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Abstract. Many modern programs provide operating system-style ser-
vices to extension modules. A Web server, for instance, behaves like a
simple OS kernel. It invokes programs that dynamically generate Web
pages and manages their resource consumption. Most Web servers, how-
ever, rely on conventional operating systems to provide these services.
As a result, the solutions are inefficient, and impose a serious overhead
on the programmer of dynamic extensions.

In this paper, we show that a Web server implemented in a suitably ex-
tended high-level programming language overcomes all these problems.
First, building a server in such a language is straightforward. Second,
the server delivers static content at performance levels comparable to a
conventional server. Third, the Web server delivers dynamic content at
a much higher rate than a conventional server, which is important be-
cause a significant portion of Web content is now dynamically generated.
Finally, the server provides programming mechanisms for the dynamic
generation of Web content that are difficult to support in a conventional
server architecture.

1 Web Servers and High-Level Operating Systems

A Web server provides operating system-style services. Like an operating system,
a server runs programs (e.g., CGI scripts). Like an operating system, a server
protects these programs from each other. And, like an operating system, a server
manages resources (e.g., network connections) for the programs it runs.

Some existing Web servers rely on the underlying operating system to im-
plement these services. Others fail to provide services due to shortcomings of
the implementation languages. In this paper, we show that implementing a Web
server in a suitably extended functional programming language is straightfor-
ward and satisfies three major properties. First, the server delivers static con-
tent at a performance level comparable to a conventional server. Second, the Web
server delivers dynamic content at five times the rate of a conventional server.
Considering the explosive growth of dynamically created Web pages [7], this
performance improvement is important. Finally, our server provides program-
ming mechanisms for the dynamic generation of Web content that are difficult
to support in a conventional server architecture.



The basis of our experiment is MrEd [11], an extension of Scheme [15]. The
implementation of the server heavily exploits four extensions: first-class mod-
ules, which help structure the server and represent server programs; preemptive
threads; which are needed to execute server programs; custodians, which man-
age the resource consumption of server programs; and parameters, which control
stateful attributes of threads. The server programs also rely on Scheme’s ca-
pabilities for manipulating continuations as first-class values. The paper shows
which role each construct plays in the construction of the server.

The following section is a brief introduction to MrEd. Section 3 explains the
core of our server implementation. In section 4 we show how the server can be
extended to support Scheme CGI scripts and illustrate how programming in the
extended Scheme language facilitates the implementation of scripts. Sections 3
and 4 also present performance results. Section 5 discusses related work. The
final section summarizes our ideas and presents areas for future work.

2 MrEd: a High-Level Operating System

MrEd [11] is a safe implementation of Scheme [15]; it is one of the fastest existing
Scheme interpreters. Following the tradition of functional languages, a Scheme
program specifies a computation in terms of values and legitimate primitive
operations on values (creation, selection, mutation, predicative tests). The im-
plementation of the server exploits traditional functional language features, such
as closures and standard data structures, and also Scheme’s ability to capture
and restore continuations, possibly multiple times.

MrEd extends Scheme with structures, exceptions, and modules. The module
system [10] permits programmers to specify atomic units and compound units.
An atomic unit is a closed collection of definitions. Each unit has an import and
an export signature. The import signature specifies what names the module ex-
pects as imports; the export signature specifies which of the locally defined names
will become visible to the rest of the world. Units are first-class values. There
are two operations on unit values: invocation and linking. A unit is invoked via
the invoke-unit /sig special form, which must supply the relevant imports from
the lexical scope. MrEd permits units to be loaded and invoked at run-time. A
unit is linked—or compounded—via the compound-unit/sig mechanism. Pro-
grammers compound units by specifying a (possibly cyclic) graph of connections
among units, including references to the import signature; the result is a unit.

