
RICE UNIVERSITY

Behavioral Software Contracts

by

Robert Bruce Findler

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Matthias Felleisen
Professor of Computer Science

Robert “Corky” Cartwright
Professor of Computer Science

Keith D. Cooper
Professor of Computer Science

Michael Barlow
Assistant Professor of Linguistics

HOUSTON, TEXAS

April, 2002

Behavioral Software Contracts

by

Robert Bruce Findler

CALVIN AND HOBBES cWatterson.
Reprinted with permission of UNIVERSAL

PRESS SYNDICATE. All rights reserved.

Behavioral Software Contracts

by

Robert Bruce Findler

Abstract

To sustain a market for software components, component producers and consumers

must agree on contracts. These contracts must specify each party’s obligations. To ensure

that both sides meet their obligations, they must also agree on standards for monitoring

contracts and assigning blame for contract violations.

This dissertation explores these issues for contracts that specify the sequential behavior

of methods and procedures as pre- and post-conditions. In the process, it makes three main

contributions:

� First, this dissertation shows how existing contract checking systems for object-

oriented languages incorrectly enforce contracts in the presence of subtyping. This

dissertation shows how to check such contracts properly.

� Second, this dissertation shows how to enforce pre- and post-condition style contracts

on higher-order procedures and correctly assign blame for contract violations in that

context.

� Finally, this dissertation lays the groundwork for a theory of contract checking, in

the spirit of the theory for type checking. In particular, it states and proves the first

soundness result for contracts, guaranteeing that the contract checker properly en-

forces contracts and properly assigns blame for contract violations.

Acknowledgments

I owe my entire academic life to my advisor, Matthias Felleisen. His tireless struggle to

train me has made an incredible difference in my life (and I certainly did not make it easy

for him!). Thank you, Matthias!

During my years at Rice, I worked especially closely with Matthew Flatt and Shriram

Krishnamurthi. Their patient guidance and support was invaluable in my development,

both as a programmer and as a researcher.

Thanks also to the others I worked closely with: Kevin Charter, John Clements, Cormac

Flanagan, Paul Graunke, Philippe Meunier, Jamie Raymond and Paul Steckler.

Mario Latendresse helped me uncover the flaw in object-oriented contract checkers.

Clemens Szyperski read many early versions of chapters in this dissertation and gave me

many excellent ideas along the way. Daniel Jackson also had great comments on an early

drafts of this work. Gregory T. Sullivan pointed out a flaw in my formulation of contract

soundness. Thanks, all.

A special thanks to Ian Barland who was always available to have some coffee, making

many an otherwise horrible day manageable. Thanks to Dorai Sitaram for teaching me the

wonders of vegetarianism and helping a great deal with the introduction to this dissertation.

Darnell, Iva Jean, and Rhonda were always ready with the perfect word of encouragement,

humor, or guidance, and I will always be grateful.

My mother and father and my brothers have always been a source of great love and

encouragement. Their love shaped me into the person I am today.

Finally, I want to thank my wife, Hsing-Huei Huang, for her love, support, and encour-

agement. She makes my life worthwhile. This is for you, baby!

Contents

Abstract iii

Acknowledgments iv

Table of Contents v

List of Illustrations viii

1 Introduction 1

1.1 Components and DrScheme . 3

1.2 Class and Function Contracts from DrScheme 4

1.2.1 Flat Contracts . 4

1.2.2 Class-based Contracts . 7

1.2.3 Higher-order Contracts . 10

1.3 Thesis Statement and Roadmap . 11

2 Behavioral Subtyping and Related Work 13

2.1 Behavioral Contracts . 13

2.2 Behavioral Subtyping . 14

2.3 Contracts and Behavioral Subtypes . 15

2.4 Problems with Prior Work . 18

2.4.1 Jass . 22

2.5 Properly Monitoring Contracts . 22

3 Contract Compilation 25

3.1 How to Check Contracts and Assign Blame 25

3.1.1 Flat Contract Checking . 26

vi

3.1.2 Interface Implementation . 27

3.1.3 Class Inheritance . 30

3.1.4 Multiple Inheritance . 30

3.2 Environmental Considerations . 32

3.3 Performance . 33

4 Contract Soundness 34

4.1 From Type Soundness to Contract Soundness 34

4.2 Syntax . 35

4.3 Type Elaboration . 41

4.4 Contract Elaboration . 44

4.5 Evaluation . 57

4.6 Contract Soundness . 60

5 Contracts for Higher-Order Functions 67

5.1 From First-Order Function Contracts

to Higher-Order Function Contracts . 68

5.2 Example Contracts . 70

5.2.1 Contracts: A First Look . 70

5.2.2 Enforcement at First-Order Types 72

5.2.3 Blame and Contravariance . 76

5.2.4 First-class Contracts . 78

5.2.5 Callbacks and Stateful Contracts 80

5.3 Contract Calculus . 81

5.4 Contract Monitoring . 86

5.5 Contract Implementation . 91

5.6 Correctness . 94

5.7 Dependent Contracts . 102

5.8 Tail Recursion . 103

vii

5.9 Conclusion . 104

6 Conclusions and Future Work 105

Bibliography 107

Illustrations

1.1 GUI Test Suite Contract . 5

1.2 Relative Percentages Contract . 6

1.3 Editor Mixin Contract . 7

1.4 Editor Mixin Extensions . 9

1.5 Mixin Composition . 10

1.6 Controlling DrScheme’s Printer . 11

2.1 The Behavioral Subtyping Condition . 15

2.2 The Behavioral Subtyping Condition, Generalized to Multiple Inheritance . 15

2.3 Behavioral Subtyping in Interfaces . 18

2.4 Delayed, Incorrect Explanation for Contract Violation 21

2.5 Hierarchy Checking . 23

3.1 Section 3.1 Overview . 26

3.2 Pre- and Post-condition Checking . 27

3.3 Hierarchy Checking . 29

3.4 Hierarchy Checking for Multiple Inheritance 31

4.1 Contract Java syntax; before and after contracts are compiled away 36

4.2 Predicates and relations in the model of Contract Java , i 37

4.3 Predicates and relations in the model of Contract Java, ii 38

4.4 Context-sensitive Checks and Type Elaboration Rules for Contract Java, i . 42

ix

4.5 Context-sensitive Checks and Type Elaboration Rules for Contract Java, ii . 43

4.6 Blame Compilation, i . 46

4.7 Blame Compilation, ii . 47

4.8 Blame Compilation, iii . 48

4.9 Blame Compilation, iv . 49

4.10 Example Hierarchy Diagram . 54

4.11 Elaborated Console Example . 58

4.12 Operational semantics for Contract Java 59

5.1 Contract specified with add-panel . 72

5.2 Contract manually distributed . 74

5.3 Abstraction for Predicate Contracts . 78

5.4 Preferences panel contract, protecting the panel 79

5.5 �CON Syntax and Types . 82

5.6 �CON Evaluation Contexts and Values . 83

5.7 Reduction Semantics of �CON . 84

5.8 �CON Type Rules . 85

5.9 Obligation Expression Insertion . 87

5.10 Monitoring Contracts in �CON . 90

5.11 Reducing sqrt in �CON . 91

5.12 Reducing sqrt with wrap . 92

5.13 Contract Compiler Wrapping Function . 93

5.14 Contract Compiler . 94

5.15 Simulation between Efw and Efw . 95

5.16 Evaluators . 97

5.17 Dependent Function Contracts for �CON 102

Chapter 1

Introduction

Modern software development often requires collaboration between independently operat-

ing groups of developers. These developers publish components and extensions that others

combine to form a working system. McIlroy [39] first proposed the idea of software compo-

nents in 1969. In a marketplace with reusable components, software manufacturers would

produce software components with well-specified interfaces. Developers would assemble

systems from these off-the-shelf components, possibly adapting some with wrapper code,

instantiating abstractions in some, and even adding a few new ones. If a component were

faulty, a developer could replace it with a different one. If a manufacturer were to improve

a component, a developer could improve the final product by replacing the link to the old

component with a link to the new one.

To make such a component marketplace work, components must come with interfaces

that specify their key properties. These interfaces record contracts between the compo-

nent producer and component consumer. Beugnard et al [5] list four levels of component

contracts:

� syntactic contracts, e.g., type signatures,

� behavioral contracts, e.g., pre- and post-condition invariants, which state semantic

properties that augment the languages type specifications,

� sequencing contracts, e.g., thread synchronization and sequencing constraints, and

� quality of service contracts, e.g., time and space guarantees.

In addition to recording the contracts between components, developers must agree on

2

a mechanism for enforcing the contracts and assigning blame� for contract violations. For

example, if the pre-condition of a behavioral contract fails, the developer who wrote the

call to the corresponding method or procedure is blamed. If a post-condition fails, the

developer who wrote the method or procedure itself is blamed. Properly assigned blame

enables developers to quickly ascertain which component is faulty and then either fix the

problem or replace the faulty component.

Run-time enforcement of behavioral contracts has been widely studied [1, 36, 40, 41,

44] and has a standard interpretation. Each method or procedure is annotated with a pre-

condition and a post-condition. These conditions are effect-free program fragments that

are evaluated when a method or procedure is called and when it returns. A pre-condition

is evaluated when a method or procedure is called and if it produces false, the caller failed

to establish the required conditions. Symmetrically, a post-condition is evaluated when a

method or procedure returns and it indicates if the method or procedure itself was success-

ful.

The remainder of the introduction is divided into two parts. The first part presents

an overview of the component structure of DrScheme and explains how the component

organization has facilitated program development. The second part consists of a series of

contract examples drawn from DrScheme that motivate the remainder of the dissertation.

Note. In principle, one could try to prove the correctness of behavioral contracts. For

example, the Extended Static Checking group has developed verification tools for Java and

Modula 3 [8] that attempt to prove that certain behavioral properties are always satisfied.

In general, however, the languages used to express behavioral contracts are so rich that it is

intractably difficult to verify statically that the contracts of a component are never violated.

In fact, the Extended Static Checking group’s tools are neither complete nor sound, that is,

�I believe that a certain amount of accountability and pride in quality craftsmanship is critical to good soft-

ware production. Thus, when I use the term “blame” I mean that the programmer should be held accountable

for shoddy craftsmanship.

3

the tools may indicate that errors exist in correct code, or may indicate that no errors exist

in incorrect code. Furthermore, most tools that do attempt to prove behavioral contracts

correct are computationally expensive. Finally, these tools require training in logic and

program verification that most programmers do not possess.

1.1 Components and DrScheme

Our source of examples for component-oriented programming is DrScheme [12], a pro-

gramming environment for Scheme. It supports two forms of extension, TeachPacks and

tools, each of which plays the role of a component deployment context.

TeachPacks DrScheme initially provides a language targeted at beginners. This language

is small and designed for pedagogic clarity at the expense of expressiveness. As

students learn more about programming, DrScheme’s language adapts to the student

by providing the students with more constructs. By allowing the student to progress

along a tower of languages, DrScheme shields the student from the complexity of a

professional’s programming environment and still allows the student enough compu-

tational power to learn the fundamental principles of computation.

One cost of this simplicity is that instructors cannot assign exercises that involve

graphics, networking, or other advanced features of the programming language to

motivate students. To address this problem, DrScheme provides TeachPacks. A

TeachPack is a series of definitions written in the full programming language that are

dynamically injected into the students’ programming language as new primitives.

Typically, TeachPacks define a few exercise-specific GUI or networking primitives

that hide the full complexity of those libraries, and yet still allow the student to use

these features to solve problems.

Tools DrScheme’s tools interface allows developers to enhance the core programming en-

vironment with new teaching languages, program analyses, syntax checkers, alge-

braic steppers, and other extensions. These extensions are loaded as DrScheme starts

4

up, but the exact set of tools is not written into DrScheme’s source code. Instead, as

DrScheme starts up, it discovers which tools have been installed and loads them. This

allows third party developers to provide tools independently of the main DrScheme

releases.

To support TeachPacks and tools, DrScheme requires a powerful form of program ex-

tension. TeachPacks are dynamically linked multiple times, and tools are dynamically

linked with externally specified imports. To support both TeachPacks and tools, DrScheme

uses units [15], a software component mechanism designed as part of the MzScheme [14]

programming language.

1.2 Class and Function Contracts from DrScheme

This section motivates the remainder of this dissertation with example contracts from

DrScheme. The contracts range from simple predicates on flat values to the invariants of

certain object-oriented design patterns [18] to restrictions on the arguments and results of

higher-order functions. Most of the contracts presented here occur at the interface between

DrScheme and the extensions described in the previous section.

1.2.1 Flat Contracts

For a first example, we turn to DrScheme’s automatic GUI test suite library. It contains

functions that simulate user actions like button clicks and menu selections. These opera-

tions have contracts that guarantee that the GUI’s state is amenable to the test action.

The contract for test:button-press, the operation that simulates a button click, is shown

in figure 1.1. It accepts either a string or a button as an argument. In both cases, the

front-most window must be a DrScheme window (the get-top-level-focus-window primi-

tive returns #f if the front-most window is not a DrScheme window). If the argument is a

string, the front-most window must contain a button whose label is the string. If the argu-

ment is a button, the front-most window must contain that button. In both cases, the button

5

;; button-press-argument-okay? : (union string button) ! boolean
;; determines if the argument to test:button-press satisfies its contract
(define (button-press-argument-okay? arg)

(let ([top-level-focus-window (get-top-level-focus-window)])
(cond

[(string? arg)
(and top-level-focus-window

(frame-has? top-level-focus-window
(� (x)

(and (is-a? x button%)
(string=? (send x get-label) arg)
(send x is-enabled?)
(send x is-shown?)))))]

[(is-a? arg button%)
(and top-level-focus-window

(frame-has? top-level-focus-window
(� (x)

(and (eq? x arg)
(send x is-enabled?)
(send x is-shown?)))))])))

;; frame-has? : (instanceof frame%) (area<%>! boolean) ! boolean
;; determines if the frame contains a child that satisfies p.
(define (frame-has? frame p)

(let test ([i frame])
(or (p i)

(and (is-a? i area-container<%>)
(ormap test (send i get-children))))))

Figure 1.1: GUI Test Suite Contract

must be both visible and enabled. The button-press-argument-okay? procedure returns a

boolean indicating the fitness of that value as an argument to test:button-press.

