C<E> would simply perform the operation on its argument using the
instantiation class for C<E>. But this implementation fails in some cases
because of subtyping: the subclasses of C<E> are not necessarily subtypes of
the instantiation class C<E>. (Recall the example depicted in Fig. 3.)

The solution to this problem is to perform the cast or instanceof test on
the instantiation interface for C<E>, since all subtypes of C<E> implement it.
In the case of a cast, still more processing beyond a cast to the interface for
C<E> is necessary because the instantiation interface is empty! The result of
the cast must be recast to the base class C. Casting only to the base class C is
incorrect because every instantiation of the generic type C<T> (such as
Vector<Double>) is a subtype of C.

3.3 Extensions of Generic Classes

If a generic class D extends another generic class C where C is not fully
instantiated,” a NextGen compiler must include concrete snippets for the
type dependent operations of C in instantiation classes for D. These added
snippets are necessary because the base class for € is the superclass of the
base class for D. The requisite snippets are identical to the snippets in the
template class for C, specialized with any type bindings established in the
definition of D.

3.4 Polymorphic Methods

At first glance, polymorphic methods look easy to implement on top of
generic classes: they can be translated to generic inner classes containing a



12 Eric Allen, Robert Cartwright, Brian Stoler

single execute method [9]. Each invocation of a polymorphic method can
create a generic instance of the associated inner class and invoke the execute
method on the arguments to the polymorphic method call. Unfortunately,
this translation does not work in general because polymorphic methods can
be overridden in subclasses but inner classes cannot. In addition, the
overhead of creating a new object on every invocation of a polymorphic
operation could adversely impact program performance if polymorphic
method calls are frequently executed.

In NextGen, the implementation of polymorphic methods is a challenging
problem because the type arguments in a polymorphic method invocation
come from two different sources: the call site and the receiver type. The call
site information is static, while the receiver type information is dynamic.
The snippets in the method body can depend on both sources of information.

Our solution to this problem relies on using a heterogeneous translation
[9] for polymorphic methods within generic classes. In other words, if the
polymorphic method is defined within a generic class, we create a separate
copy of the method definition in each instantiation class for the containing
generic class. Hence, each receiver class of a polymorphic method call has a
distinct implementation of the method accommodating method overriding.

The list of type arguments from the call site is passed to the receiver
using a special class object whose name encodes the type arguments. If the
polymorphic method body involves operations that depend on type
parameters from the call site, then it explicitly loads an instantiation of a
template class for a snippet environment containing snippet methods for the
type dependent operations. The loaded environment class is a singleton
containing only snippet code and a static field bound to the only instance of
the class.

Caching can be used in polymorphic method bodies to reduce the
overhead of loading snippet environments. A method body can maintain an
inline cache consisting of the last type-argument class object and the
corresponding snippet environment. If the current type-argument class
object matches the cached one, then the cached snippet environment is the
current one. In addition, the class loader must cache all classes that have
been previously loaded (since a Java class can only be loaded once) and may
cache template class files that have previously been read, eliminating the
need to read any template class more than once.

This heterogeneous implementation of polymorphic methods is appealing
because it has almost no overhead in the common cases (i) where a
polymorphic method requires no snippets and (ii) where a polymorphic
method requires only type dependent operations based on the type
parameters provided by the receiver. In both cases, the only cost is the byte
code required to push the special class object (a constant) representing the



Generic Types for Java 13

list of type arguments at the call site; this parameter is ignored by the method
code in the receiver. The heterogeneous translation of a polymorphic
method in a generic receiver class enables the method body to directly
implement (without snippets) all of the type dependent operations that
depend only on the receiver class instantiation.

4. DESIGN COMPLICATIONS

The preceding description of the NextGen architecture neglects two
subtle problems that arise in the context of the Java run-time environment:
(i) access to private types passed across package boundaries and (ii) the
compatible generalization of the Java collection classes to generic form.’

4.1 Cross-Package Instantiation

The outline of NextGen architecture given above does not specify where
the instantiation classes of a generic class C<T> are placed in the Java name
space. Of course, the simplest place to put them is in the same package as the
base class C, which is what NextGen does. But this placement raises an
interesting problem when a private type is “passed” across a package
boundary [9].