The extended language also supports the creation of threads and thread
synchronization. Figure 1 specifies the relevant primitives. Threads are created
from 0-ary procedures (thunks); they synchronize via counting semaphores. For
communication between parent and child threads, however, synchronization via
semaphores is too complex. For this purpose, MrEd provides (thread) parame-
ters. The form

(parameterize ([parameter! valuel]...) bodyl ...)

sets parameterl to valuel for the dynamic extent of the computation bodyl ...;
when this computation ends, the parameter is reset to its original value. New



tep-listen : Nat [Nat] — Tcp-listener
;; reserves a port to accept connections, optionally specifying the
;; maximum number of clients that may wait for a connection

tep-accept : Tcp-listener —* Input-port Output-port
;; creates 1/O ports for a connection request via the listener

thread : (— Void) — Thread
;; spawns a thunk as a thread

make-semaphore : Nat — Semaphore
;; creates a semaphore with specified number of tokens

semaphore-post : Semaphore — Void
;; posts a semaphore and releases waiting threads

semaphore-wait : Semaphore — Void
;; waits (and possibly suspends) for a semaphore

make-custodian : — Custodian
;; creates a custodian

custodian-shutdown-all : Custodian — Void
;; shuts down all threads in custodian and reclaims all resources

Fig. 1. MrEd’s TCP, thread and custodian primitives

threads inherit copies of their parent’s parameter bindings, though the parameter
values themselves are not copied. That is, when a child sets a parameter, it does
not affect a parent; when it mutates the state of a parameter, the change is
globally visible. The server deals with only two of MrEd’s standard parameters:
current-custodian and exit-handler. The default ezit-handler halts the entire
runtime system. Setting this parameter to another function can cause conditions
that would normally exit to raise an exception or perform clean up operations.

Finally, MrEd provides a mechanism for managing resources, such as threads
(with associated parameter bindings), TCP listeners, file ports, and so on. When
a resource is allocated, it is placed in the care of the current custodian, the value
of the current-custodian parameter. Figure 1 specifies the only relevant opera-
tion on custodians: custodian-shutdown-all. It accepts a custodian and reaps the
associated resources: it kills the threads in its custody, closes the ports, reclaims
the TCP listeners, and recursively shuts down all child custodians.

3 Serving Static Content

A basic web server satisfies HTTP requests by reading Web pages from files.
High-level languages ease the implementation of such a server, while retaining



efficiency comparable to widely used servers. The first subsection explains the
core of our server implementation. The second subsection compares performance
figures of our server to Apache [2], a widely-used, commercially-deployed server.

3.1 Implementation of the Web Server’s Core

The core of a web server is a wait-serve loop. It waits for requests on a particular
TCP port. For each request, it creates a thread that serves the request. Then
the server recurs:!
;; server-loop : Tcp-listener — Void
(define (server-loop listener)
(let-values ([(ip op) (tcp-accept listener)])
(thread (lambda () (serve-connection ip op))))
(server-loop listener))

For each request, the server parses the first line and the optional headers:

;; serve-connection : Input-port Output-port — Void
(define (serve-connection ip op)
(let-values ([(meth url-string major-version minor-version)
(read-request ip op)])
(let+ ([headers (read-headers ip op)]
[url (string—url wurl-string))
[host (find-host (url-host url) headers)])
(dispatch meth host port url headers ip op))))

;; read-request : Input-port Output-port —* Symbol String String String
;; to read a request from ip, to parse it, and to determine the

;; request method (get, put), URL, and protocol versions

;; effect: raises an exception and closes the ports, if parsing fails
(define (read-request ip op) ...)

A dispatcher uses this information to find the correct file corresponding to the
given URL. If it can find and open the file, the dispatcher writes the file’s contents
to the output port; otherwise it writes an error message. In either case, it closes
the ports before returning.?

3.2 Performance

It is easy to write compact implementations of systems with high-level con-
structs, but we must demonstrate that we don’t sacrifice performance for ab-
straction. More precisely, we would like our server to serve content from files
at about the same rate as Apache [2]. We believed that this goal was within

! let-values binds names to the values returned by multiple-valued computations such
as tep-accept, which returns input and output ports.

2 The server may actually loop to handle multiple requests per connection. Our paper
does not explore this possibility further.