Formulating this contract in most type systems is not possible and proving it with a

theorem prover is nearly intractable, because it depends on the state of the GUI which, in

turn, depends on the sequence of user inputs submitted to DrScheme. In fact, when the test

suite is running, it is possible to get spurious test failures if the person running the test suite

interrupts the simulated stream of events with real mouse clicks. This causes DrScheme to

6

;; set-percentages : (listof number) ! void
(define (set-percentages ps)

(unless (and (list? ps)
(andmap number? ps)
(= (length ps) (length (send this get-children)))
(= 1 (apply + ps))
(andmap positive? ps))

(error ’set-percentages
"expected list of positive numbers that sum to 1, got: ˜e"
ps))

(set! percentages (map make-percentage ps))
(send this reflow-container))

Figure 1.2: Relative Percentages Contract

enter an unexpected state where the contracts do not hold.

Such failures are a consequence of the test suite architecture. After a simulated event is

put into the event queue, DrScheme cannot distinguish it from an actual event. This prop-

erty is important for the integrity of the test suite, but does have the negative consequence

that, while the test suite is running, the programmer must not manipulate DrScheme’s GUI.

DrScheme also contains contracts that are independent of user input, but proving them

correct goes beyond the capabilities of traditional type-systems. For a second example,

consider the function in figure 1.2. This function sets the relative percentages of the drag-

gable windows in the main DrScheme frame. The boxed portion of the function checks the

contract and the unboxed portion performs the real work of the function. The function’s ar-

gument is a list of numbers, one for each subwindow. Since each subwindow’s percentage

must be specified, the list’s length must match the number of subwindows. Additionally,

since each number is treated as a percentage of the size of the total window, each percentage

must be a positive number and together they must sum to 1. Most practical type systems

are currently unable to express the fact that the length of two lists must match, let alone

that a series of numbers must sum to 1.

7

(define frame:editor<%>

(interface ()
get-editor% ;; : ! (implements editor<%>)
get-editor<%>s ;; : ! (listof interface)
make-editor)) ;; : ! (implements editor<%>)

(define frame:editor-mixin
(mixin (frame<%>) (frame:editor<%>)

(define/public (get-editor%)
text%)

(define/public (get-editor<%>s)
(list editor<%>))

(define/private (make-editor)
(let ([editor% (get-editor%)])

(let ([editor<%>s (get-editor<%>s)])
(unless (andmap (� (editor<%>) (implementation? editor% editor<%>))

editor<%>s)
(error ’frame:editor%

"result of get-editor% must match ˜e; got: ˜e"
editor<%>s editor%)))

(make-object editor%)))))

Figure 1.3: Editor Mixin Contract

1.2.2 Class-based Contracts

Beyond the standard features of Scheme, DrScheme’s implementation language supports

a class-based object system, similar to that provided by Java [20]. In addition to classes,

interfaces, and objects supported by Java, DrScheme’s class system supports mixins [17],

which are class extensions parameterized over their superclass. Like classes, the body of a

mixin consists of field and method declarations. Unlike classes, the programmer does not

specify a superclass for a mixin. Instead, the programmer specifies an interface that each

eventual superclass must implement. To build a class hierarchy, the programmer composes

the mixins with classes and other mixins.

As an example mixin, consider the frame:editor-mixin in figure 1.3. This mixin extends

8

classes that implement the frame<%> interface (that is, frames), and the mixin implements

the frame:editor<%> interface. The body of the mixin supplies implementations of the

methods in frame:editor<%>.

Together, methods in frame:editor<%> establish the connection between a frame and

an editor that is visible in the frame. The make-editor method creates new editors. It uses

the get-editor% method to determine the class for the editor and ensures that the instance of

the class implements each of the interfaces returned by get-editor<%>s. The get-editor%

method and the get-editor<%>s methods are intended to be overridden by extensions of

this mixin. To extend the frame class with additional functionality that depends on the

editor, a programmer overrides the get-editor<%>s method to return additional interfaces.

Returning more interfaces in this fashion guarantees that the editor also supports the new

functionality.

For two example frame mixins see figure 1.4. The frame:searchable-mixin provides

an Emacs-like [21, 48] searching window in the bottom of the frame. The contour mixin

provides a 20,000 foot overview of the program text, showing one pixel for each character

in the definitions window. The two screen shots of DrScheme on the right-hand side of

figure 1.4 show the DrScheme window with the searching mixin and the contour mixin.

Each mixin overrides the get-editor<%>s method, which guarantees that the frame’s

editor implements the appropriate interfaces. The frame:searchable-mixin requires the

frame’s editor to implement the text:searching<%> interface, so it can safely apply the

search method. Similarly, the frame:contour-mixin requires the editor to implement the

text:contour<%> interface, so it can safely invoke the get-contour method.

To construct a frame and an editor, a programmer composes a series of frame mixins

and a series of editor mixins and overrides the frame’s get-editor% method to return the

editor mixin composition. The contracts ensure that the editor and the frame match each

other. The first two expression in figure 1.5 shows how to compose the text mixins and

frame mixins with the base text and frame classes. The final expression connects the frame

class to the text class. Since the my-text% class implements the interfaces required by

9

(define frame:searchable<%>

(interface ()
show/hide-search-window))

(define text:searching<%>

(interface ()
search))

(define frame:searchable-mixin
(mixin (frame:editor<%>)

(frame:searchable<%>)
(inherit get-editor)
(define/override (get-editor<%>)

(cons text:searching<%>

(super get-editor<%>)))
� � � (send (get-editor) search) � � �))

(define frame:contour<%>

(interface ()
show/hide-contour-window))

(define text:contour<%>

(interface ()
get-contour))

(define frame:contour-mixin
(mixin (editor<%>) (frame:contour<%>)

(inherit get-editor)
(define/override (get-editor<%>)

(cons text:contour<%>

(super get-editor<%>)))
� � � (send (get-editor) get-contour � � �) � � �))

Figure 1.4: Editor Mixin Extensions

the mixin composition, no contract error is signaled for this composition. The screen shot

on the right-hand side of figure 1.5 shows the resulting DrScheme window, with both the

searching window and the contour window.

10

(define my-text%
(text:searchable-mixin

(text:delegate-mixin
text%)))

(define super-frame%
(frame:searchable-mixin

(frame:delegate-mixin
(frame:editor-mixin
frame%))))

(define my-frame%
(class super-frame%

(define/override (get-editor%)
my-text%)))

Figure 1.5: Mixin Composition

1.2.3 Higher-order Contracts

It is natural to expect contracts to express behaviors of functions in languages with higher-

order functions. As an example, consider this predicate:

;; default-display-fraction? : number ! boolean
(define (default-display-fraction? x)

(and (number? x)
(exact? x)
(real? x)
(not (integer? x))))

It controls one aspect of DrScheme’s pretty-printer. If this predicate returns #t, the printer

uses a graphical, mixed-notation fraction to display the value. If it returns #f, the printer

uses a string of ASCII digits.

DrScheme is parameterized over this predicate. It allows tool-based extensions to con-

trol when these fractions are displayed, via the set-display-fraction and current-display-

fraction? functions, as shown in figure 1.6. In order for the graphical display code to

work properly, however, the argument to set-display-fraction must not return #t more often

than default-display-fraction? predicate does, although it may return #f more often. Thus,

11

;; current-display-fraction? : number ! boolean
(define current-display-fraction? default-display-fraction?)

;; set-display-fraction : (number ! boolean) ! void
(define (set-display-fraction f?)

(set! current-display-fraction?
(� (num)

(let ([curr (f? num)])
(let ([def (default-display-fraction? num)])

(when (and (not def) curr)
(error ’set-display-fraction

"the predicate ˜s returned #t when the default predicate did not"
f?)))

curr))))

Figure 1.6: Controlling DrScheme’s Printer

the set-display-fraction function’s contract must guarantee that if its argument returns #t,

default-display-fraction? would also have returned #t. The boxed code in the figure en-

forces this contract.

1.3 Thesis Statement and Roadmap

This dissertation investigates the use of contracts like those in the previous section, ex-

plaining how to enforce them at run-time and how to automatically assign blame when the

contracts are violated.

The thesis of this dissertation is:

Contract checking beyond procedural languages is

complex and requires solid theoretical foundations.

The dissertation supports the thesis with

� an examination of existing contract checkers for object-oriented languages and their

failures to detect violations and assign blame properly,

12

� the design of a contract system that remedies the flaws in existing object-oriented

contract checkers,

� the design of a contract system for higher-order contract checking, and

� contract soundness theorems that guarantee the contract checkers properly enforce

contracts and properly assign blame for contract violations.

The dissertation is divided into 6 chapters. The first is this introduction.

Chapter 2 explains behavioral subtyping and how it should interact with contract check-

ing. It examines the related work on contract checking and shows how all existing object-

oriented contract checkers fail to check contracts properly.

Chapter 3 presents a contract compiler for the contract language discussed in chapter 2

that checks object-oriented contracts correctly. The compiler demonstrates that the contract

checker must be integrated with the type-checker.

Chapter 4 provides the first step towards a theory of contract soundness, in analogy to

the theory of type soundness. It formulates a contract soundness theorem as a relationship

between a program running with contract checking enabled and the same program running

without any contract checking. The theorem guarantees that if the program without any

contract checking enters an invalid state, the checked program signals an appropriate error

and provides the correct blame. Additionally, it guarantees that if the program without con-

tract checking never violates a contract, the checked program and the unchecked program

have identical behavior.

Chapter 5 presents the first contract checking calculus for languages with higher-order

functions, shows how to implement it, and proves that the implementation matches the

calculus. Chapter 6 concludes with a discussion of the dissertation’s contributions and

future work.

Chapter 2

Behavioral Subtyping and Related Work

Run-time enforced behavioral contracts have been studied extensively in the context of

procedural languages [22, 37, 44, 47]. Rosenblum [47], in particular, makes the case for

the use of assertions in C and describes the most useful classes of assertions.

Contract checking has also been added to many object-oriented languages [9, 19, 24,

28, 29, 38, 41, 45]. Even though these languages all support type hierarchies, none of their

contract checkers take the hierarchies into account properly. In particular, the contracts on

overriding methods are improperly synthesized from the programmer’s original contracts.

This flaw leads to mis-assigned, delayed, or even missing blame for contract violations.

This chapter is organized into five sections. The first explains behavioral contracts. The

second explains behavioral subtyping. Section 2.3 explains the connection between behav-

ioral contracts and behavioral subtyping. Section 2.4 demonstrates how existing contract

checkers fail and section 2.5 shows how to check behavioral contracts in object-oriented

languages properly.

2.1 Behavioral Contracts

.

In programs without subtyping, checking pre- and post-conditions is a simple matter.

Consider this code, which implements a wrapper class for floats:

class Float f
Float getValue() f � � � g
Float sqrt () f � � � g

@pre f getValue() > 0 g
@post f Math.abs(@ret � @ret – this.getValue()) � 0.1 g

g

14

In this case, the pre-condition for sqrt ensures that the method is only applied to positive

numbers. The post-condition promises that the square of the result is within a certain

tolerance of the original argument. We use @ret to stand for the result of a method in its

post-condition.

In the case of the sqrt method, the pre- and post-conditions fully specify its correctness.

In general, however, programmers do not use pre- and post-conditions to specify the entire

behavior of the method; instead programmers use contracts to refine type specifications.

As long as programs do not use inheritance, contract checking is simply evaluating the

conditions that the programmer stated. Once programs employ inheritance, contract mon-

itoring requires more sophistication. In particular, subtypes of both classes and interfaces

must be behavioral subtypes.

2.2 Behavioral Subtyping

Behavioral subtyping [1, 34, 35, 40] guarantees that all objects of a subtype preserve all of

the original type’s invariants. Put differently, any object of a subtype must be substitutable

for an object of the original type without any effect on the program’s observable behavior.

For pre- and post-conditions, behavioral subtyping means that the pre-condition contracts

for a type imply the pre-condition contracts for each subtype and the post-condition con-

tracts for each subtype imply the post-condition contracts for the type.

Consider figure 2.1. It represents a class hierarchy fragment with two classes, C and

D, with D derived from C. Both classes have a method m, with D’s m overriding C’s m.

Each method, however, has its own distinct pre-condition and post-condition. Interpreted

for this fragment, the behavioral subtyping condition states that for each argument x to the

method, pC(x) implies pD(x) and qD(x) implies qC(x).

We generalize the behavioral subtyping condition to multiple inheritance by consid-

ering each subtype relationship independently. For an example, consider figure 2.2. It

contains three interfaces, L , R, and B. Since each inheritance relationship is considered

separately, we only require that B is independently substitutable for either L and R, as

15

Program Conditions

C void m(Object x)
@pre pC(x)
@post qC(x)

D
void m(Object x)

@pre pD(x)
@post qD(x)

8x: pC(x)) pD(x)

8x: qD(x)) qC(x)

6

Figure 2.1: The Behavioral Subtyping Condition

Program Conditions

void m(Object x)
@pre pL(x)
@post qL(x)

L R
void m(Object x)

@pre pR(x)
@post qR(x)

B
void m(Object x)

@pre pB(x)
@post qB(x)

(8x: pR(x)) pB(x)) ^
(8x: pL(x)) pB(x))

(8x: qB(x)) qR(x)) ^
(8x: qB(x)) qL(x))

S
S
S
SSo

�
�
�
��7

Figure 2.2: The Behavioral Subtyping Condition, Generalized to Multiple Inheritance

reflected in the conditions listed in figure 2.2. This is the minimum requirement to match

the spirit of the behavioral subtyping condition.�

2.3 Contracts and Behavioral Subtypes

A contract checker for object-oriented languages must verify that the pre-condition and

post-condition hierarchies meet the behavioral subtyping requirement. This section ex-

�It is possible to imagine a stronger constraint, however. One may require that L and R’s conditions be

equivalent. This work applies for this stricter constraint, mutatis mutandis.

16

plains why with an example.

Consider this program:

interface IConsole f
int getMaxSize();

@post f @ret > 0 g
void display(String s);

@pre f s.length() < this.getMaxSize() g
g

class Console implements IConsole f
int getMaxSize() f � � � g

@post f @ret > 0 g
void display(String s) f � � � g

@pre f s.length() < this.getMaxSize() g
g

The IConsole interface contains the methods, types, and pre- and post-conditions for a

small gas station console that displays messages to the gas pump operator. The Console

class provides an implementation of IConsole. The getMaxSize method returns the limit

on the message’s size, and the display method changes the console’s visible message. The

post-condition for getMaxSize and the pre-condition for display merely guarantee some

invariants of the console; they do not ensure correctness.