Consider the case where a class D in package Q uses the instantiation C<E>
of class C<T> in package P where E is private in Q. If the body of class C<T>
contains type-dependent operations, then the snippet bodies generated for
instantiation class C<E> will fail because they can not access class E.

The simplest solution to the problem of cross-package instantiation is to
automatically widen a private class to public visibility if it is passed as a type
argument in the instantiation of a generic type in another package. Although
this approach raises security concerns, such widening has a precedent in
Java. When an inner class refers to the private members of the enclosing
class, the Java compiler widens the visibility of these private members by
generating getters and setters with package visibility [5]. Although more
secure (and expensive) implementations of inner classes are possible, the
Java language designers chose to sacrifice some visibility protection for the
sake of performance. This loss of visibility security has not been a
significant issue in practice because most Java applications are assembled
from trusted components. For this reason, we have followed a similar
strategy in addressing the visibility issues raised by generic class
instantiation: the current NextGen compiler simply widens the visibility of
private classes to public when necessary and generates a warning message to
the programmer.



14 Eric Allen, Robert Cartwright, Brian Stoler

Nevertheless, it is possible to implement NextGen without compromising
class visibility. One solution, as laid out in [3], is for the client accessing an
instantiation C<E> of a generic class C<T> to pass a snippet environment to a
synthesized initializer method in the instantiation class. This environment is
an object containing all of the snippets in the instantiation C<E>. The snippet
methods defined in C<E> simply forward snippet calls to the snippet
environment. But this solution requires an initialization protocol for
instantiation classes that is tedious to manage in the context of separate class
compilation. Type arguments can be passed from one generic class to
another, implying that the composition of snippet environment for a given
generic type instantiation depends on all the classes reachable from the caller
in the type application call graph. The protocol described in [3] assumes
that the initialization classes are generated statically, which, as we observed
earlier, cannot be done in the presence of polymorphic recursion.
Fortunately, this protocol can be patched to load snippet environment classes
dynamically from template class files. Buy any changes to a generic class
can force the recompilation of all generic classes that can reach the changed
class in the type application call graph.

A simple alternative to snippet environments is for the class loader to
construct a separate singleton class for every snippet where the mangled
name of the class identifies the specific operation implemented by the
snippet. The NextGen compiler already uses a similar name mangling
scheme to name snippet methods in instantiation classes, eliminating the
possibility of generating multiple snippet methods that implement exactly
the same operation. In essence, the class-per-snippet scheme replaces a
single snippet environment containing many snippets by many snippet
environments each containing a single method. The advantage of this
scheme is that name mangling can uniquely specify what operation must be
implemented, enabling the class loader to generate the requisite public
snippet classes on demand and place them in the same package as the type
argument to the snippet. The compiler does not have to keep track of the
type application call graph because snippets are dynamically generated as
the graph is traversed during program execution. To prevent unauthorized
access to private classes via these snippet classes, the class loader only
resolves references to these classes within generic instantiation classes with
type arguments that matches the embedded type names in the snippet class
names.

We plan to modify the existing NextGen compiler to use per-snippet
classes to implement snippets and determine how the performance of this
implementation compares with the current, less secure implementation. Per-
snippet class require an extra static method call for each snippet invocation.



Generic Types for Java 15
4.2 Extending the Java Collection Classes

One of the most obvious applications of generic types for Java is the
definition of generic versions of the Java collection classes. GJ supports
such an extension of the Java libraries by simply associating generic
signatures with the existing JDK collection classes. To accommodate
interoperation with legacy code, GJ allows breaches in the type system of
Generic Java. In particular, GJ accepts programs that use erased types in
source program text and supports automatic conversion between generic
types and their erased counterparts. Using this mechanism, Generic Java
programs can interoperate with legacy code that uses erased versions of
generic classes, e.g., the collection classes in the existing JDK 1.3 and 1.4
libraries. But this interoperability is bought at the price of breaking the
soundness of polymorphic type-checking.®

NextGen cannot support the same strategy because generic objects carry
run-time type information. An object of generic type is distinguishable from
an object of the corresponding base class type.