Connections/Second

1kB file 10kB file 100kB file
Clients|MrEd|Apache| Ratio| MrEd|Apache| Ratio|MrEd|Apache| Ratio
2| 967.5| 1557.9(62.1%| 655.1| 771.6|84.9%| 105.2| 113.2| 92.9%
4| 986.7| 1623.4(60.8%| 772.0| 1084.4|71.2%| 110.2| 115.7| 95.2%
8] 997.9| 1607.0{62.1%| 752.9| 1099.0|68.5%| 116.0| 115.8/{100.2%
16| 982.8| 1597.0|61.5%| 782.6| 1101.3|71.1%| 116.5| 116.1{100.3%
32| 923.8| 1551.0(59.6%| 760.7| 1104.0/68.9%| 116.7| 116.3/100.3%
64| 917.6| 1577.2|58.2%| 787.1| 1093.0{72.0%| 115.1| 116.5| 98.8%
128| 946.3| 1547.8|61.1%| 769.4| 1104.1|69.7%| 116.7| 116.5|100.2%
Ratio = MrEd/Apache

The client and server software each ran on an AMD Athlon 800MHz processor
with 192 Mbytes of memory, running FreeBSD 4.1.1-STABLE, connected by
a standard 100 Mbit/s Ethernet connection.

Fig. 2. Performance for static content server

reach because most of the computational work involves parsing HT'TP requests,
reading data from disk, and copying bytes to a (network) port.?

To verify this conjecture, we compared our server’s performance to that of
Apache on files of three different sizes. For each test, the client requested a
single file repeatedly. This minimized the impact of disk speed; the underlying
buffer cache should keep small files in memory. Requests for different files would
even out the performance numbers according to Amdahl’s law because the total
response time would include an extra disk access component that would be
similar for both servers.

The results in figure 2 show that we have essentially achieved our goal. The
results were obtained using the S-client measuring technology [5]. For the his-
torically most common case [4]—files between six and thirteen kB—our server
performs at a rate of 60% to 80% of Apache. For larger files, which are now
more common due to increased uses of multimedia documents, the two servers
perform at the same rate. In particular, for one and ten kB files, more than four
pending requests caused both servers to consume all available CPU cycles. For
the larger 100 kB files, both servers drove the network card at full capacity.

4 Dynamic Content Generation

Over the past few years, the Web’s content has become increasingly dynamic.
USA Today, for instance, finds that as of the year 2000, more than half of the
Web’s content is generated dynamically [7]. Servers no longer retrieve plain files

3 This assumes that the server does not have a large in-memory cache for frequently-
accessed documents.



from disk but use auxiliary programs to generate a document in response to a
request. These Web programs often interact with the user and with databases.
This section explains how small changes to the code of section 3 accommodate
dynamic extensions, that the performance of the revised server is superior to
that of Apache,* and that it supports a new programming paradigm that is
highly useful in the context of dynamic Web content generation.

4.1 Simple Dynamic Content Generation

Since a single server satisfies different requests with different content generators,
we implement a generator as a module that is dynamically invoked and linked
into the server context. More specifically, a CGI program in our world is a unit:

(unit/sig () (import cgi”) (def+exp) ... (ezp))

It exports nothing; it imports the names specified in the cgi” signature. The

result of its final expression (and of the unit invocation) is an HTML page.5
Here is a trivial CGI program using quasiquote [22] to create an HTML

page with unquote (a comma) allowing references to the TITLE definition.

(unit/sig () (import cgi”)
(define TITLE "My first web page")
‘(html (head (title ,TITLE))
(body
(p (center ,TITLE))
(p "Hello, World!"))))

The script defines a title and produces a simple Web page containing a message.
The imports of a content generator supply the request method, the URL, the
optional headers, and the bindings:

(define-signature cgi” (

method ; (union ’get ’post ’head)

url ; Url

headers ; (listof (cons Symbol String))
bindings ; (listof (cons Symbol String))

To add dynamic content generation to our server, we modify the dispatch
function from section 3 to redirect requests for URLSs starting with " /cgi-bin/".
More concretely, instead of responding with the contents of a file, dispatch loads
a unit from the specified location in the file system. Before invoking the unit,
the function installs a new current-custodian and a new exit-handler via a pa-
rameterize expression:

4 Apache outperforms most other servers for CGI-based content generation [1].

5 To be precise, it generates an X-expression, which is an S-expression representation
of an XML document. The server handles other media types also; we do not discuss
these in this paper.