Consider this extension of Console:

class RunningConsole extends Console f
void display(String s) f
� � � super.display

(String.substring
(s, � � �, � � � + getMaxSize())) � � �

g

@pre f true g
g

The display method in this class creates a thread that displays whatever portion of the string

fits in the console and then updates the console’s display, scrolling the message character

by character to display advertising messages while the gas is being pumped. Since the

pre-condition of display in RunningConsole is true, it is implied by the pre-condition in

Console, and thus RunningConsole is a behavioral subtype of Console.

17

Not every subtype is a behavioral subtype. Concretely, extensions of the Console class

may have pre-conditions that are not implied by the supertype’s pre-condition. Consider

this example:

class PrefixedConsole extends Console f
String getPrefix() f

return ">> ";
g

void display(String s) f
super.display(this.getPrefix() + s);

g

@pre f s.length() <
this.getMaxSize() – this.getPrefix().length() g

g

The PrefixedConsole class provides debugging support for the console in the form of a

prefix string that is attached to each message displayed in the console. The prefix string

indicates the internal state of the gas pump.

Unlike RunningConsole, the pre-condition on PrefixedConsole is not implied by the

pre-condition on Console. Accordingly, code that is written to accept instances of Console

may violate the pre-condition of PrefixedConsole without violating the pre-condition of

Console. Clearly, the code that expects instances of Console should not be blamed, since

that code fulfilled its obligations by meeting Console’s pre-condition. Instead, the blame

must lie with the programmer of PrefixedConsole for failing to create a behavioral subtype

of Console.

In addition to classes, interfaces also describe a type hierarchy. Like the class type

hierarchy, the interface type hierarchy must also specify a hierarchy of behavioral subtypes.

Thus, unlike pre- and post-condition failures, the blame for a malformed hierarchy might

fall on the author of code that contains only interfaces. Consider the two-part Java program

in figure 2.3.

Imagine that two different programmers, Guy and James, wrote the two parts of the

program. First, James’s main method creates an instance of C, but with type I . Then, it

invokes m with 5. According to the contracts for I , this is a perfectly valid argument. Ac-

18

// Written by Guy
interface I f

void m(int a);
@pre f a > 0 g

g

interface J extends I f
void m(int a);

@pre f a > 10 g
g

// Written by James
class C implements J f

void m(int a) f � � � g
@pre f a > 10 g

public static void
main(String argv[]) f

I i = new C();
i.m(5);

g

g

Figure 2.3: Behavioral Subtyping in Interfaces

cording to the contract on J , however, this is an illegal argument. The behavioral subtyping

condition tells us that J can only be a subtype of I if it is substitutable for I in every context.

This is not true, however, as J ’s m accepts fewer arguments than I ’s m. In particular, J ’s m

does not accept 1, 2, � � �, 10 but I ’s m does. Thus, Guy’s claim that J extends I is wrong,

with respect to the behavioral subtyping condition. When the method call from James’s

code fails, the blame for the contractual violation must lie with Guy.

The preceding examples suggest that contract checking systems for object-oriented lan-

guages should signal three kinds of errors: pre-condition violations, post-condition viola-

tions, and hierarchy errors. The latter distinguishes contract checking in the procedural

world from contract checking in the object-oriented world. A hierarchy error signals that

some subclass or extending interface is not a behavioral subtype, either because the hierar-

chy of pre-conditions or the hierarchy of post-conditions is malformed.

2.4 Problems with Prior Work

I examined six tools that implement Eiffel-style [41] contracts for Java: iContract [29],

JPP [26], Kiev [27], JMSAssert [38], jContractor [24], and HandShake [9]. These systems

enforce contracts by evaluating pre-condition expressions as methods are called and eval-

19

uating post-condition expressions as methods return. If the pre-condition fails, they blame

the calling code for not establishing the proper context. If the post-condition fails, they

blame the method itself for not living up to its promise.

The tools also handle programs with inheritance. With the exception of Jass, each tool

constructs a disjunction of all of a method’s super pre-conditions and a conjunction of all

of the method’s super post-conditions. For the program in figure 2.1, the systems replace

the condition pD(x) with

pC(x) jj pD(x)

and replace the condition qD(x) with

qC(x) && qD(x)

Since the logical statements:

pC(x)) (pC(x) jj pD(x))

and

(qC(x) && qD(x))) qD(x)

are always true, the re-written programs always satisfy the behavioral subtyping condition,

even if the original program did not.

As Karaorman, Hölzle, and Bruno [24, section 4.1] point out, contract monitoring tools

should check the programmer’s original contracts, because checking the synthesized con-

tracts can mask programmer errors. Recall the PrefixedConsole class from the previous

section. That class’s display method has the pre-condition contract:

s.length() < this.getMaxSize() – this.getPrefix().length()

and its superclass, Console, has a display method with this pre-condition contract:

s.length() < this.getMaxSize()

Since Console’s pre-condition does not always imply PrefixedConsole’s pre-condition, we

know that the programmer of PrefixedConsole has made a mistake. The contract checking

tool should, in turn, report this mistake to the programmer.

20

None of the existing tools for monitoring pre- and post-conditions handle this situation

properly. Instead, they combine the two pre-conditions with a disjunction, and replacing

J’s pre-condition with

s.length() < this.getMaxSize()
or
s.length() < this.getMaxSize() � this.getPrefix().length()

As a result, the pre-condition on the overriding method (underlined above) is effectively

ignored.

To see how bad the problem is, I translated IConsole, Console and PrefixedConsole

to iContract syntax [29], using 4 as the maximum and a dummy display routine that just

prints to stdout. The main method that invokes the PrefixedConsole’s display method with

the string "abc", as follows:

new PrefixedConsole().display("abc");

This call is erroneous, since the pre-condition on PrefixedConsole’s display method re-

quires the argument to be a string of at most one character. iContract responded with this

error message:y

java.lang.RuntimeException: error: precondition violated
(Console::display(String)):
(/*declared in IConsole::display(String)*/
(s.length() < this.getMaxSize()))

at Console.display
at PrefixedConsole.display
at Main.main

That is, iContract blames the call to super.display inside PrefixedConsole’s display method,

rather than blaming the hierarchy or the caller of PrefixedConsole’s display. In a larger

program, such an erroneous explanation will send the programmer in the wrong direction

when searching for the defect.

yiContract’s response has been edited for clarity and formatting; the meaning is preserved.

21

Written by Alice

class C f

void set(int a) f � � � g
@pre f a > 0 g

int get() f � � � g
@post f a > 0 g

g

class D extends C f

void set(int a) f � � � g
@pre f a > 10 g

int get() f � � � g
@post f a > 10 g

g

Written by Bill

D d = new D() ;
d.set(5) ;
� � �

d.get() ;

Figure 2.4: Delayed, Incorrect Explanation for Contract Violation

In addition to blaming the wrong method calls, these erroneous contract monitoring

systems may also trigger an exception much later than the contract violation actually oc-

curs. Figure 2.4 contains a program fragment that illustrates this idea. It consists of two

classes, C and D, both of which implement an integer state variable. In C, the state vari-

able is allowed to take on all positive values and in D, the state variable must be strictly

larger than 10. Here, Alice wrote a hierarchy that does not match the behavioral subtyping

condition, because D is not a behavioral subtype of C. Since the existing tools combine

the pre-conditions with a disjunction, D’s pre-condition is effectively the same as C’s and

does not guarantee that the state variable is larger than 10. Thus, the call to set with 5 will

not signal an error. Then, when get is invoked, it will return 5, which incorrectly triggers

a post-condition violation, blaming Alice with an error message. Even though the blame

is assigned to the guilty party in this case, it is assigned after the actual violation occurs

(potentially even days later) and it is justified with an incorrect reason, decreasing the faith

in the tools. This makes the problem both difficult to reproduce and to understand.

Existing contract monitoring systems handle Java’s multiple inheritance for interfaces

in a similarly flawed manner. When a single class implements more than one interface, JM-

SAssert [38] collects both the pre-conditions and post-conditions together in conjunctions,

ensuring that the object meets all of the interfaces simultaneously. iContract [29] collects

22

all of the pre-conditions in a disjunction and post-conditions in a conjunction. Again, since

these manufactured contracts do not match the programmer’s written contracts, blame for

faulty programs may be delayed, mis-assigned, or entirely absent.

2.4.1 Jass

Jass [3, 4] is the only contract checker for Java that takes the contract hierarchy into con-

sideration. To discover hierarchy errors with Jass, a programmer must specify a simulation

method that creates an object of a supertype from the current object. The contract checker

uses this simulation method to create a supertype object each time a method is called or a

method returns. It checks that the relevant contracts of the supertype object and the orig-

inal object are related via the proper implications. If not, the contract checker signals a

hierarchy error.

Jass is based closely on Liskov and Wing’s work [35]. It directly translates their frame-

work to Java. Unfortunately, this framework and Java are mismatched in several ways.

First, subtypes in Java must function on the same state space as their respective super-

types. This implies that the programmer should not have to define a simulation method

and that the checks can be significantly cheaper than Jass’s because no new objects need to

be created. Second, this technique does not scale well to multiple inheritance. Third, this

technique only checks a single step of subtype hierarchy, even though the type hierarchy in

Java may have many steps.

2.5 Properly Monitoring Contracts

Programmers make mistakes. Their mistakes range from simple typographical errors to

complex, subtle logical errors. Accordingly, tools must not be based on the assumption

that programmers have constructed well-formed programs; in particular, tools should not

re-write programs based on such assumptions. Instead, tools should report errors based on

the program text that the programmers provide. Giving programmers good explanations in

terms of their original programs helps them pinpoint their mistakes, in a precise and timely

23

gc

gcg

g gc g

gggggwggg

gggg g

g g w

g gc

w gc gc

gc gc

Class HierarchyInterface Hierarchy

Figure 2.5: Hierarchy Checking

fashion. This is especially true for contract monitoring tools, whose purpose is to provide

checkable specifications of programs to improve software reliability.

Consider the following code fragment in our running example of display consoles:

IConsole o = ConsoleFactory.newConsole();
// Assume that ConsoleFactory returns a PrefixedConsole
String s = "Falls in gap";
o.display(s);

When the display method is invoked, the pre-condition for PrefixedConsole fails. The

blame, however, does not lie with the author of this code. Instead, the pre-conditions

on PrefixedConsole and Console have the wrong relationship and the blame lies with the

author of PrefixedConsole who implied that PrefixedConsole was a behavioral extension of

Console. To assign blame correctly, contract checking tools should check for, and report,

three different types of errors: pre-condition errors, post-condition errors, and hierarchy

extension errors.

Checking hierarchy extension errors must be separate from checking pre- and post-

condition errors, because the blame for the contract failure is not assigned to the same

programmer. At method calls, in addition to checking the pre-condition of the method

being invoked, the contract checking tool must verify that each pre-condition implies its

subtype’s pre-conditions, for the relevant portion of the contract hierarchy. Similarly at

method returns, in addition to checking the post-condition of the returning method, the

24

contract checking tool must verify that each post-condition implies its supertype’s post-

conditions, for the relevant portion of the contract hierarchy.

Figure 2.5 contains an example hierarchy. The right-hand side of the figure is the class

hierarchy (tree) and the left-hand side is the interface hierarchy (dag). The curved lines

indicate that the filled-in class implements the two filled-in interfaces. At each method call

and return for instantiations of the filled-in class, the pre- and post-condition implications

between the bullseye classes must be checked. I will show in the next chapter how to

compile contracts so that hierarchy checking is performed in this manner.

Chapter 3

Contract Compilation

A contract monitor acts like a compiler. More concretely, it eliminates contracts from the

program’s source text and insert statements that validate the contracts at runtime. This

process is best described as a compiler that consumes a language containing contract anno-

tations and produces one without. This chapter develops such a contract compiler for Java

that properly handles hierarchy violations.

The chapter is organized in three sections. The first describes the contract compiler

with a series of examples. The second discusses how to integrate the compiler with Java’s

compilation model and the last discusses efficiency issues.

3.1 How to Check Contracts and Assign Blame

The contract compiler consumes a Java-like language with contract specifications on meth-

ods and interfaces, and produces plain Java, augmented with three new statements: pre-

Blame, postBlame, and hierBlame. Each of these new statements accepts a string naming

the class that is to be blamed for the respective failure. When they are executed, the pro-

gram halts with an appropriate error message that blames the author of the class named by

the argument.

Abstractly, the contract compiler transfers pre-condition and post-condition contracts

into wrapper methods that check the contracts and call the corresponding original method.

It rewrites calls to methods with contracts into calls to the appropriate wrapper method.

Furthermore, method calls in the elaborated program are rewritten to call these wrapper

methods, based on the static type of the object whose method is invoked. Thus, the trans-

lation depends on the type analysis and takes into account the type hierarchy. As such, the

26

C

(a)

I C

(b)

J

I C

6

(c)

I C

D

6

(d)

I J

K C
@@I ���

(e)

Figure 3.1: Section 3.1 Overview

contract compiler must be integrated with the type-checker.

Figure 3.1 shows a series of hierarchy diagrams that provide an outline for this section.

Each diagram corresponds to a configuration of classes and interfaces. The boxes represent

classes and interfaces. The classes are named C and D and the interfaces are named I , J ,

and K. The single lines with arrow-heads represent both class and interface inheritance and

the double lines (without arrow-heads) represent interface implementation.

3.1.1 Flat Contract Checking

Diagram 3.1 (a) illustrates the simplest case. Figure 3.2 contains program text corre-

sponding to this diagram and its translation. The program consists of two classes, C and

Main. The original C class has a method m with a pre-condition and a post-condition. Its

translation has two methods, the original m and the wrapper method m C. The name of

the wrapper method is synthesized from the name of the original method and the name of

the class. The wrapper method accepts one additional argument naming the class that is

calling the method, which is blamed if the pre-condition fails. In figure 3.2 lines 4–6, the

wrapper method checks the pre-condition and blames the class of the caller if a violation

occurs. Then, in line 7, it runs the original method. Finally, in lines 8–10, it checks the

post-condition, blaming the class itself for any violations of the post-condition. The con-

tract compiler also rewrites the call to m in Main to call the wrapper method, passing in

27

class C f

void m(int a) f � � � g
@pre
� � � C’s pre-condition � � �

@post
� � � C’s post-condition � � �

g

class Main f

public static void
main(String[] argv) f

new C().m(5) ;
gg

1: class C f

2: void m (int a) f � � � g
3: void m C (string tbb , int a) f
4: if (! � � � C’s pre-condition � � �) f
5: preBlame(tbb) ;
6: g

7: m(a) ;
8: if (! � � � C’s post-condition � � �) f
9: postBlame("C") ;
10: ggg

12: class Main f

13: public static void
14: main(String[] argv) f
15: new C().m C("Main", 5) ;
16: gg

Figure 3.2: Pre- and Post-condition Checking

"Main" as an additional argument to be blamed for a pre-condition violation.