In a new edition of Java supporting NextGen, the collections classes
could be rewritten in generic form so that the base classes have the same
signatures (except for the addition of synthesized snippet methods) as the
existing collections classes in Java 1.4. The base classes for the generic
collection classes would extend the corresponding existing (non-generic)
collections classes. Given such a library, generic collections objects can be
used in place of corresponding “raw” objects in many contexts (specifically
those in which there are no writes to parametric fields). Similarly, raw
objects can be used in place of generic objects in a few contexts (those in
which there are no reads from parametric fields). In some cases, explicit
conversion between raw and generic objects will be required—for both run-
time correctness and static type correctness. To facilitate these conversions,
the new generic collections classes would include methods to perform such
conversions.

Because of the distinction between objects of parametric type objects of
raw type, the integration of legacy code and NextGen requires more care
than the integration of legacy code and GJ. But the extra care has a major
payoff: the soundness of polymorphic type-checking is preserved.’

4.3 NextGen Implementation

The NextGen compiler is implemented as an extension of the GJ
compiler written by Martin Odersky. The GJ compiler is organized as a
series of passes that transform a parsed AST to byte code. We have
extended this compiler to support NextGen by inserting an extra pass that



16 Eric Allen, Robert Cartwright, Brian Stoler

detects type dependent operations in the code, encapsulates them as snippet
methods in the enclosing generic classes, and generates template classes and
interfaces for each generic class. The names assigned to these snippets are
guaranteed not to clash with identifier in the source program nor with the
synthesized names for inner classes, because they include the character
sequence $$, which by convention never appears in Java source code or the
mangled names of inner classes. We have also modified the GJ code
generation pass to accept these newly generated class names even though
there is no corresponding class definition.

The added pass destructively modifies the AST for generic classes by
adding the requisite abstract snippet methods and replacing dependent
operations with snippet invocations. It also generates the template classes
that schematically define the instantiation classes corresponding to generic
classes. The template classes look like ordinary Java classes except that
their constant pools may contain references to type parameters.

A template class file looks like a conventional class file except that some
of the strings in the constant pool contain embedded references to type
parameters of the class instantiation. These references are of the form {0}, {1},

The class loader replaces these embedded references by the
corresponding actual type parameters (represented as mangled strings) to
generate instantiation classes corresponding to the template.

Both the NextGen compiler and class loader rely on a name-mangling
scheme to generate ordinary Java class names for instantiation classes and
interfaces.

The NextGen name-mangling scheme encodes ground generic types as
flattened class names by converting:

= Left angle bracket to $$L.

= Right angle bracket to $$R.
= Comma to $$C.

= Period (dot) to $$D.

Periods can occur within class instantiations because the full name of a
class (e.g., java.util.List) typically includes periods. For example, the
instantiation class

Pair<Integer, java.util.List>

is encoded as:

Pair$$Ljava$$Dlang$$DInteger$$Cjava$$Dutil$$DList$$R .



Generic Types for Java 17

By using $$D instead of § for the periods in full class names, we avoid
possible collisions with inner class names.

4.4 The NextGen Class Loader

When a NextGen class refers to a generic type within a type dependent
operation, the corresponding class file refers to a mangled name encoding
the generic type. Since we defer the generation of instantiation classes and
interfaces until run-time, no actual class file exists for a mangled name
encoding a generic type. Our custom class loader intercepts requests to load
classes (and interfaces) with mangled names and uses the corresponding
template class file to generate the requested class (or interface). A template
class file looks exactly like a conventional class file except that the constant
pool may contain references to unbound type variables. The references to
unbound type variables are written in de Bruijn notation: the strings {0},
{1},..., refer to the first, second, ..., type variables, respectively. Since the
characters { and } cannot appear in Java class names, type variable references
can be embedded in the middle of mangled class names in the constant pool.

Roughly speaking, the class loader generates a particular instantiation
class (interface) by reading the corresponding template class file and
replacing each reference tag in the constant pool string by the corresponding
actual type name in the mangled name for the class. The actual replacement
process is slightly more complicated than this rough description because the
code may need the base class, interface, or actual type corresponding to an
actual type parameter. The precise replacement rules are:

= Replace a constant pool entry of the form {n} (where n is an integer) by
the name of the class or interface bound to parameter n.