;3 in dispatch:

(if (cgi-url? wrl)
(let ([cust (make-custodian)])
(parameterize
([current-custodian cust]
[ezit-handler (lambda (z) (custodian-shutdown-all cust))])
(let ([cgi-program (cached-load (url-path wrl))])
(output-zhtml (invoke-unit /sig cgi-program cgi”)))))

The newly installed custodian is shut down on termination of the CGI script.
This halts child threads, closes ports, and reaps the script’s resources. The new
exit-handler is necessary so that erronious content generators shut down only
the custodian instead of the entire server.

4.2 Content Generators are First-Class Values

Since units are first-class values in MrEd, the server can store content generators
in a cache. Introducing a cache avoids some I/O overhead but, more importantly,
it introduces new programming capabilities. In particular, a content generator
can now maintain local state across invocations. Here is an example:

(let ([count 0])
(unit/sig () (import cgi")
(set! count (addl count))
‘(html (head (title "Testing Persistent State of Counter"))
(body (p "This is a cgi generated web page.")
(p "The current count is " ,(number—string count))))))

This generator maintains a local count that is incremented each time the unit is
invoked to satisfy an HTTP request. Its output is an HTML page that contains
the current value of count.

4.3 Exchanging Values between Content Generators

In addition to maintaining persistent state across invocations, content generators
may also need to interact with each other. Conventional servers force server
programs to communicate via the file system or other mechanisms based on
character streams. This requires marshaling and unmarshaling data, a complex
and error prone process. In our server architecture, dynamic content generators
can naturally exchange high-level forms of data through the common heap.
Our dynamic content generation model features a simple extension that per-
mits multiple generators to be defined within a single lexical scope. The current
unit of granularity in the implementation is a file. That is, one file may yield an
expression that contains multiple generators. The expression may perform arbi-
trary operations to define and initialize the shared scope. To distinguish between



the generators, the server’s interface requires that the file return an association
list of type

(listof (cons Symbol Content-generator))

For instance, a file contain two content generators:

(letx ([data-file ...]
[lock (make-semaphore 1)])
‘((add . ,(Content-generator);)
(delete . ,(Content-generator)s)))

This yields two generators that share a lock to a common file. The distinguishing
name in the association is treated as part of the URL in a CGI request.

4.4 Interactive Generation of Content

In a recent ICFP article [23], Christian Queinnec suggested that Web brows-
ing in the presence of dynamic Web content generation can be understood as
the process of capturing and resuming continuations.® For example, a user can
bookmark a generated page that contains a form and (try to) complete it sev-
eral times. This action corresponds to the resumption of the content generator’s
computation after the generation of the first form.

Ordinarily, programming this style of computation is a complex task. Each
time the computation requires interaction (responses to queries, inspection of
intermediate results, and so forth) from the user, the programmer must split
the program into two fragments. The first generates the request for interaction,
typically as a form whose processor is the remainder of the computation. The first
program must store its intermediate results externally so the second program can
access and use them. The staging and marshaling are cumbersome, error-prone,
slow, and inhibit the reuse of existing non-CGI programs that are being refitted
with Web-based interfaces. To support this common programming paradigm,
our server links content generators to the three additional primitives in figure 3.

send/suspend : (Url - Html-page) — (list Method
Url
(listof (cons Symbol String))
(listof (cons Symbol String)))
send/finish : Html-page — Void
adjust-timeout : Nat — Void

Fig. 3. Additional content generator primitives

The send/suspend function allows the content generator to send an HTML
form to the client for further input. The function captures the continuation and

5 This idea also appears in Hughes’s paper on arrows [14].



suspends the computation of the content generator. When the user responds,
the server resumes the continuation with four values: the request method, the
URL, the optional headers, and the form bindings.