3.1.2 Interface Implementation

Diagram 3.1 (b) contains a class and an interface. The class implements the interface. As

with the previous example, when a method is called, its pre-condition must be checked,

though the pre-condition to be checked depends on the static type of the reference to the

object whose method is invoked. Since that may be either I or C, two wrapper methods are

generated: m C and m I, which each check their respective pre- and post-conditions.

The example in diagram (b) adds another twist to the simple translation in figure 3.2.

Since instances of C are substitutable in contexts expecting Is, we must also check that the

hierarchy is well-formed. In this case, I ’s pre-conditions must imply C’s pre-conditions

and C’s post-conditions must imply I ’s post-conditions, for each method call to m. There

are four possibilities for C and I’s pre-conditions. Clearly, if both are true, no violation

has occurred and if both are false, the pre-condition does not hold and the caller must

28

be blamed. If I ’s pre-condition is true and C’s pre-condition is false, the hierarchy is

malformed and the author of C must be blamed. If I ’s pre-condition is false and C’s

pre-condition is true, the hierarchy is well-formed and no hierarchy violation is signaled.

In this case, however, if the object is being viewed as an instance of I , the pre-condition

checking code in m I blames the caller for failing to establish the pre-condition. If the

object is being viewed as an instance of C, no error occurs and no violation is signaled.

The logic of post-condition checking is similar.

To perform the hierarchy checks, hierarchy checking methods are generated for each

interface and class method. For classes, the new methods are inserted into the translated

version of the class. For interfaces, the new methods are inserted into a new class that is

generated for each interface. These hierarchy checking methods recursively combine the

result of each pre- or post-condition with the rest of the pre- and post-condition results in

the hierarchy to determine if the hierarchy is well-formed.

Figure 3.3 contains a translation that illustrates how our compiler deals with diagram (b).

The wrapper methods, m C and m I, are augmented with calls to the hierarchy checking

methods, m pre hier and m post hier in figure 3.3 lines 11 and 16. The m pre hier and

m post hier methods in C ensure that the pre- and post-condition hierarchies are well-

formed. The checkers for I would appear in the I checkers class; they are analogous and

omitted.

For the pre-condition checking m pre hier accepts the same arguments as the original

method and returns the value of the pre-condition. To check the hierarchy, the method first

calls I checkers’s m pre hier method in line 20, which ensures that the pre-condition hier-

archy from I (and up) is well formed. Since this in I checkers does not refer to the object

whose contracts are checked, the current object is passed along to I checkers’s m pre hier.

In our example, the hierarchy from I (and up) is trivially well-formed, since I has no su-

pertypes. The result of I checkers’s m pre hier is the value of I ’s pre-condition on m and

is bound to sup in C’s m pre hier, as shown on line 19. Then, m pre hier binds res to the

value of its own pre-condition, in line 21. Next, it tests if I ’s pre-condition implies C’s

29

interface I f
void m(int a) ;

@pre
� � � C’s pre-condition

@post
� � � C’s post-condition

g

class C implements I f
void m(int a) f � � � g

@pre
� � � I ’s pre-condition

@post
� � � I ’s post-condition

g

1: interface I f � � � g
2: class I checkers f � � � g

4: class C implements I f
5: void m () f � � � g
6: void m I (string tbb , int a) f � � � g
7: void m C (string tbb , int a) f
8: if (! � � � C’s pre-condition � � �) f
9: preBlame(tbb) ;

10: g

11: m pre hier(a) ;
12: m(a) ;
13: if (! � � � C’s post-condition � � �) f
14: postBlame("C") ;
15: g

16: m post hier("C", false, a) ;
17: g

18: boolean m pre hier(int a) f
19: boolean sup =

20: I checkers.m pre hier(this, a) ;
21: boolean res = � � � C’s pre-condition ;
22: if (!sup jj res) f // sup) res
23: return res ;
24: g else f
25: hierBlame("C") ;
26: gg

27: void m post hier(string tbb , boolean last , int a) f
28: boolean res = � � � C’s post-condition ;
29: if (!last jj res) f // last) res
30: I checkers.m post hier ("C", res, this, a) ;
31: g else f
32: hierBlame(tbb) ;
33: ggg

Figure 3.3: Hierarchy Checking

pre-condition, with the expression !sup jj res in line 22, which is logically equivalent to

sup) res. If the implication holds, m pre hier returns the result of the pre-condition, in

line 23. If not, it evaluates the hierBlame statement in line 25, which aborts the program

and blames C as a bad extension of I .

The post-condition checking recursively traverses the interface and class hierarchy in

the same order as pre-condition checking. In contrast to the pre-condition checking, post-

condition checking accumulates the intermediate results needed to check the hierarchy in-

stead of returning them. In our example, the first two arguments to m post hier in C are

the accumulators: tbb (figure 3.3 line 27) is the class to be blamed for the failure and last

30

is the value of the post-condition of a subtype (initially false because there are no relevant

subtypes). To determine if there is a hierarchy violation, res is bound to the value of m’s

post-condition in line 28, and the implication is checked in line 29. If the hierarchy is

flawed at this point, tbb is blamed in line 32. In this example, this cannot happen, since

res is initially false, but the code is needed in general. Then, I checkers’s m post hier is

called in line 30, with the value of C’s post-condition and C’s name. Thus, the blame for a

bad hierarchy discovered during I checkers’s m post hier falls on C.

Diagram 3.1 (c) adds interface checking to the picture. In principle, the contract check-

ers for the program in diagram (c) are the same as those in diagram (b). The additional

interface generates an additional class for checking the additional level in the hierarchy, but

otherwise contract checking proceeds as in diagram (b).

3.1.3 Class Inheritance

Diagram 3.1 (d) introduces class inheritance (or implementation inheritance). It poses a

more complex problem for our contract compiler. As with an additional interface, new

methods are generated to check the hierarchy. The new hierarchy checking methods, how-

ever, are only used when an instance of the derived class is created. That is, if the program

creates only instances of C, the hierarchy below C is not checked. Instances of D, however,

do check the entire hierarchy, including C’s and I’s pre- and post-conditions. In general,

the conditions of every interface and every superclass of the originally instantiated class

are checked at each method call and each method return to ensure the hierarchy is sound.

3.1.4 Multiple Inheritance

Diagram 3.1 (e) shows an interface with two super-interfaces. According to the discussion

in chapter 2, the hierarchy checkers must check that the pre-condition in I implies the pre-

condition in K and the pre-condition in J implies the pre-condition in K.� The following

�Another alternative, as mentioned in footnote � in chapter 2, is to ensure that I ’s and J’s conditions are

equivalent. This could easily be checked at this point in the hierarchy checker.

31

interface I f
void m(int a);

@pre
� � � I ’s pre-condition � � �

@post
� � � I ’s post-condition � � �

g

interface J f
void m(int a);

@pre
� � � J’s pre-condition � � �

@post
� � � J’s post-condition � � �

g

interface K extends I , J f
void m(int a);

@pre
� � � K’s pre-condition � � �

@post
� � � K’s post-condition � � �

g

1: class I checkers f � � � g
2: class J checkers f � � � g

4: class K checkers f
5: static boolean m pre hier(K this, int a) f
6: boolean sup =

7: I checkers.m pre hier(this, a) jj
8: J checkers.m pre hier(this, a) ;
9: boolean res = � � � K’s pre-condition � � � ;

10: if (!sup jj res) f // sup) res
11: return res ;
12: g else f
13: hierBlame("K") ;
14: gg

15: static void m post hier(string tbb , boolean last ,
16: K this, int a) f
17: boolean res = � � � K’s post-condition � � � ;
18: if (!last jj res) f // last) res
19: return
20: I checkers.m post hier("K", res, this, a)
21: &&
22: J checkers.m post hier("K", res, this, a);
23: g else f
24: hierBlame(tbb) ;
25: ggg

Figure 3.4: Hierarchy Checking for Multiple Inheritance

boolean identity

(a! c) ^ (b! c), (a _ b) ! c

tells us that we can just check that disjunction of I ’s and J’s pre-conditions implies K’s pre-

condition. Accordingly, as shown in figure 3.4, K checkers’s m pre hier method hierarchy

checker combines the results of I checkers’s and J checkers’s m pre hier methods in a

disjunction and binds that to sup in figure 3.4 lines 6–8. Thus, the contract checker’s

traversal of the type hierarchy remains the same.

For post-conditions, we take advantage of a similar boolean identity:

(a! b) ^ (a! c) , a! (b ^ c)

and combine the recursive calls with a conjunction to compute the result of the post-

condition hierarchy checking method, as shown in m post hier’s definition in figure 3.4

lines 19–22.

32

3.2 Environmental Considerations

Our contract compiler does not need to install a class loader, generate any extra .java or

.class files, nor does it require any extra class libraries during evaluation. These features

of our design enable our contract compiler to integrate seamlessly with Java’s compilation

model, unlike other existing Java contract checkers.

This smooth interaction is due to the fact that the compiler produces a single Java

.class file for each source class and interface. As described in the previous section,

however, the contract compiler generates an additional class for each interface. An imple-

mentation should instead augment the .class file generated for the interface with enough

information to add the wrapper and hierarchy methods to each class that implements the

interface. This would be done using a custom attribute in the class file that contains the

byte-codes of the contracts. The hierarchy checking methods for interfaces are then copied

into classes that implement interfaces. This would require some code duplication, but it

would not be much, for most programs.

In the code examples in section 3.1, we used method names for wrappers that are valid

Java identifiers. In an implementation, special names for wrapper methods could be used

in the class files to eliminate name clashes with programmer-defined method names. Addi-

tionally, an implementation would not add new blame-assigning statements to Java; instead

it would inline code that raises an exception to blame the guilty party.

Since our contract compiler uses wrapper methods to check contracts and redirects

each method call to call the wrapper methods, the programmer’s original methods are still

available in the class. Thus, the .class files that our contract compiler generates can be

linked to existing, pre-compiled byte-codes. This allows pre-existing byte-code distribu-

tions of Java code to interoperate with code compiled by our contract compiler, but at the

cost of losing contract enforcement. Since existing byte-code libraries would bypass the

wrapper methods and call the original methods directly, no pre-condition, post-condition

or hierarchy checking contract checking occurs.

33

3.3 Performance

Although our compiler design may seem far more expensive than traditional checkers, due

to the hierarchy checking, it is not. The traditional contract checkers also combine each

contract with the corresponding contracts in the supertype. Hence, both approaches to

contract checking evaluate the same contracts at each method call. For post-condition

checking, both approaches check the same contracts when the contracts succeed. For pre-

condition checking, traditional checkers might possibly short-cut some of the checks that

our contract checker would check (which leads to the mis-assigned blame explained ear-

lier). This additional cost thus pays for the additional guarantees of our approach.

Additionally, the method chaining in our hierarchy checking methods is unnecessary.

Because the class and interface hierarchies are static, the method chaining could be replaced

with nested if tests. If done in a naive manner, however, this could lead to code explosion.

An optimizing Java compiler could, however, inline the hierarchy checking method calls

when it would be profitable to do so.

Chapter 4

Contract Soundness

The failure of existing tools to properly assign blame for contract violations can be traced

directly to the lack of fundamental research on contract checking. To address this problem,

this chapter develops a formal model of Java with contracts in the form of a calculus. The

starting point is the Classic Java calculus [16]. It specifies the syntax, type system, and

semantics of a small Java-like language. I extended it with mechanisms for simple pre- and

post-condition contract specifications. Based on the extended calculus, contract checking

is modeled as a translation from the extended language with contracts into the Class Java

calculus extended with simple error-signalling primitives. Using the calculus, we state and

prove a contract soundness theorem. This theorem guarantees that the contract compiler

correctly catches contract violations and correctly assigns blame for contract violations.

This chapter is divided into six sections. The first section introduces the contract check-

ing framework and shows how it is based on the type soundness framework. Section 4.2

presents the syntax and section 4.3 presents the type checker. Section 4.4 presents the con-

tract elaborator. Section 4.5 presents the operational semantics. Finally section 4.6 states

and proves the contract soundness theorem, for this contract elaborator.

4.1 From Type Soundness to Contract Soundness

The development of meaningful type systems has benefited from a well-developed the-

ory [42]. In particular, good type systems satisfy a type soundness theorem, which ensures

that the type checker respects the language’s semantics and specifies what kinds of runtime

errors a program may signal.

A type soundness theorem has two parts. First, it specifies what kind of errors (or run-

35

time exceptions) the evaluation of a well-typed program is allowed to trigger. Second, it

implies that certain properties hold for the evaluation of well-typed subexpressions. For

example, an addition operation in an ML program will always receive two numbers, and

thus ML programs never terminate with errors due to the misuse of the addition operation.

An array indexing operation will always receive an integer as an index, but the integer may

be out of the array’s range. Hence, an ML program will never terminate with a non-integer

used as an array index, but it may terminate due to an out of bounds array index.

We can show that a contract checking system can satisfy a contract soundness theorem.

Like a type soundness theorem, the contract soundness theorem has two parts. First, it

states what kind of errors the evaluation of a monitored program may signal. Second,

it guarantees that the specified hierarchy of interfaces and classes satisfies implications

between the stated pre- and post-conditions of overridden methods.

4.2 Syntax

Figure 4.1 contains the syntax for Contract Java (adapted from Flatt et al [16]). The syntax

is divided into three parts. Programmers use syntax (a) to write their programs. The type

checker elaborates syntax (a) to syntax (b), which contains type annotations for use by the

evaluator and contract compiler. The contract compiler elaborates syntax (b) to syntax (c).

It elaborates the pre- and post-conditions into monitoring code; the result is accepted by

the evaluator.

A program P is a sequence of class and interface definitions followed by an expression

that represents the body of the main method. Each class definition consists of a sequence

of field declarations followed by a sequence of method declarations and their contracts. An

interface consists of method specifications and their contracts. The contracts are arbitrary

Java expressions that have type boolean.� A method body in a class can be abstract,

�We could have carried out our study in a more complex contract specification language, but plain Java

expressions suffice to express many important contracts. Additionally, using a single language for pre-

conditions, post-conditions, and expressions simplifies the presentation and proofs.