= Replace a constant pool entry of the form {n}$ (where n is an integer) by
the name of the interface corresponding to the class or interface bound to
parameter n. This form of replacement is used in the snippet code for
casts and instanceof tests.

= Replace a constant pool entry of the form {n}B (where n is an integer) by
the base type corresponding to the type bound to the parameter n. (If the
type bound to n is not generic, then the base type is identical to the
argument type.)

= Process a constant pool entry of the form prefix$$Lcontents$$Rsuffix where
contents contains one or more substrings of the form {n} (where n is an
integer) as follows. Each substring {n} inside contents is replaced with
the name of the class bound to parameter n, substituting $$D for each
occurrences of “.” (period).



18 Eric Allen, Robert Cartwright, Brian Stoler

After this replacement, the class file denotes a valid Java class.
4.5 Performance

Because no established benchmark suite for Generic Java exists, we had
to construct our own benchmark suite to measure the performance of
NextGen. On existing benchmark suites for ordinary Java like
JavaSpecMark [1], the performance of NextGen is identical to that of the GJ
and JSR-14 compilers, because they all generate the same class files. Our
benchmark suite consists of the following programs, which all involve
generic types:

=  Sort: An implementation of the quicksort algorithm on generically typed
linked lists, where quicksort is parameterized by the ordering relation for
the sort. This benchmark consists of 769 lines of code in 13 classes. 7 of
these classes make heavy use of generics.

= Mult: A visitor over generically typed binary trees of integers that
multiplies the values of the nodes. This benchmark consists of 428 lines
of code in 16 classes. 7 of these classes make heavy use of generics.

= Zeros: A visitor over generically typed binary trees that determines
whether there is any child-parent pair in which both hold the value 0.
This benchmark consists of 552 lines of code and 14 classes. 8 of these
classes make heavy use of generics.

= Buff: An implementation of java.util.lterator over a BufferedReader. This
benchmark constructs a large, buffered StringReader, and then iterates over
the elements. This benchmarks consists of 305 lines of code in 7 classes.
2 of these classes make heavy use of generics.

= Bool: A simplifier of Boolean expressions. This program reads a large
number of Boolean expressions from a file, parses them, and simplifies
them. The simplification process is organized as a series of passes, each
implemented by a generically typed visitor. This benchmark consists of
730 lines of code in 25 classes. 7 of these classes make heavy use of
generics.

= Set: An implementation of generically typed multi-sets, and set-theoretic
operations on them. This program constructs large multi-sets and
compares them as they are built. This benchmark consists of 316 lines of
code in 6 classes. 2 of these classes make heavy use of generics.

The benchmarks were written in Generic Java specifically to take
advantage of the added type checking provided by Generic Java. To
facilitate comparison with the GJ compiler and the JSR-14 update of the GJ



Generic Types for Java 19

compiler, all of the benchmarks conform to the restrictions imposed by the
GJ implementation of Generic Java."’

The source code for each benchmark was manually translated to
equivalent Java source code. Manual modification was necessary because
the source transformation performed by the GJ compiler does not necessarily
yield valid ordinary Java code. The GJ compiler performs its own code
generation for this reason.'' Nevertheless, this manual modification
consisted merely of inserting casts and bridge methods as necessary; it had
no effect on the number of classes or lines of code. The original and
converted source code were both compiled using the JSR-14 compiler. The
NextGen compiler was applied to exactly the same source code as the JSR-
14 compiler.

The results of these benchmarks for Java, GJ, and NextGen under five
separate JVMs are illustrated in Figs. 4-8. These results were obtained by
running each benchmark twenty-one times, for each JVM listed, on a 2.0
GHz Pentium 4 with 512 MB RAM running Red Hat Linux 7.2. Because the
results of the first run on for each JVM/compiler combination exhibited
significant variance, the results of the first run were uniformly dropped. We
attribute this variance to the overhead of JVM startup and initial JIT (“just-
in-time”) compilation of the code, neither of which is relevant to what our
experiment is intended to measure. Once the first run was dropped, the
variance in the duration of the individual runs for each benchmark was less
than 10%.