To implement this functionality, send/suspend consumes a function of one
argument. This function, in turn, consumes a unique URL and generates a form
whose action attribute refers to the URL. When the user submits the form,
the suspended continuation is resumed. Consider figure 4, which presents a sim-
ple example of an interactive content generator. This script implements curried
multiplication, asking for one number with one HTML page at a time. The two
underlined expressions represent the intermediate stops where the script displays
a page and waits for the next set of user inputs. Once both sets of inputs are
available it produces a page with the product.

(unit/sig () (import cgi”)

5 get-input-w/-short-form : String — (String — Html-page)
(define (get-input-w/-short-form which-one)
(let-values ([(method url headers bindings)
(send/suspend
(lambda ()
‘(html (head (title ,which-one " number"))
(body
(form ((method "post") (action ,))
"Enter the " ,which-one " number:" nbsp
(input ((type "text") (name ,which-one)))
(input ((type "submit") (name "submit"))))))))])
(extract which-one bindings)))

5 string-multiply : String String — String

‘(html (head (title "Product"))
(body (p "The product is: "
J(string-multiply (get-input-w/-short-form “first")
(get-input-w/-short-form "second"))))))

Fig. 4. An interactive CGI program

In general, this paradigm produces programs that naturally correspond to
the flow of information between client and server. These programs are easier
to match to specifications, to validate, and to maintain. The paradigm also
causes problems, however. The first problem, as Queinnec points out, concerns
garbage collection of the suspended continuations. By invoking send/suspend, a
content generator hands out a reference to its current continuation. Although



these references to continuations are symbolic links in the form of unique URLs,
they are nevertheless references to values in the server’s heap. Without further
restrictions, garbage collection cannot be based on reachability. To make matters
worse, these continuations also hold on to resources, such as open files or TCP
connections, which the server may need for other programs.

Giving the user the flexibility to bookmark intermediate continuations and
explore various choices creates another problem. Once the program finishes in-
teracting with the user, it records the final outcome by updating persistent state
on the server. These updates must happen at most once to prevent catastrophes
such as double billing or shipping too many items.

Based on this analysis, our server implements the following policy. When the
content generator returns or calls the send/finish primitive, all the continuations
associated with this generator computation are released. Generators that wish
to keep the continuations active can suspend instead. When a user attempts to
access a reclaimed continuation, a page directs them to restart the computation.
Furthermore, each instance of a content generator has a predetermined lifetime
after which continuations are disposed. Each use of a continuation updates this
lifetime. A running continuation may also change this amount by calling adjust-
timeout. This mechanism for shutting down the generator only works because the
reaper and the content generator’s thread share the same custodian. This illus-
trates why custodians, or resource management in general, cannot be identified
with individual threads.

4.5 Implementing Interactive Generation of Content

The implementation of the interactive CGI policy is complicated by the (natural)
MrEd restriction that capturing a continuation is local to a thread and that a
continuation can only be resumed by its original thread. To comply with this
restriction, send/suspend captures a continuation, stores it in a table indexed
by the current content generator, and causes the thread to wait for input on a
channel. When a new request shows up on the channel, the thread looks up the
matching continuation in its table and resumes it with the request information
in an appropriate manner. A typical continuation URL looks like this:

http://www/cgi-bin/send-test.ss;1d38,k3-839800468

This URL has two principle pieces of information for resuming computation: the
thread (id38) and the continuation itself (k3). The random number at the end
serves as a password preventing other users from guessing continuation URLs.

The table for managing the continuations associated with a content generator
actually has two tiers. The first tier associates instance identifiers for content
generators with a channel and a continuation table. This continuation table
associates continuation identifiers with continuations. Here is a rough sketch:



generator instance table

instance-id|channel X continuations-table

instance-id|channel x continuations-table

\- continuations table

continuation-id |continuation

continuation-id|continuation

When a thread processes a request to resume its generator’s continuation, it looks
up the content generator in one table, and extracts the channel and continuation
table for that generator. The server then looks up the desired continuation in
this second table and passes it along with the request information and the ports
for the current connection.