36

P ::= defn* e

defn ::= class c extends c
implements i*

f field* meth* g

j interface i extends i*
f imeth* g

field ::= t fd
meth ::= t md (arg*) f body g

@pre f e g @post f e g

imeth ::= t md (arg*)
@pre f e g @post f e g

arg ::= t var
body ::= e j abstract

e ::= new c j var j null
j e.fd j e.fd = e
j e.md (e*)
j super.md (e*)
j view t e
j let f binding* g in e
j if (e) e else e j true j false
j f e ; e g

binding ::= var = e
var ::= a variable name or this

c ::= a class name or Object
i ::= interface name or Empty

fd ::= a field name
md ::= a method name
t ::= c j i j boolean

(a) Surface Syntax

P ::= defn* e

defn ::= class c extends c
implements i*

f field* meth* g

j interface i extends i*
f imeth* g

field ::= t fd
meth ::= t md (arg*) f body g

@pre f e g @post f e g

imeth ::= t md (arg*)
@pre f e g @post f e g

arg ::= t var
body ::= e j abstract

e ::= new c j var j null
j e : c .fd j e : c .fd = e
j e: t.md (e*)
j super � this : c .md (e*)
j view t e
j let f binding* g in e
j if (e) e else e j true j false
j f e ; e g

binding ::= var = e
var ::= a variable name or this

c ::= a class name or Object
i ::= interface name or Empty

fd ::= a field name
md ::= a method name
t ::= c j i j boolean

(b) Typed Contract Syntax

P ::= defn* e

defn ::= class c extends c
implements i*

f field* meth* g

j interface i extends i*
f imeth* g

field ::= t fd
meth ::= t md (arg*) f body g

imeth ::= t md (arg*)

arg ::= t var
body ::= e j abstract

e ::= new c j var j null
j e : c .fd j e : c .fd = e
j e : t.md (e*)
j super � this : c .md (e*)
j view t e
j let f binding* g in e
j if (e) e else e j true j false
j f e ; e g
j return : t, c f e g
j preErr(e)
j postErr(e)
j hierErr(e)

binding ::= var = e
var ::= a variable name or this

c ::= a class name or Object
i ::= interface name or Empty

fd ::= a field name
md ::= a method name
t ::= c j i j boolean

(c) Core Syntax

Figure 4.1: Contract Java syntax; before and after contracts are compiled away

37

The sets of names for variables, classes, interfaces, fields, and methods are assumed to be mutually distinct. The
meta-variable T is used for method signatures (t : : : �! t), V for variable lists (var: : :), and � for environments
mapping variables to types. Ellipses on the baseline (: : :) indicate a repeated pattern or continued sequence, while
centered ellipses (� � �) indicate arbitrary missing program text (not spanning a class or interface definition).

CLASSESONCE(P) Each class name is declared only once
class c � � � class c0 � � � is in P =) c 6= c

0

FIELDONCEPERCLASS(P) Field names in each class declaration are unique
class � � � f � � � fd � � � fd0 � � � g is in P =) fd 6= fd0

METHODONCEPERCLASS(P) Method names in each class declaration are unique
class � � � f � � � md (� � �) f � � � g � � �md 0 (� � �) f � � � g � � � g is in P =) md 6=md

0

INTERFACESONCE(P) Each interface name is declared only once
interface i � � � interface i0 � � � is in P =) i 6= i0

METHODARGSDISTINCT(P) Each method argment name is unique
md (t1 var1 : : : tn varn) f � � � g is in P =) var1 , : : : varn , and this are distinct

�c
P Class is declared as an immediate subclass

c �c
P c

0 , class c extends c0 � � � f � � � g is in P
22c
P Field is declared in a class

hc.fd, ti 22c
P c , class c � � � f � � � t fd � � � g is in P

22c
P Method is declared in class

hmd, (t1 : : : tn �! t), (var1 : : : varn), ei 22c
P c

, class c � � � f � � � t md (t1 var1 : : : tn varn) feg � � � g is in P
�i
P Interface is declared as an immediate subinterface

i �i
P i0 , interface i extends � � � i0 � � � f � � � g is in P

22i
P Method is declared in an interface
hmd, (t1 : : : tn �! t)i 22 i

P i
, interface i � � � f � � � t md : (t1 arg1) : : : (tn argn) @pre f eb g @post f ea g � � � g is in P

��c
P Class declares implementation of an interface

c ��c
P i , class c � � � implements � � � i � � � f � � � g is in P

�c
P Class is a subclass

�c
P � the transitive, reflexive closure of �c

P

COMPLETECLASSES(P) Classes that are extended are defined
rng(�c

P) � dom(�c
P)[fObjectg

WELLFOUNDEDCLASSES(P) Class hierarchy is an order
�

c
P is antisymmetric

CLASSMETHODSOK(P) Method overriding preserves the type
(hmd, T , V , ei 22c

P c and hmd, T 0, V 0 , e0i 22c
P c

0) =) (T = T 0 or c 6�c
P
c
0)

2c
P Field is contained in a class

hc0.fd, ti 2c
P c

, hc0.fd, ti 22c
P c

0 and c0 = minfc00 j c �c
P c

00 and 9t0 s.t. hc00.fd, t0i 22c
P c

00g

2c
P Method is contained in a class
hmd, T , V , ei 2c

P c
, (hmd, T , V , ei 22c

P c
0 and c0 = minfc00 j c �c

P c
00 and 9e0; V 0 s.t. hmd, T , V 0, e0i 22c

P c
00g)

Figure 4.2: Predicates and relations in the model of Contract Java , i

38

�i
P Interface is a subinterface

�
i
P � the transitive, reflexive closure of �i

P

COMPLETEINTERFACES(P) Extended/implemented interfaces are defined
rng(�

i
P) [rng(��

c
P) � dom(�

i
P)[fEmptyg

WELLFOUNDEDINTERFACES(P) Interface hierarchy is an order
�i
P is antisymmetric

�c
P Class implements an interface

c �c
P i ,9c0;i0 s.t. c �c

P c
0 and i0 �i

P i and c0 ��c
P i0

INTERFACEMETHODSOK(P) Interface inheritance or redeclaration of methods is consistent
hmd, T i 22i

P i and hmd, T 0i 22i
P i0

=) (T = T 0 or 8i00(i00 6�i
P

i or i00 6�i
P

i0))
2 i
P Method is contained in an interface

hmd, T i 2i
P i , 9i0 s.t. i � i

P i0 and hmd, T i 22i
P i0

CLASSESIMPLEMENTALL(P) Classes supply methods to implement interfaces
c��c

P i =) (8md; T hmd, T i 2 i
P i =)9e; V 0 s.t. hmd, T , V 0, ei 2c

P c)
NOABSTRACTMETHODS(P; c) Class has no abstract methods (can be instantiated)

hmd, T , V , ei 2c
P c =) e 6= abstract

�P Type is a subtype
�P � �c

P [� i
P [�c

P

�P Type is an immediate subtype
�P � �c

P [� i
P [��c

P

2P Field or Method is in a type (method/interface)
hmd, T i 2P i , hmd, T i 2i

P i
2P Field or Method is in a type (method/class)

hmd, T i 2P c ,9T; V s:t:hmd, T , V , ei2c
P c

2P Field or Method is in a type (field/type)
hc.fd, ti 2P c , hc.fd, ti 2c

P c
PREP Pre-condition contract is in method of interface

e PREP hi,mdi , interface i f� � � t md arg @pre f e g @post f e0 g � � � g is in P
PREP Pre-condition contract is in method of class

e PREP hc,mdi , class c f� � � t md arg f body g @pre f e g @post f e0 g � � � g is in P
POSTP Post-condition contract is in method of interface

e POSTP hi,mdi , interface i f� � � t md arg @pre f e0 g @post f e g � � � g is in P
POSTP Post-condition contract is in method of class

e POSTP hc,mdi , class c f� � � t md arg f body g @pre f e0 g @post f e g � � � g is in P

Figure 4.3: Predicates and relations in the model of Contract Java, ii

39

indicating that the method must be overridden in a subclass before the class is instantiated.

Unlike Java, the body of a method is just an expression whose result is the result of the

method. Like Java, classes are instantiated with the new operator, but there are no class

constructorsy in Contract Java; instance variables are initialized to null. Finally, the view

and let forms represent Java’s casting expressions and the capability for binding variables

locally. In the code examples presented in this paper, we omit the extends and implements

clauses when nothing would appear after them.

The type checker translates syntax (a) to syntax (b). It inserts additional information

(underlined in figure 4.1 (b)) to be used by the contract elaborator and the evaluator. To

support contract elaboration, method calls are annotated with the type of the object whose

method is called. To support evaluation, field update and field reference are annotated with

the class containing the field, and calls to super are annotated with the class.

The contract elaborator produces syntax (c) and the evaluator accepts it. The @pre and

@post conditions are removed from interfaces and classes, and the contract expressions

are inserted elsewhere in the elaborated program. Syntax (c) also adds three constructs to

the language: preErr, postErr, and hierErr. These constructs are used to signal contract

violations.

Expressions of the shape:

return : t, c f e g

mark method returns. The type t indicates the type of the object whose method was in-

voked, in parallel to the type annotations on method calls, and the class name, c, is the

class that defined the invoked method. Unlike standard Java, in Contract Java the program-

mer does not write return expressions in the program. Instead, the evaluator introduces

return expressions as it executes the program. They are annotations that are used in the

statement and the proof of the contract soundness theorem.

yPre- and post-condition contracts for constructors can be treated as contracts on methods that are never

overridden.

40

A valid Contract Java program satisfies a number of predicates; these are described

in Figures 4.2 and 4.3. For example, the CLASSESONCE(P) predicate states that each class

name is defined at most once in the program P . Additionally, there are a number of relations

on the syntax of a valid Contract Java program. The relation�c
P associates each class name

in P to the class it extends, and the (overloaded) 22c
P relations capture the field and method

declarations of P .

The syntax-summarizing relations induce a second set of relations and predicates that

summarize the class structure of a program. The first of these is the subclass relation �c
P ,

which is a partial order if the COMPLETECLASSES(P) and WELLFOUNDEDCLASSES(P)

predicates hold. In this case, the classes declared in P form a tree that has Object at its

root.

If the program describes a tree of classes, we can decorate each class in the tree with the

collection of fields and methods that it accumulates from local declarations and inheritance.

The source declaration of any field or method in a class can be computed by finding the

minimum superclass (i.e., farthest from the root) that declares the field or method. This

algorithm is described precisely by the 2c
P relations. The 2c

P relation retains information

about the source class of each field, but it does not retain the source class for a method.

This reflects the property of Java classes that fields cannot be overridden (so instances of

a subclass always contain the field), while methods can be overridden (and may become

inaccessible).

Interfaces have a similar set of relations. The superinterface declaration relation � i
P

induces a subinterface relation � i
P . Unlike classes, a single interface can have multiple

proper superinterfaces, so the subinterface order forms a DAG instead of a tree. The set

methods of an interface, as described by2 i
P , is the union of the interface’s declared methods

and the methods of its superinterfaces.

Classes and interfaces are related by implements declarations, as captured in the ��c
P

relation. This relation is a set of edges joining the class tree and the interface graph, com-

pleting the subtype picture of a program. A type in the full graph is a subtype of all of its

41

ancestors.

The subtype structure of a program is captured by the �P relation.A type t is a subtype

of another type t0 in a program P , written t�P t
0, when one of these conditions holds:

� t and t0 are the same type,

� t and t0 are both classes, t is derived from t00 in P , and t00�P t
0,

� t and t0 are both interfaces, t is an extension of t00 in P (also written t � i
P t00), and

t00�P t
0, or

� t is a class and t0 is an interface, and either

– t implements t0 in P ,

– t implements an interface i in P and i�P t
0 , or

– t is derived from a class c in P and c�P t
0.

The relations PREP and POSTP relate expressions with pairs of methods and types.

An expression e is the pre-condition for m in t in the program P , written e PREP ht;mi, if

the expression e appears in the program P , declared as a precondition of m in t. Similarly

an expression e is a postcondition of m in t in the program P if e POSTP ht;mi.

4.3 Type Elaboration

The type elaboration rules for Contract Java are defined by the following judgements:

`p P) P 0 : t P elaborates to P 0 with type t

P `d defn) defn0 defn elaborates to defn0

P; c `m meth) meth0 meth in class c elaborates to meth0

P; i `i imeth) imeth0 imeth in interface i elaborates to imeth0

P;� `e e) e0 : t e elaborates to e0 with type t in �

P;� `s e) e0 : t e has type t using subsumption in �

P `t t t is a valid type

42

`p
CLASSESONCE(P) INTERFACESONCE(P) METHODONCEPERCLASS(P) FIELDONCEPERCLASS(P) COMPLETECLASSES(P)

WELLFOUNDEDCLASSES(P) COMPLETEINTERFACES(P) WELLFOUNDEDINTERFACES(P) INTERFACEMETHODSOK(P)
METHODARGSDISTINCT(P) CLASSESIMPLEMENTALL(P) P d̀ defnj) defn0

j
for j 2 [1; n] P; [] `e e) e0 : t

where P = defn1 : : : defnn e

`p defn1 : : : defnn e) defn01 : : : defn0n e0 : t

`d P `t tj for j 2 [1; n] P; c `m methk) meth0
k

for k 2 [1; p]

P `d class c � � � f t1 fd1 : : : tn fdn
meth1 : : : methp g

) class c � � � f t1 fd1 : : : tn fdn
meth01 : : : meth0

p
g

P `i imethj) imeth0
j

for j 2 [1; p]

P; i `d interface i � � � f imeth1 : : : imethp g) interface i � � � f imeth01 : : : imeth0p g

`m P `t t P `t tj for j 2 [1; n] P ,[this : to , var1 : t1 , : : : varn : tn] `s e) e0 : t
P ,[this : to , var1 : t1 , : : : varn : tn] `e eb) e0

b
: boolean P ,[this : to, @ret : t] `e ea) e0a : boolean

P; to `m t md (t1 var1 : : : tn varn) f e g

@pre f eb g @post f ea g

) t md (t1 var1 : : : tn varn) f e0 g
@pre f e0

b
g @post f e0a g

P `t t P `t tj for j 2 [1; n] P ,[this : to, var1 : t1 , : : : varn : tn] `e eb) e0
b

: boolean
P ,[this : to , @ret : t] `e ea) e0a : boolean
P; to `m t md (t1 var1 : : : tn varn) f abstract g

@pre f eb g @post f ea g

) t md (t1 var1 : : : tn varn) f abstract g
@pre f e0

b
g @post f e0

a
g

`i

P `t t P `t tj for j 2 [1; n] P;[this : i, var1 : t1 , : : : varn : tn] `e eb) e0
b