The results for the JSR-14 compiler also apply to the GJ compiler,
because the class files generated by these compilers are functionally
identical. The only differences are that (/) JSR-14 inserts an additional entry
into the constant pool, and (i) JSR-14 by default makes the class file version
46.0 (the new Java 1.4 version tag). Neither of these differences should have
any impact on performance.

The most striking feature of these results is that the inclusion of run-time
support for generic types does not add significant overhead, even for
programs that make heavy use of it. In fact, even the small overhead that
NextGen exhibits for some benchmarks is dwarfed by the significant range
in performance results across JVMs.

The small overhead in some of the benchmarks can be explained by
considering what costs are incurred by keeping the run-time type
information. Once an instantiation of a template class is loaded into
memory, the only added overhead of genericity is the extra method call
involved in invoking the snippet. Because most of the operations in an
ordinary program are not type dependent operations, this small cost is
amortized over a large number of instructions.'”



20 Eric Allen, Robert Cartwright, Brian Stoler

On advanced JVMs that perform dynamic code optimization, even type
dependent operations incur little overhead because many of the snippet
operations are inlined, eliminating the extra snippet call. If NextGen were
adopted as the Java standard, we anticipate that dynamic code optimization
would be tuned to eliminate essentially all snippet call overhead.

Our benchmark was specifically designed to make heavy use of generic
types, and yet, even in this context, generic types added little performance
overhead. Therefore, we are confident that the performance impact of
supporting run-time generic types for typical Generic Java programs will be
negligible. On the other hand, the robustness and maintainability of many
programs would be greatly enhanced in comparison with ordinary Java. In
addition, the absence of consistent overhead across JVM’s for any of the
benchmarks suggests that code optimization sensitive to the performance
demands of NextGen could completely eliminate the overhead.

4500.0+
4000.0+
3500.0+
3000.0+
2500.0+
2000.0+
1500.0
1000.0+
500.0
0.0+

sort mult zeros buff set bool
OJava 2502.5 | 1127.7 764.5 922.5 765.9 829.5
EGJ 3916.1 | 1050.5 | 767.7 932.3 744.5 832.2
O NextGen | 4220.8 | 1055.4 | 763.9 933.3 764.3 752.2

Figure 4. Performance Results for IBM 1.3 (in milliseconds).




Generic Types for Java

21

1800.0+
1600.0+
1400.0+
1200.0+
1000.0
800.0
600.0
400.0
200.0+
0.0+

sort

mult

ZEros

buff

set

bool

OJava

721.5

1171.1

1097.4

723.2

498.1

1656.8

BG)

828.3

1172.1

1092.6

724.2

497.5

1647.5

O NextGen

729.1

1170.8

1097.9

718.6

497.1

1652.9

Figure 5. Performance Results for Sun 1.3 Server (in milliseconds).

1800.0+
1600.0+
1400.0+
1200.0+
1000.0
800.0
600.0
400.0
200.0+
0.0+

sort

mult

ZEeros

buff

set

bool

OJava

1002.0

1276.7

1201.6

551.2

692.3

1696.6

BG)

1001.6

1276.7

1201.1

553.3

692.2

1696.4

O NextGen

1181.4

1340.7

1200.9

562.3

686.7

1669.0

Figure 6. Performance Results for Sun 1.3 Client (in milliseconds).




22

Eric Allen, Robert Cartwright, Brian Stoler

2500.0
2000.0
1500.0
1000.0
500.0+
0.0

sort mult zeros buff set bool

OJava 759.8 | 2097.2 | 1173.7 | 656.3 746.0 1531.7

HG] 1111.8 | 1942.3 | 1265.0 674.4 734.7 2033.0

ONextGen | 1251.1 | 1948.7 | 1366.3 | 729.1 742.3 1598.3

Figure 7. Performance Results for Sun 1.4 Server (in milliseconds).