The two-tier structure of the tables also facilitates clean-up. When the time
limit for an instance of a content generator expires or when the content generator
computation terminates, the instance is removed from the generator instance
table. This step, in turn, makes the continuation instance table inaccessible and
thus available for garbage collection.

4.6 Performance

We expect higher performance from our Web server than from conventional
servers that use the Common Gateway Interface (CGI) [19]. A conventional
server starts a separate OS process for each incoming request, creating a new
address space, loading code, etc. Our server eliminates these costs by avoiding
the use of OS process boundaries and by caching CGI programs.

Our experiments confirm that our server handles more connections per second
than CGI programs written in C. For example, for the comparison in figure 5,
we clock a C program’s binary in CGI and FastCGI against a Scheme script
producing the same data. The table does not contain performance figures for
responses of 100 kB and larger because for those sizes the network bandwidth
becomes the dominant factor just as with static files.

The table also indicates that both the standard CGI implementation and our
server scale much better relative to response size than FastCGI does. We con-
jecture that this is because FastCGI copies the response twice, and is thus much
more sensitive to the response size. Of course, as computations become more
intensive, the comparison becomes one of compilers and interpreters rather than
of servers and their protocols. We are continuing to conduct experiments, and
intend to present the additional performance measurements in a future edition
of this paper.

4.7 Modularity of the Server

Web servers must not only be able to load web programs (e.g., CGI scripts) but
also load new modules in order to extend their capabilities. For example, requir-



CGI FastCGI |MrEd Full | MrEd Lite
Clients| 1kB|10kB| 1kB|10kB| 1kB|10kB| 1kB|10kB
8]161.1(158.7|742.7(551.6|766.5|665.9851.4|742.6
16(157.6(156.9|728.8/547.2|759.6|659.3(847.3|727.9
32|153.4|153.1|720.7|544.4|733.8|627.4|837.8|721.4

MrEd Full is the server described in this paper. It includes the continuation reaper
described at the end of section 4.4, whose implementation is currently quite inefficient.
MrEd Lite disables this reaper (rendering send/suspend less usable), making its services
more directly comparable to those of CGI and FastCGI.

Fig. 5. Performance for dynamic content generation

ing password authentication to access particular URLs affects serving content
from files and from all dynamic content generators. In order to facilitate billing
various groups hosted by the server, the administrator may find it helpful to
produce separate log files for each client instead of a monolithic one. A flexi-
bly structured server will split key tasks into separate modules, which can be
replaced at link time with alternate implementations.

Apache’s module system [25] allows the builder of the Web server to replace
pieces of the server’s response process, such as those outlined above, with with
their own code. The builder installs structures with function pointers into a
Chain of Command pattern [13]. Using this pattern provides the necessary ex-
tensibility but it imposes a complex protocol on the extension programmer, and
it fails to provide static guarantees about program composition.

In contrast, our server is constructed in a completely modular fashion using
the unit system [10]. This provides the flexibility of the Apache module system
in a less ad hoc, more hierarchical manner. To replace part of how the server
responds to requests, the server builder writes a compound unit that links the
provided units and the replacement units together, forming an extended server.
Naturally, the replacement units may link to the original units and delegate to
them as desired.

Using units instead of dynamic protocols has several benefits. First, the server
doesn’t need to traverse chains of structures, checking for a module that wants
to handle the request. Second, the newly linked server and all the replacement
units are subject to the same level of static analysis as the original server. (Our
soft-typing tool [9] revealed several easily corrected premature end-of-file bugs
in the original server.)

5 Related Work

The performance problems of the CGI interface has led others to develop higher-
speed alternatives [20,25]. In fact, one of the driving motivations behind the
Microsoft .NET initiative [17] appears to be the need to improve Web server



performance, partially by eliminating process boundaries.” Apache provides a
module interface that allows programmers to link code into the server that,
among other things, generates content dynamically for given URLs. However,
circumventing the underlying operating system’s protection mechanisms without
providing an alternative within the server opens the process for catastrophic
failures.