: boolean
P;[this : i, @ret : t] `e ea) e0

a
: boolean

P; i `i t md (t1 arg1 : : : tn argn) @pre f eb g @post f ea g) t md (t1 arg1 : : : tn argn) @pre f e0
b
g @post f e0

a
g

`e
P `t c NOABSTRACTMETHODS(P; c)

P;� `e new c) new c : c

var 2 dom(�)

P;� `e var) var : �(var)

P `t t

P;� `e null) null : t

P;� `e e) e0 : t0 hc.fd, ti 2P t0

P;� `e e.fd) e0 : c .fd : t

P;� `e e) e0 : t0 hc.fd, ti 2P t0 P;� `s ev) e0v : t

P;� `e e.fd = ev) e0 : c .fd = e0
v

: t

Figure 4.4: Context-sensitive Checks and Type Elaboration Rules for Contract Java, i

43

P;� `e e) e0 : t0 hmd, (t1 : : : tn �! t)i 2P t0 P;� `s ej) e0
j

: tj for j 2 [1; n]

P;� `e e.md (e1 : : : en)) e0: t0 .md (e01 : : : e0
n

) : t

P;� `e this) this : c0 c
0 �c

P c hmd, (t1 : : : tn �! t), (var1 : : : varn), ebi 2c
P c

P;� `s ej) e0
j

: tj for j 2 [1; n] eb 6= abstract

P;� `e super.md(e1 : : : en)) super � this : c .md(e01 : : : e0n) : t

P;� `s e) e0 : t

P;� `e view t e) e0 : t

P;� `e e) e0 : t0 t �P t0 or t 2 dom(� i
P) or t0 2 dom(� i

P)

P;� `e view t e) view t e0 : t

P;� `e ej) e0
j

: tj for j 2 [1; n] P;�[var1 : t1]� � �[varn : tn] `e e) e0 : t

P;� `e let f var1 = e1 � � � varn = en g in e) let f var1 = e01 � � � varn = e0n g in e0 : t

P;� `e true) true : boolean P;� è false) false : boolean

P;� `e e1) e01 : boolean P;� `e e2) e02 : t
P;� `e e3) e03 : t

P;� `e if (e1) e2 else e3) if (e01) e02 else e03 : t

P;� `e e1) e01 : t0 P;� `e e2) e02 : t

P;� `e f e1 ; e2 g) f e1 ; e2 g : t

`s;`t
P;� `e e) e0 : t0 t0 �P t

P;� `s e) e0 : t

t 2 dom(�c
P) [dom(� i

P)[fObject, Empty, booleang

P `t t

Figure 4.5: Context-sensitive Checks and Type Elaboration Rules for Contract Java, ii

44

The complete typing rules are shown in figures 4.4 and 4.5. A program is well-typed if

its class definitions and final expression are well-typed. A definition, in turn, is well-typed

when its field and method declarations use legal types and the method body expressions

are well-typed. Finally, expressions are typed and elaborated in the context of an environ-

ment that binds free variables to types. For example, the getc and setc rules for fields first

determine the type of the instance expression, and then calculate a class-tagged field name

using 2P ; this yields both the type of the field and the class for the installed annotation. In

the setc rule, the right-hand side of the assignment must match the type of the field, but this

match may exploit subsumption to coerce the type of the value to a supertype.

The type elaboration rules translate expressions that access a field, call a super method,

or call a normal method into annotated expressions (see the underlined parts of Figure 4.1).

For field uses, the annotated expression contains the compile-time type of the instance

expression, which determines the class containing the declaration of the accessed field. For

super method invocations, the annotated expression contains the compile-time type of this,

which determines the class that contains the declaration of the method to be invoked. For

regular method calls, the annotation contains the type of the object being called.

The contract expressions are well-typed if they have type boolean. In addition, pre-

condition expressions may contain references to the arguments of the checked method and

this, and post-condition expressions may contain references to the result of the method, and

this. The variable @ret refers to the result of the method in the post-condition.

4.4 Contract Elaboration

Contract checking is modeled as a translation, called Elab, from syntax (b) to syntax (c).

Since contract checking is triggered via method calls, we need to understand how Elab

must deal with those. Consider the following code fragment:

IConsole o = Factory.newConsole(� � �);
� � � o.display(“It’s crunch time.”) � � �

45

Since the programmer cannot know what kind of console o represents at run-time, he

can establish only the preconditions for display that IConsole specifies. Hence, the code

that Elab produces for the method call must first test the preconditions for display in ICon-

sole. If this test fails, the author of the method call has made a mistake. If the test succeeds,

the contract monitoring code can check the ancestor portion of the class and interface hier-

archy that is determined by o’s class tag.z These hierarchy checks ensure that the precon-

dition of an overridden method implies the precondition of the overriding method, and that

the postcondition of an overriding method implies the postcondition of each overridden

method.

To perform both forms of checking, Elab adds new classes to check the subtype hi-

erarchy and inserts methods into existing classes to check pre- and post-conditions. For

each method of a class, the elaborator inserts several wrapper methods, one for each type

that instances of the class might have. These wrapper methods perform the pre- and post-

condition checking and call the hierarchy checkers. Additionally, the elaborator redirects

each method call so it invokes the appropriate wrapper method, based on the static type of

the object whose method is invoked.

The translation given in this chapter differs from the one in the previous chapter. In

the previous chapter, hierarchy checking methods were added to each class. Here, the

hierarchy checking methods are separated into their own classes. This simplifies the model

and the proof of contract soundness. Both translations check the same contracts for any

given program.

In the above invocation, the elaborator inserts a display IConsole wrapper method into

the each console class since each console class can be cast to IConsole. Additionally,

it rewrites the call to the display method to call the display IConsole method, since o’s

type is IConsole. Each display IConsole method checks IConsole’s pre-condition and the

pre-condition hierarchy from the instantiated class upwards. Then the display Console

zFollowing ML tradition, we use the word “type” to refer only to the static type determined by the type

checker. We use the words “class tag” to refer to the so-called dynamic or run-time type.

46

prog
P ` defnj *d defn0

j
defnjpre defnjpost for j 2 [1; n] P , main ` e *e e0 where P = defn1 : : : defnn e

` defn1 : : : defnn e *p defn0
1

defn1pre defn1post : : : defn0n defnnpre defnnpost e0

defni

` imethj *i imeth0
j

P; c ` imethj *pre methjpre P; c ` imethj *post methjpost for j 2 [1; n]

P ` interface i extends i1 : : : il imeth1 : : : imethn *d interface i extends i1 : : : il imeth0
1
: : : imeth0n

class check i pre imeth1pre � � � imethnpre
class check i post imeth1post � � � imethnpost

defnc

P; c ` methj *m meth0
j

P; c ` methj *pre methjpre P; c ` methj *post methjpost for j 2 [1; n]

P, c, t ` methj *w wrapt methodj for j 2 [1; n], and t such that c �P t

P ` class c extends c
0 implements i1 : : : il

meth1 : : : methn
*d class c extends c

0 implements i1 : : : il
meth0

1
: : : meth0n

wrapt method1 : : : wrapt methodn : : :

class check c pre extends Object meth1pre � � � methnpre
class check c post extends Object meth1post � � � methnpost

methi

P ` t md (t1 var1 : : : tn varn) @pre f eb g @post f ea g*i t md (t1 var1 : : : tn varn)

methc

P; c ` e *e e0

P; c ` t md (t1 arg1 : : : tn argn) f e g @pre f eb g @post f ea g*m t md (t1 arg1 : : : tn argn) f e0 g

wrap

eb PREP ht;mdi ea POSTP ht;mdi P; c ` eb *e e0
b

P; c ` ea *e e0a

P, c, t ` t0 md (t1 x1 , � � �, tj xj) � � �*w

t0 t md (t1 x1 , � � �, tj xj , string cname) f
if (e0

b
) f
(new check c pre()).md(this, x1 , � � �, xj);
let f @ret = this.md(x1 , � � �, xj) g
in f if (e0a)

(new check c post()).md(“dummy”, true, this, md, x1 , � � �, xj);
else

postErr(c);
md g

g else f
preErr(cname);

g
g

Figure 4.6: Blame Compilation, i

method calls the original display method. When it returns, the display IConsole method

checks IConsole’s post-condition and the post-condition hierarchy from the instantiated

class upwards. The rest of this section presents the elaborator both concretely via the

example of the console classes and interfaces, and abstractly via judgements that define the

elaborator.

47

prehierc

c �c
P Object for all i such that c �c

P i

P; c ` t md (t1 var1 : : : tn varn) f e g

@pre f eb g
@post f ea g

*pre boolean md (c this, t1 var1 , � � �, tn varn) f
let f next = (new check i pre()).md(this, var1 , � � �, varn) jj � � �

res = ea g

in if (!next jj res) // next) res
res

else
hierErr(c)

g

c �c
P c

0
c
0 6= Object for all i such that c �c

P i

P; c ` t md (t1 var1 : : : tn varn) f e g

@pre f eb g
@post f ea g

*pre boolean md (c this, t1 var1 , � � �, tn varn) f
let f next = (new check c0 pre()).md(this, var1 , � � �, varn) jj

(new check i pre()).md(this, var1 , � � �, varn) jj � � �
res = ea g

in if (!next jj res) // next) res
res

else
hierErr(c)

g

prehieri

for all i0 such that i �i
P i0

P; i ` t md (t1 var1 : : : tn varn) f e g

@pre f eb g
@post f ea g

*pre boolean md (i this, t1 var1 , : : : tn varn) f
let f next = (new check i0 pre()).md(this, var1 , � � �, varn) jj � � �

res = eb g
in if (!next jj res) // next) res

res
else

hierErr(i)
g

Figure 4.7: Blame Compilation, ii

48

posthierc

c �c
P Object for all i such that c �c

P i

P; c ` t md (t1 var1 : : : tn varn) f e g

@pre f eb g
@post f ea g

*post boolean md (String tbb, boolean last, c this, t md, t1 var1 , � � �, tn varn) f
let f res = ea g

in if (!last jj res) // last) res
(new check i post()).md(c, res, this, md, var1 , � � �, varn) && � � �

else
hierErr(tbb)

g

c �c
P c

0
c
0 6= Object for all i such that c �c

P i

P; c ` t md (t1 var1 : : : tn varn) f e g

@pre f eb g
@post f ea g

*post boolean md (String tbb, boolean last, c this, t md, t1 var1 , � � �, tn varn) f
let f res = ea g

in if (!last jj res) // last) res
(new check c0 post()).md(c, res, this, t md, var1 , � � �, varn) &&
(new check i post()).md(c, res, this, t md, var1 , � � �, varn) && � � �

else
hierErr(tbb)

g

posthieri

for all i0 such that i �i
P i0

P; i ` t md (t1 var1 : : : tn varn) f e g

@pre f eb g
@post f ea g

*post boolean md (String tbb, boolean last, i this, t md, t1 var1 , � � �, tn varn) f
let f res = ea g

in if (!last jj res) // last) res
(new check i0 post()).md(c, res, this, md, var1 , � � �, varn) && � � �

else
hierErr(tbb)

g

Figure 4.8: Blame Compilation, iii

49

exp

P; c ` new c
0 *e new c

0 P; c ` null *e null P; c ` var *e var

P; c ` e *e e0 P; c ` ev *e e0v
P; c ` e : c0 .fd = ev *e e0 : c0 .fd = e0v

P; c ` e *e e0

P; c ` e : c0 .fd *e e0 : c0 .fd

calli

P; c ` e *e e0 P; c ` ej : i *e e0
j

for j 2 [1; n]

P; c ` e: i.md (e1 , � � �, en) *e e0 .i md(e01 , � � �, e0n)

P; c0 ` e *e e0 P; c0 ` ej : c *e e0
j

for j 2 [1; n]

P; c0 ` e: c.md (e1 , � � �, en) *e e.c md (c0, e1 � � �, en t)

P; c ` ej *e e0
j

for j 2 [1; n]

P; c ` super � this : c0 .md(e1 : : : en) *e super � this : c0 .c0 md(e01 : : : e0
n

)

P; c ` e *e e0

P; c ` view t e *e view t e0
P; c ` ej *e e0

j
for j 2 [1; n] P; c ` e *e e0

P; c ` let f var1 = e1 � � � varn = en g in e *e let f var1 = e01 � � � varn = e0
n
g in e0

P; c ` true *e true

P; c ` false *e false

P; c ` e1 *e e01 P; c ` e2 *e e02 P; c ` e3 *e e03
P; c ` if (e1) e2 else e3 *e if (e01) e02 else e03

P; c ` e1 *e e01 P; c ` e2 *e e02
P; c ` f e1 ; e2 g*e f e01 ; e02 g

Figure 4.9: Blame Compilation, iv

50

Formally, our contract elaborator is defined by these judgements:

` P *p P0

The program P compiles to the program P0.
P ` defn *d defn0 defnpre defnpost

defn compiles to defn0 with checkers defnpre and defnpost in P.

P ` imeth *i imeth0

imeth compiles to imeth0.

P; c ` meth *m meth0

meth compiles to meth0 in class c.
P, c, t ` meth *w meth0

meth0 checks the pre- and post-conditions for t’s meth,
which blames c for contract violations.

P; c ` e *e e0

e compiles to e0, which blames c for contract violations.

P; t ` imeth *pre imeth0

imeth0 checks the hierarchy for the pre-condition of imeth in t.
P; t ` imeth *post imeth0

imeth0 checks the hierarchy for the post-condition of imeth in t.

The first judgement, *p, is the program elaboration judgement. It defines Elab:

Elab(P) = P 0 where P *p P0

Occasionally, Elab is also applied to other syntactic categories, such as expressions. In that

case, the context dictates an implied program that Elab is applied to and the result is the

elaborated expression, from that program.

The *d judgement builds three definitions for each definition in the original program.

The first is derived from the original definition. The second and third are the pre- and

post-condition hierarchy checking classes, respectively.

The *i judgement removes interface method contracts. The *m, *e, and *w judge-

ments produce the annotated class. The *w judgement constructs the wrapper methods that

check the contracts. The *m judgement re-writes methods and removes class method con-

tracts. The *e judgement rewrites expressions so that method calls are re-directed to the

wrapper methods, based on the type of the call. The final two judgements, *pre and *post,

51

produce the methods for the pre- and post-condition hierarchy checkers. The judgments

are given in figures 4.6, 4.7, 4.8, and 4.9.