2500.0+
2000.0
1500.0-
1000.0-
500.0
0.0

sort mult zeros buff set bool

OJava 1234.1 | 2139.7 | 1663.4 | 907.1 930.0 1924 .4

BG] 1508.2 | 2137.3 | 1663.8 | 923.1 937.3 1926.0

ONextGen | 1546.8 | 2138.9 | 1575.1 950.7 924.4 1934.3

Figure 8. Performance Results for Sun 1.4 Client (in milliseconds).




Generic Types for Java 23

S. FUTURE EXTENSIONS

The NextGen compiler is still under active development. Some aspects of
genericity are not yet fully supported, most notably polymorphic methods.
In addition, NextGen provides a framework for supporting a richer
genericity facility than what is included in Generic Java.

5.1 Full support for polymorphic methods

Polymorphic methods that require snippets are not yet implemented in
NextGen. Passing explicit type arguments to polymorphic methods is not
yet supported either. In our experience writing Generic Java, neither of
these extensions is likely to be used very frequently but they are occasionally
important.

5.2 Type Parameter Kinds

In new operations on a naked type parameter T, it makes no sense to
instantiate T as an interface or abstract class. This constraint should be part of
the visible signature of the generic class or polymorphic method binding the
type parameter T.

The NextGen type checker could ensure that such instantiations never
occur if we extend the language to include prefixed annotations on parameter
declarations. These annotations would specify the kind of a type parameter,
i.e., class, abstract class, or interface. The new syntax for generic type
declarations would be:

ClassDec — SimpleClassName | SimpleClassName < VarDec* >
VarDec — AnnotatedVar | AnnotatedVar extends ClassOrVarName
AnnotatedVar — Var | Kind Var
Kind — class | abstract class | interface
ClassOrVarName — Var | ClassName
ClassName — SimpleClassName

| SimpleClassName < ClassOrVarName* >

By default, a type parameter would be assumed to be of kind interface,
unless there were an extends clause (in which case it is assumed to be of kind
abstract class). Notice that the type checker, when checking instantiations of
type parameters, must not only check that new operations are only applied to
types of kind class, but also that the types of instantiations of generic classes
are of the correct kind. In general, parameters of kind class may not be
instantiated by types of kind abstract class or interface. Similarly, parameters of



24 Eric Allen, Robert Cartwright, Brian Stoler

kind abstract class cannot be instantiated by types of kind interface. Extending
the NextGen compiler to support kind annotations is solely a matter of
augmenting the parser and type checker. No modifications to the generated
class files, template files, or to the augmented class loader, are necessary.

53 Covariant Subtyping of Type Parameters

A simple but useful extension of NextGen, described in [3], would be to
allow type parameters to be declared as covariant so that C<S> is a subtype of
C<T> if § is a subtype of T. Extending the NextGen compiler to support this
feature is straightforward. It involves (i) trivially modifying the parser to
support syntax for covariant type variable declarations, (ii) extending the
type checker to cope with covariant generic types (the typing rules for
covariant generic types are more restrictive than they are for invariant
generic types), and (iii) extending the customized class loader to support
covariant instantiation classes by adding all of the interfaces corresponding
to the supertypes of the instantiation to the list of implemented interfaces.

As an aside, it should be noted that Generic Java (as implemented in GJ
and NextGen) already supports covariance in method return types.

5.4 Constructor Declarations for Naked New Operations

NextGen currently restricts naked new operations to O-arity. There is no
reason for this restriction other than Generic Java syntax, which makes no
provision for specifying what constructor signatures a generic type argument
must support. This omission could easily be remedied by adding an optional
suffix to the declaration of type parameters in generic classes (TypeParm in
§2.1) of the form

with ConDefList
where

ConDefList — ConDef | ConDef , ConDefList
Condef — TypeVar ( {ArgumentList}) .

For example, the class € could take a type parameter
T with a constructor T(int i) as follows:

class C<T with T(inti)> {...} .



Generic Types for Java 25
5.5 Mixins as Classes with Variable Parent Types

The Generic Java language does not permit the occurrence of a naked
type variable in the extends or implements clauses of a class definition. An
extension to the language allowing such class definitions would be very
useful, because it would effectively provide linguistic support for mixins.
Mixins provide a mechanism for inheriting implementation code from more
than one class without the complications of multiple inheritance. By
allowing for the occurrence of a type variable in the extends and implements
clauses of a class, NextGen would provide the developer with a way to bind
the parent class of an object when it is constructed.