FastCGI [20] provides a safer alternative by placing each content generator
in its own process. Unlike traditional CGI, FastCGI processes handle multiple
requests, avoiding the process creation overhead. The use of a separate pro-
cess, however, generates bi-directional inter-process communication cost, and
introduces coherence problems in the presence of state. It also complicates the
creation of CGI protocols that communicate higher-order data, such as that of
section 4.4.

I0-Lite [21] demonstrates the performance advantages to programs that are
modified to share immutable buffers instead of copying mutable buffers across
protection domains. Since the underlying memory model of MrEd provides safety
and immutable string buffers, our server automatically provides this memory
model without the need to alter programming styles or APIs.

The problem of managing resources in long-running applications has been
identified before in the Apache module system [25], in work on resource con-
tainers [6], and elsewhere. The Apache system provides a pool-based mechanism
for freeing both memory and file descriptors en masse. Resource containers pro-
vide an API for separating the ownership of resources from traditional process
boundaries. The custodians in MrEd provide similar functionality with a simpler
APT than those mentioned.

Like our server programs, Java servlets [8] are content generating code that
runs in the same runtime system as the server. Passing information from one
request to the processing of the next request cannot rely on storing information
in instance variables since the servlet may be unloaded and re-loaded by the
server. Passing values through static variables does not solve the problem either,
since in some cases the server may instantiate multiple instances of the servlet
on the same JVM or on different ones. Instead they provide session objects that
assist the programmer with the task of manually marshaling state into and out
of re-written urls, cookies, or secure socket layer connections.

The Java servlet interface allows implementations to distribute requests to
multiple JVMs for automatic load balancing purposes. Lacking the subprocess
management facilities of MrEd’s custodians, they rely on an explicit delete
method in the servlet to shut the subprocess down cooperatively. While this
provides more flexibility by allowing arbitrary clean-up code, the servlet isn’t
guaranteed to comply.

Finally, the J-Server [24] runs atop Java extended with operating systems
features. The J-Server team identified and addressed the server’s need to prevent
dynamic content generators from shutting down the entire server, while allowing
the server to shutdown the content generators reliably. They too identified the

7 Jim Miller, personal communication.



need for generators to communicate with each other, but their solution employs
remote method invocation (which introduces both cost and coherence concerns)
instead of shared lexical scope. Their work addresses issues of resource accounting
and quality of service, which is outside the scope of this paper. Their version of
Java lacks a powerful module system and first-class continuations.

6 Conclusion and Future Work

The content of the Web is becoming more dynamic. The next generation of
Web servers must therefore tightly integrate and support the construction of
extensible and verifiable dynamic content generators. Furthermore, they must
allow programmers to write interactive, dynamic scripts in a more natural fashion
than engendered by current Web scripting facilities. Finally, the servers must
themselves become more extensible and customizable.

Our paper demonstrates that all these programming problems can be solved
with a high-level programming language, provided it offers OS-style services
in a safe manner. Our server accommodates both kinds of extensibility found
in traditional servers—applications, which serve data, and extensions, which
adapt the behavior of the server itself—by exploiting its underlying module
system. All these features are available on the wide variety of platforms that run
MrEd (both traditional operating systems and experimental kernels such as the
OS/Kit [12]). The result is a well-performing Web server that accommodates
natural and flexible programming paradigms without burdening programmers
with platform-specific facilities or complex, error-prone dynamic protocols. We
have deployed this server for our book’s widely accessed web site.

Two major areas of future work involve type systems and interoperability. Re-
search should explore how the essential additions to Scheme—dynamically link-
able modules that are first-class values, threads, custodians, and parameters—
can be integrated in typed functional languages such as ML and how the type
system can be exploited to provide even more safety guarantees. While MrEd
already permits programmers to interoperate with C programs through a foreign-
function interface, we are studying the addition of and interoperation between
multiple safe languages in our operating system, so programmers can use the
language of their choice and reuse existing applications [16].
Acknowledgments: We thank Matthew Flatt and Darren Sanders for their
assistance.
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