As the [defnc] rule and the [defni] rule show, each definition in the original program

generates a definition and two additional classes. The first definition corresponds to the

original definition, with the contracts removed and, in the case of classes, wrapper methods

inserted. These wrapper methods check for pre-condition and post-condition violations,

and invoke the hierarchy checkers. The elaborator inserts wrapper methods based on the

types that instances of the class might have.

Consider the Console class of chapter 2. The elaboration adds two wrapper methods

for getMaxSize, because instances of Console can have two types: IConsole and Console.

The elaborator also adds two wrapper methods for display:

class Console implements IConsole f

int getMaxSize() f � � � g

int getMaxSize IConsole � � �

int getMaxSize Console � � �

void display(String s) f � � � g

void display IConsole � � �

void display Console � � �

g

Similarly, for RunningConsole and PrefixedConsole, Elab adds three methods, since

instances of each of those classes may take on three types. Here is RunningConsole:

class RunningConsole extends Console f

int getMaxSize() f � � � g

int getMaxSize IConsole � � �

int getMaxSize Console � � �

int getMaxSize RunningConsole � � �

void display(String s) f � � � g

void display IConsole � � �

void display Console � � �

void display RunningConsole � � �

g

52

The [wrap] rule specifies the shape of the wrapper methods. It uses the program P,

the class c where the wrapper method appears, the type t at which the method is being

called, and the method header t0 md (t1 x1, � � �, tj xj). The wrapper method accepts the same

arguments that the original method did, plus one extra argument naming the class whose

program text contains the method call. The wrapper method first checks the pre-condition

e0b. If the check fails, it blames the calling context for not establishing the required pre-

condition. If the pre-condition succeeds, the wrapper calls the pre-condition hierarchy

checker for c. The pre-condition hierarchy checker traverses the class and interface hier-

archy, making sure that each subtype is a behavioral subtype, for the pre-conditions. If

the hierarchy checking succeeds, the wrapper method calls the original method. After the

method returns, it saves the result in the variable md, checks the post-condition, e 0a and

calls the post-condition hierarchy checker. Like the pre-condition hierarchy checkers, the

post-condition hierarchy checker ensures that each subtype is a behavioral subtype, for

the post-conditions. Finally, if the post-condition checking succeeds, the wrapper method

delivers the result of the wrapped method.

Additionally, the [wrap] rule rewrites the contract expressions themselves so that pre-

and post-condition of methods invoked by the contracts are also checked.

Here is Console’s display Console wrapper method:x

void display Console(String s, string cname) f
if (s.length() < this.getMaxSize()) f

(new check Console pre()).display(this, s);
let f display = this.display(s) g
in f

(new check Console post())
.display(“dummy”, true, this, display, s);

g

g else f

preErr(cname);
g

g

xWe omit the annotations inserted by the type-checker to clarify the presentation.

53

The original console class’s display method has no post-condition, so the if-expression from

the [wrap] rule is eliminated. The variable display is bound to the result of the method,

for the post-condition. The first two arguments to check Console post are initial values for

accumulators and are explained below.

The second and third classes definitions introduced by the [defni] and [defnc] rules are

the hierarchy checkers. Each hierarchy checker is responsible for checking a portion of the

hierarchy and combining its result with the rest of the hierarchy checkers. Unlike pre- and

post-condition checking, hierarchy checking begins at the class tag for the object; it is not

based on the static type of the object. As an example, consider the hierarchy diagram in

figure 4.10 and this code fragment:

I o = new C();
o.m();

When m is invoked, the hierarchy checkers must ensure that the hierarchy is well-formed.

Since instances of C can never be cast to D or K, only the boxed portion of the hierarchy in

figure 4.10 is checked. Thus, when o’s m is invoked, the hierarchy checking classes ensure

that I’s pre-condition implies C’s pre-condition and that J’s pre-condition also implies C’s

pre-condition. Similarly, when m returns, only I, J, and C’s post-conditions are checked to

ensure the post-condition hierarchy is well-formed, too.

In our running console example, the following classes are generated:

� check IConsole pre,

� check Console pre,

� check RunningConsole pre,

� check PrefixedConsole pre,

� check IConsole post,

� check Console post,

54

I J

C K

D
Q

Q
Qk

�
�
�3

�
�
�3

Q
Q

Qk

Figure 4.10: Example Hierarchy Diagram

� check RunningConsole post, and

� check PrefixedConsole post.

Each of the hierarchy-checking classes has a method for each method in the original

class. The methods in the hierarchy-checking classes have the same names as the methods

in the original class, although their purpose is different. The hierarchy checking methods

check the pre- or post-condition for that method. Then they combine that result with the

results of the rest of the hierarchy checking to determine if there are any hierarchy viola-

tions. In our example, each hierarchy checking class contains a getMaxSize method and a

display method.

The [prei] rule produces the pre-condition hierarchy checker for the md method of

the interface i. The resulting method accepts the same arguments that md accepts, plus

a binding for this. The this argument is passed along so the contract checking code can

test the state of the object. The hierarchy checking method returns the result of the pre-

condition for md. First, it recursively calls the hierarchy checkers for each of the imme-

diate super-interfaces of i and combines their results in a disjunction. Second, it evaluates

the pre-condition for md. Finally, the checker ensures that the hierarchy is well-formed by

checking that the pre-conditions for the super-methods imply the current pre-condition. If

55

the implication holds, the checker returns res, the value of this pre-condition. If the impli-

cation does not hold, the hierarchy checker method signals a hierarchy error and blames i,

the extending interface. The rule for classes is analogous.

The pre-condition checkers for RunningConsole and Console display methods are:

class check RunningConsole pre extends Object f
boolean display (RunningConsole this, String s) f

let f next = (new check Console pre()).display(this, s)
res = true g

in if (!next jj res) // next) res
res

else
hierErr(“RunningConsole”)

g

g

and

class check Console pre extends Object f
boolean display (Console this, String s) f

let f next = (new check IConsole pre()).display(this, s)
res = s.length() < this.getMaxSize() g

in if (!next jj res) // next) res
res

else
hierErr(“Console”)

g

g

The [posti] rule specifies the post-condition hierarchy checking method. The post-

condition hierarchy checker is similar to the pre-condition checker. Rather than returning

the truth value of each condition, however, the post-condition checker accumulates the

results of the conditions in the last argument. Using an accumulator in this fashion means

the post-condition checker uses the same recursive traversal of the type hierarchy as the pre-

condition checker, but checks the implications in the reverse direction. The tbb argument is

also an accumulator. It represents the subclass to be blamed if the implication does not hold.

As mentioned above, the initial values for the accumulators tbb and last are “dummy” and

false, respectively. Since the post-condition checker for a particular class actually blames

56

a subclass for a hierarchy violation, the first post-condition checker never assigns blame.

The initial false passed via last guarantees that no blame is assigned in the first checker and

that “dummy” is ignored. Additionally, the highest class or interface in the hierarchy can

never be blamed, since it cannot possibly violate the hierarchy.

Here is the code for the post-condition hierarchy checker for getMaxSize in both Run-

ningConsole and Console:{

class check RunningConsole post extends Object f
boolean getMaxSize (String tbb, boolean last,

RunningConsole this, int getMaxSize) f
let f res = getMaxSize > 0 g

in if (!last jj res) // last) res
(new check Console post())

.getMaxSize(“RunningConsole”, res, this, getMaxSize)
else

hierErr(tbb)
g

g

and

class check Console post extends Object f
boolean getMaxSize (String tbb, boolean last,

Console this, int getMaxSize) f
let f res = getMaxSize > 0 g

in if (!last jj res) // last) res
(new check IConsole post())

.getMaxSize(“Console”, res, this, getMaxSize)
else

hierErr(tbb)
g

g

Finally, the [calli] rule shows how the elaboration re-writes method calls. Each method

call becomes a call to a wrapper method, based on the type of the object whose method is

invoked. For example, the code fragment:

{In chapter 3, the getMaxSize methods would have been inserted directly into the RunningConsole and

Console classes directly.

57

IConsole o = Factory.newConsole(� � �);
o.display(“It’s crunch time”);

is rewritten to this:

IConsole o = Factory.newConsole(� � �);
o.display IConsole(“It’s crunch time”);

Figure 4.11 gathers the code fragments of our running example. The left column con-

tains the proper interfaces and classes, enriched with wrapper methods. The right column

contains the hierarchy checking classes, plus the translation of the method call.

4.5 Evaluation

The operational semantics for Contract Java is defined as a contextual rewriting system on

pairs of expressions and stores [16, 52]. Each evaluation rule has this shape:

P ` he, Si ,! he, Si [reduction rule name]

A store (S) is a mapping from variables to class-tagged field records. A field record (F)

is a mapping from field names to values. We consider configurations of expressions and

stores equivalent up to �-renaming; the variables in the store bind the free variables in the

expression. Each e is an expression and P is a program, as defined in figure 4.1.

The complete evaluation rules are in Figure 4.12. For example, the call rule models

a method call by replacing the call expression with the body of the invoked method and

syntactically replacing the formal parameters with the actual parameters. The dynamic as-

pect of method calls is implemented by selecting the method based on the run-time type of

the object (in the store). In contrast, the super reduction performs super method selection

using the class annotation that is statically determined by the type-checker.

The most noteworthy rules are call and super. Both reduce to return expressions. The

return expressions are markers that signal where post-condition contract violations might

occur. They are inserted by method call and super call reductions for the statement of the

contract soundness theorem.

58

interface IConsole f

int getMaxSize();
void display(String s);

g

class Console implements IConsole f

int getMaxSize() f � � � g
int getMaxSize IConsole � � �

int getMaxSize Console � � �

void display(String s) f � � � g
void display IConsole � � �

void display Console(String s, string cname) f
if (s.length() < this.getMaxSize()) f

(new check Console pre()).display(this, s);
let f display = this.display(s) g
in f

(new check Console post()).display
(“dummy”, true, this, display, s);

g

g else f

preErr(cname);
g

g

g

class RunningConsole extends Console f

int getMaxSize IConsole � � �

int getMaxSize Console � � �

int getMaxSize RunningConsole � � �

void display(String s) f
� � � super.display

(String.substring
(s, � � �, � � � + getMaxSize())) � � �

g

void display IConsole � � �

void display Console � � �

void display RunningConsole � � �

g

class PrefixedConsole extends Console f

int getMaxSize IConsole � � �

int getMaxSize Console � � �

int getMaxSize˙PrefixedConsole � � �

String getPrefix() f
return “>> ”;

g

void display(String s) f
super.display(this.getPrefix() + s)

g

void display IConsole � � �

void display Console � � �

void display˙PrefixedConsole � � �

g

class check IConsole pre f � � � g

class check Console pre extends Object f
boolean display (Console this, String s) f

let f next = (new check IConsole pre()).display(this, s)
res = s.length() < this.getMaxSize() g

in if (!next jj res) // next) res
res

else
hierErr(“Console”)gg

class check RunningConsole pre extends Object f
boolean display (RunningConsole this, String s) f

let f next = (new check Console pre()).display(this, s)
res = true g

in if (!next jj res) // next) res
res

else
hierErr(“RunningConsole”)

g

g

class check PrefixedConsole pre f � � � g

class check IConsole post f � � � g

class check Console post extends Object f
boolean getMaxSize (String tbb, boolean last,

Console this, int getMaxSize) f
let f res = getMaxSize > 0 g

in if (!last jj res) // last) res
(new check IConsole post())

.getMaxSize(“Console”, res, this, getMaxSize)
else

hierErr(tbb)
g

g

class check RunningConsole post extends Object f
boolean getMaxSize (String tbb, boolean last,

RunningConsole this, int getMaxSize) f
let f res = getMaxSize > 0 g

in if (!last jj res) // last) res
(new check Console post())

.getMaxSize(“RunningConsole”, res, this, getMaxSize)
else

hierErr(tbb)
g

g

class check PrefixedConsole post f � � � g

IConsole o = ConsoleFactory(� � �);
o.display IConsole(“It’s crunch time”);

Figure 4.11: Elaborated Console Example

59

e = � � � j object
v = object j null

true j false

E = [] j E : c .fd j E : c .fd = e j v : c .fd = E

j E.md(e � � �) j v.md(v � � � E e � � �)
j super � v : c .md(v � � � E e � � �)
j view t E j if (E) e else e j f E ; e g
j let var = v � � � var = E var = e � � � in e

P ` hE[object : t.md(v1 , � � �, vn)], Si ,! hE[return : t, c fe[object=this, v1=var1 , : : : vn=varn]g], Si [call]
where S(object) = hc, Fi and hmd, (t1 : : : tn �! t), (var1 : : : varn), ei 2c

P c

P ` hE[super � object : c .md(v1 , � � �, vn)], Si
,! hE[return : c, c fe[object=this, v1=var1 , : : : vn=varn]g], Si

[super]

where hmd, (t1 : : : tn �! t), (var1 : : : varn), ei 2c
P c

P ` hE[return : t, c f v g], Si ,! hE[v], Si [return]

P ` hE[new c], Si ,! hE[object], S[object 7!hc, Fi]i [new]
where object 62 dom(S) and F = fc0.fd 7!null j c�c

P c0 and 9t s.t. hc0.fd, ti 22c
P c0g

P ` hE[object : c0 .fd], Si ,! hE[v], Si [get]
where S(object) = hc, Fi and F(c0 .fd) = v

P ` hE[object : c0 .fd = v], Si ,! hE[v], S[object 7!hc, F [c0.fd 7!v]i]i [set]
where S(object) = hc, Fi

P ` hE[view t0 object], Si ,! hE[object], Si [cast]
where S(object) = hc, Fi and c�P t0

P ` hE[let var1 = v1 � � � varn = vn in e], Si ,! hE[e[v1=var1 ... vn=varn]], Si [let]

P ` hE[if (true) e1 else e2], Si ,! hE[e1], Si [iftrue]

P ` hE[if (false) e1 else e2], Si ,! hE[e2], Si [iffalse]

P ` hE[f v ; e g], Si ,! hE[e], Si [seq]

P ` he, S0i ,! he, S0i [gc]
where S0 � S and hhe, S0i, S0i is closed

P ` hE[preErr(c)], Si ,! herror: c violated pre-condition, Si [pre]

P ` hE[postErr(c)], Si ,! herror: c violated post-condition, Si [post]

P ` hE[hierErr(t)], Si ,! herror: t is a bad extension, Si [hier]

P ` hE[view t0 object], Si ,! herror: bad cast, Si [xcast]
where S(object) = hc, Fi and c 6�

P
t0

P ` hE[view t0 null], Si ,! herror: bad cast, Si [ncast]

P ` hE[null : c .fd], Si ,! herror: dereferenced null, Si [nget]

P ` hE[null : c .fd = v], Si ,! herror: dereferenced null, Si [nset]

P ` hE[null.md(v1 , � � �, vn)], Si ,! herror: dereferenced null, Si [ncall]

Figure 4.12: Operational semantics for Contract Java

60

4.6 Contract Soundness

A contract monitoring tool must faithfully enforce the programmer’s contracts. The con-

tract soundness theorem guarantees this property. It relates the evaluation of the contract-

elaborated program to the original program with the contracts removed. Imagine evaluation

proceeding both from the program without any contracts and the contract-elaborated pro-

gram:

P

Erase(P) ` h;;Erase(e)i ,! hS1, e1i ,! hS2, e2i � � �

Elab(P) ` h;;Elab(e)i ,! hS0
1
, e0

1
i ,! hS0

2
, e0

2
i � � �

Q
Q
Q
Qs

�
�
�
�3

The theorem relates the top evaluation to the bottom one. Intuitively, if the program without

contracts reaches a method call where the pre-condition does not hold or the hierarchy is

not sound, the elaborated program must signal a corresponding pre-condition or hierarchy

violation. Similarly, if the program without contracts reaches a method return where the

post-condition does not hold or the hierarchy is not sound, the elaborated program must

signal a corresponding post-condition or hierarchy violation.