Classes with variable parent type could be supported through the use of a
modified class loader that constructs classes with particular instantiated
parent types from template class files for the mixin classes, a process
strikingly similar to the current mechanism employed by the NextGen class
loader to construct instantiations of generic classes. Therefore, extension of
the NextGen class loader to support variable parent type is expected to be
straightforward. However, the NextGen type system and type checker,
would have to be extended to handle mixin types, which is a non-trivial
endeavor [6].

6. RELATED WORK

The first generic Java compiler to support type dependent operations was
an experimental compiler developed by Agesen, Freund, and Mitchell that
relies on a purely heterogeneous implementation of generic classes: a
complete, independent copy of a generic class is generated for each
instantiation. In their implementation, a customized class loader generates
complete class instantiations from template class files in much the same way
that C++ expands templates [1].

The heterogeneous approach to implementing genericity has two serious
disadvantages. First, the heterogeneous expansion of every generic
instantiation can produce an exponential blow-up in the size of the
executable code and can seriously degrade program performance. Second,
the heterogeneous approach does not provide a common superclass (the base
class in NextGen) for all instantiations of a particular generic class,
preventing the use of “raw” types, which are particularly useful in the
context of integrating generic code with legacy non-generic code.

Viroli and Natali have proposed supporting run-time generic type
information by embedding the information in an extra field attached to
objects of generic type and using reflection to implement type dependent



26 Eric Allen, Robert Cartwright, Brian Stoler

operations [12]. This approach has two obvious disadvantages. First, every
object of generic type requires an extra word of memory. For small objects
such as list nodes, this space penalty can be significant (25% for an object
with two fields assuming a two word header). Second, using reflection to
implement type dependent operations is slow. Viroli and Natali argue that
the overhead of reflection can largely be eliminated by performing some
load-time optimizations to streamline the implementation of type dependent
operations. They use synthetic micro-benchmarks to compare the
performance of their implementation scheme with the original NextGen
implementation scheme described by Cartwright and Steele [3]. We believe
their results are misleading because they presume no method inlining for
NextGen while presuming it for their implementation.” Moreover, they
model the performance of the NextGen implementation scheme described in
[3] where a separate instantiation class and interface file must be read from
disk for each class instantiation. Their Generic Java implementation is not
yet complete, but we are eager to see how well it performs on our benchmark
Generic Java programs.

The generic type implementation that most closely resembles NextGen is
the extension of the .NET common runtime by Kennedy and Syme to
support generic types in C# [7]. They follow the same, mostly homogeneous,
approach to implementing genericity described in the NextGen design [6].
Since C# includes primitive types in the object type hierarchy, they support
class instantiations involving primitive types and rely on a heterogeneous
implementation in these cases. To handle polymorphic recursion, they
dynamically generate instantiation classes from templates as they are
demanded by program execution. Since they were free to modify the .NET
common language runtime, their design is less constrained by compatibility
concerns than ours is. They have not yet addressed the problem of
supporting polymorphic methods.

Another related implementation of generic types is the PolyJ extension of
Java developed at MIT [8]. The PolyJ website suggests that PolyJ is similar
to NextGen in some respects, but the only published paper on PolyJ
describes a completely different approach to implementing genericity from
NextGen that relies on modifying the JVM. The distributed PolyJ compiler
generates JVM compatible class files but the techniques involved have not
been published. The PolyJ language design is not compatible with GJ or
with recent Java evolution. The language design includes a second notion of
interface that uses a more flexible matching scheme than Java interfaces.
Neither inner classes nor polymorphic methods are supported. In addition,
PolyJ does not attempt to support interoperability between generic classes
and their non-generic counterparts in legacy code.



Generic Types for Java 27
7. CONCLUSION

Our NextGen implementation demonstrates that run-time generic types
can be supported on top of the existing Java Virtual Machine while
maintaining compatibility with legacy code. Furthermore, our performance
testing shows that this support can be provided without significant overhead.
We hope this proof of concept will eventually lead to the inclusion of run-
time generic types in the Java programming language.

'GJ supports parametric casts and instanceof tests provided the parametric information in the
operation is implied by context. In such cases, the parametric cast or instanceof test can be
implemented by their type erasures.

2 A singleton class is a class with only one instance. Classes with no fields can generally be
implemented as singletons.

3 The GJ compiler implements more general inference rules that treat the value null as a
special case.

* Sun Microsystems officially proposed adding generics to the Java language in JSR-14 [11].
Sun bought the rights to the GJ compiler and has released an update of the GJ compiler
called the JSR-14 compiler for experimental use by the Java user community.

5 Cartwright and Steele proposed such a scheme in [3], but it does not support polymorphic
recursion which is allowed in Generic Java.

Sifc is fully instantiated then D simply extends the instantiation class representing C.

" The GJ and JSR-14 compiler systems include a version of the Java libraries containing
generic type signatures for the Java collection classes. The bytecode for the classes in
unchanged.

¥ The type system supported by the GJ compiler includes raw (erased) types. When an object
of raw type is used in a context requiring a parametric type, the GJ type-checker flags an
unchecked operations error, indicating that the program violates polymorphic type-
checking rules. GJ still compiles the program to valid byte code, but the casts inserted by
the GJ compiler can fail at run-time.

? To preserve type soundness, raw types must be treated more carefully than they are in GJ.

In particular, the raw type C corresponding to a generic type C<T> must be interpreted as the
existential type 3T C<T>. Hence, any operation with T as a result type yields type Object.
Similarly, any method in a generic class with an argument whose type depends on T is
illegal.

1% Some type dependent operations in NextGen are not type dependent in GJ, because GJ
erases all parametric type information. In particular, all new operations on generic types are
type dependent in NextGen but not in GJ

' The bridge methods generated by GJ may rely on the result type for static overloading
resolution; the JVM supports this generalization of Java overloading.

12 There is one anomaly in the benchmark results that we do not understand, namely the slow
running times for the code generated by the JSR-14 and NextGen compilers for Generic
Java source on the Sort benchmark on the IBM 1.3 JVM. Perhaps the fact that the JSR-14
and NextGen bytecode relies on result types for static overload resolution interferes with
some code optimization in the JIT in this particular JVM.



28 Eric Allen, Robert Cartwright, Brian Stoler

1 In NextGen, the inlining of snippets can only occur if the code containing the type
dependent operation is specialized to a particular type, but such specialization is part of the
standard repertoire of dynamic optimization techniques.

REFERENCES

[1] O. Agesen, S. Freund, and J. Mitchell. Adding parameterized types to Java. In OOPSLA
1997.

[2] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the Future Safe for the
Past: Adding Genericity to the Java Programming Language. In OOPSLA 1998.

[3] R. Cartwright and G Steele. Compatible Genericity with Run-time Types for the Java
Programming Language. In OOPSLA 1998.

[4] M. Flatt, S. Krishnamurthi, M. Felleisen. Classes and Mixins. In POPL 1998.

[511J. Gosling, B. Joy, G. Steele. The Java Language Specification. Addison-Wesley. Reading,
Mass. 1996.

[6] A. Igarashi, B. Pierce, P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. In OOPSLA 1999.

[7] A. Kennedy and D. Syme., Design and implementation of generics for the .NET Common
Language Runtime. In PLDI 2001.

[8] A. Myers, J. Bank, B. Liskov. Pa rameterized Types for Java. ACM POPL 1997.

[9] M. Odersky and P. Wadler. Pizza into Java: translating theory into practice. In POPL
1997.

[10] O. Agesen and D. Detlefs. Mixed-mode Bytecode Execution. Sun Microsystems
Technical Report SMLI TR-2000-87, June, 2000.

[11] Sun Microsystems. Java Specification Request 14: Adding Generic Types to the Java
Programming Language. Available on the internet at URL:
http:/jcp.org./jsr/detail/14 jsp.

[12] Viroli,, M. and A. Natali. Parametric Polymorphism in Java: an Approach to Translation
Based on Reflective Features. In OOPSLA 2000.