Since contracts in our model are arbitrary Java expressions, they may have side-effects

or raise errors and may thus affect the behavior of the underlying program. Considering the

role of contracts as logical assertions over the state space, this is undesirable. We therefore

restrict our attention to contracts that are effect-free.k

DEFINITION 4.1 (EFFECT-FREE EXPRESSION). An expression e is effect-free if for

any store S such that the free variables of e are included in dom(S), there exists a value v

such that he; Si ,!�
hv; Si.

The key to this definition is that the effect-free expressions evaluate to a value without

changing the store or signalling an error. This does not mean that e never allocates, how-

ever. Since garbage collection is a non-deterministic reduction step, a contract expression

kIn practice, there are many approaches to enforcing this restriction, each with different pros and cons.

61

e may allocate as long as the newly allocated objects are garbage when the evaluation of

the contract produces a value.

In order to state the contract soundness theorem, we must give meaning to contract

checking for arbitrary programs. Definition 4.2 lists the conditions that correspond to a

contract violation.

DEFINITION 4.2 (CONTRACT VIOLATION).

[pre-condition failure]

A program state hE[o:t.md(v, � � �)], Si is a pre-condition contract violation if e PREP ht,mdi

and he[this=o; x=v; :::]; Si ,!�
hfalse; T i where fx; :::g are the formal parameters to md as

declared in t and T is a store.

[post-condition failure]

A program state hE[return : t,c fvg], Si is a post-condition contract violation if e POSTP

ht,mdi and he[this=o;@ret=v]; Si ,!�
hfalse; T i for some store, T .

[pre-condition hierarchy failure]

A program state, hE[o:t.md(v, � � �)], Si where S(o) = hc;Fi, is a pre-condition hierarchy

violation if there exist types s and s0, such that c�P s0�P s, and the following conditions

hold:

� e POSTP hs,mdi,

� e0 POSTP hs0,mdi,

� he[this=o; x=v; :::]; Si ,!�
hfalse; Si, and

� he0[this=o; x’=v; :::]; Si ,!�
htrue; Si

where fx; :::g are the formal parameters to md as declared in s, fx0; :::g are the formal

parameters to md as declared in s0.

[post-condition hierarchy failure]

A program state hE[return : t,c fvg], Si where S(o) = hc;Fi is a pre-condition hierarchy

violation if there exist types s and s0, such that c�P s0�P s, and these conditions all hold:

62

� e PREP hs,mdi,

� e0 PREP hs0,mdi,

� he[this=o;@ret=v; :::]; Si ,!�
htrue; Si, and

� he0[this=o; ret=v; :::]; Si ,!�
hfalse; Si

Definition 4.3 specifies contract soundness. Intuitively, soundness guarantees that elab-

orated programs respect the contracts of the original program. More concretely, if the

program that the contract elaborator produces signals an error, the evaluation of the pro-

gram without contracts must reach a corresponding contract failure. If the program that the

contract elaborator produces does not signal a contract error, the program without contracts

must be locally contract sound at each step of its evaluation.

DEFINITION 4.3 (CONTRACT SOUNDNESS). An elaborator Elab is contract sound if

for any program P = defn* e whose pre- and post-conditions are effect-free expressions,

one of the following conditions holds:

� Elab(P) ` hElab(e); ;i ,!�
herror: c violated pre-condition; Si

for some store, S and class c, and

Erase(P) ` hErase(e); ;i ,!�
hE[o:md(x; :::)]; Si

and hE[o:md(x; :::)]; Si is a pre-condition contract violation of md in c.

� Elab(P) ` hElab(e); ;i ,!�
herror: c violated post-condition; Si

for some store, S and class c, and

Erase(P) ` hErase(e); ;i ,!�
hE[return : t,c fvg]; Si

and hE[return : t,c fvg]; Si is a post-condition violation of md in c.

� Elab(P) ` hElab(e); ;i ,!�
herror: t is a bad extension; Si

for some store, S and type t, and

Erase(P) ` hErase(e); ;i ,!�
he0; Si

and he0; Si is a hierarchy violation of t.

63

� For each state hP 0; S 0i such that Erase(P) ` hErase(e); ;i ,!�
he0; S 0i, he0; S 0i is

locally contract sound with respect to P (recall that Erase(P) is just P , but with the

contract annotations removed).

Roughly, local contract soundness for a configuration he; Si means that in the given

store S, the contracts about e hold and that the necessary relations between contracts in

e hold as well. More precisely, all states that are not method calls or method returns are

locally contract sound. A state that is about to evaluate a method call is locally sound if

the two above conditions are true. First, the pre-condition on the method must be satisfied.

Second, the pre-condition hierarchy must be behaviorally well-formed. That is, each type’s

pre-condition must imply each of its subtypes’ pre-conditions, for the method about to be

invoked. Similarly, a state that is about to perform a method return is locally sound if the

post-condition on the method is satisfied and the post-condition hierarchy is behaviorally

well-formed.

DEFINITION 4.4 (LOCAL CONTRACT SOUNDNESS). A program state he; Si is locally

contract sound with respect to a Contract Java programP , if one of the following conditions

holds:

� e =E[o.m : t (v1, v2, � � �, vk)]

and S(o) = hc;Fi

and if there exists a y such that y PREP ht;mi,

then hy; Si ,!�
htrue; Ui for some store U .

and for any s; s0 such that c �P s �P s0,

if there exists an x and x0 such that

x PREP hs;mi, x0 PREP hs
0; mi,

then hx; Si ,!�
hb; T i,

hx0; Si ,!�
hb0; T 0

i, and

b0) b

� e =E[return : t, c f v g]

64

and if there exists a y such that y POSTP ht;mi,

then hy; Si ,!�
htrue; Ui for some store U .

and for any s; s0 such that c �P s �P s0,

if there exists an x and x0 such that

x POSTP hs;mi, x0 POSTP hs
0; mi,

then hx; Si ,!�
hb; T i,

hx0; Si ,!�
hb0; T 0

i, and

b) b0.

� e is neither a method call or method return.

THEOREM 4.1. The elaboration Elab is contract sound.

PROOF SKETCH. Let P be a program. Assume that Elab(P) does not signal a con-

tract error. If Elab(P) is to be contract sound, we must show that each reduction step of

Erase(P) is locally contract sound.

Lemma: for any program, P , and any reduction step that Erase(P) takes, Elab(P)

takes that same reduction (potentially with a larger context) up to the point that Elab(P)

raises a contract error, or until Erase(P) terminates. Further, if Elab(P) raises a contract

error, Erase(P) makes the corresponding method call or method return. Since the elab-

oration does not change any expressions except method calls, Erase(P) and Elab(P) are

synchronized, as long as there are no method calls. Let us consider the first method call.

The reductions for Erase(P) look like this:

Erase(P) ` hErase(e); ;i ,! � � �

,! hE[o.m : t(v1, � � � , vn)] ; Si

,! h E[return : t, c b[x1/v1 � � � xn/vn]; Si

where b is the body of the method m.

Since the ellipses do not contain any method calls, the reductions up to the first method

call are identical for Elab(P). Then, the elaborated version calls the wrapper method and

the version without contracts just calls the method directly. If Elab(P) signals a contract

65

error or hierarchy error, the lemma holds since Erase(P) took the same method call and

the steps were synchronized. Otherwise, we know that the wrapper method does not have

any effects, since their contract expressions are effect-free and Elab(P) does not signal a

pre-condition error or a hierarchy error. Thus, the reduction sequence looks like this:

Elab(P) ` hElab(e); ;i ,! � � �

,! hE[o.m t(v1, � � �, vn)] ; Si

,! � � �

,! hE[F[o.m : t(v1, � � �, vn)]] ; Si

,! h E[F[return : t, c b[x1/v1 � � � xn/vn]]; Si

The extra context, F, is the remainder of the wrapper method that checks the post-conditions

and the post-condition hierarchy. By an inductive argument on the reduction sequence, we

can see that, as long as Erase(P)’s reduction sequence does not contain any method returns,

the lemma holds.

A similar argument applies for method returns. At the first method return, Elab(P) will

discharge the extra context it built up from the method call. This extra context corresponds

to the portion of the wrapper method, after the wrapped method returns. If this code signals

a contract violation, we know that Erase(P) returns from that method. If it doesn’t, the

reduction sequences remain synchronized.

Pictorially, the two reduction sequences look like this:

Erase(P) - q � � � q - q � � �

Elab(P) - q � � � q- q- q- q - q- q- q- q � � �
pre-condition

checking
post-condition

checking

for the first method call. The smaller arrows are the extra steps that Elab(P) takes, before

and after each method call. 2

Now, using the lemma, we can prove the theorem. Assume that Elab(P) signals a

contract violation. From the lemma, we know that Erase(P) must make the method call

or method return that corresponds to the contract violation signaled from Elab(P). From

66

inspection of the wrapper methods, it follows that the method call or return that Erase(P)

enters is a contract violation.

Now, all that remains is to show that if Elab(P) never signals a contract violation,

Erase(P) is locally contract sound at each step in its reduction sequence. Let he; Si be a

step in the reduction sequence starting from Erase(P). If e does not decompose into some

evaluation context and a method call or some evaluation context and a return instruction,

it is locally hierarchy sound. Assume that it does decompose into a context and a method

call. Now, we must show that the first bullet from definition 4.4 is true. Since Elab(P)

reached the same method call by the previous argument, we know that the wrapper method

was invoked. From the [wrap] rule in figure 4.6, we can see that the pre-condition check

must have succeeded. All that remains is to show this:

for any s; s0 such that c �P s �P s0,

if there exists an x and x0 such that

x PREP hs;mi, x0 PREP hs
0; mi,

then hx; Si ,!�
hb; T i,

hx0; Si ,!�
hb0; T 0

i, and

b0) b

This states that if there are two types, s, and s0 with pre-conditions x and x0 that evaluate

to b and b0, we must have b) b0. Since the hierarchy checkers traverse the entire hierar-

chy checking that the pre-condition of each type implies the pre-condition of each of its

subtypes, this holds. Thus, this step is locally hierarchy sound.

Similarly, if e decomposes into a context and a method return, Elab(P) must also have

returned and the wrapper method’s code must have been invoked, so this step is also locally

contract sound. 2

Chapter 5

Contracts for Higher-Order Functions

Higher-order, typed programming language implementations [2, 20, 23, 33, 51] have a

static type discipline that prevents certain abuses of the language’s primitive operations. For

example, programs that might apply non-functions, add non-numbers, or invoke methods

of non-objects are all statically rejected. Yet these languages go further. Their run-time

systems dynamically prevent additional abuses of the language primitives. For example,

the primitive array indexing operation aborts if it receives an out of bounds index, and the

division operation aborts if it receives zero as a divisor. Together these two techniques

dramatically improve the quality of software built in HOT languages.

With the advent of module languages that support type abstraction [32, 43], HOT lan-

guages empower programmers to enforce their own abstractions at the type level. These

abstractions have the same expressive power that the language designer uses when speci-

fying the language’s primitives. The dynamic aspect, however, has become a second-class

citizen. The programmer must manually insert dynamic checks and blame is not assigned

automatically when these checks fail. Even worse, it is not always possible for the program-

mer to manually insert these checks because the call sites may be in unavailable modules.

This chapter empowers HOT programmers to refine the type-specifications of their ab-

stractions with additional, dynamically enforced invariants. To that end, it presents the first

assertion-based contract checker for languages with higher-order functions.

The next section discusses the challenges of contracts for higher-order functions. Sec-

tion 5.2 introduces the subtleties of assigning blame for higher-order contract violations

through a series of examples in Scheme [14, 25]. Section 5.3 presents �CON, a typed,

higher-order functional programming language with contracts. Section 5.4 specifies the

68

meaning of �CON, and section 5.5 provides an implementation of it. Section 5.6 contains a

type soundness result and proves that the implementation matches the calculus. Section 5.7

shows how to extend the calculus with function contracts whose range depends on the in-

put to the function and section 5.8 discusses the interactions between contracts and tail

recursion.

5.1 From First-Order Function Contracts

to Higher-Order Function Contracts

In procedural languages, contracts have a simple interpretation. Consider this contract:

f : int[>9] ! int[0,99]
val rec f = � x. � � �

It states that the argument to f must be an int greater than 9 and that f produces an int

between 0 and 99. To enforce this contract, a contract compiler inserts code to check

that x is in the proper range when f is called and to check that f ’s result is in the proper

range when f returns. If x is not in the proper range, f ’s caller is blamed for a contractual

violation. Symmetrically, if f ’s result is not in the proper range, the blame falls on f itself.

In this world, detecting contractual violations and assigning blame means merely checking

appropriate predicates at well-defined points in the program’s evaluation.

This straightforward mechanism for checking contracts does not generalize to lan-

guages with higher-order functions. Consider this contract:

g : (int[>9] ! int[0,99]) ! int[0,99]
val rec g = � proc. � � �

The contract’s domain states that g accepts int ! int functions and promises to apply them

to ints larger than 9. In turn, these functions are obliged to produce ints between 0 and 99.

The contract’s range obliges g to produce ints between 0 and 99.

Although g may be given f , whose contract matches g’s domain contract, g should also

accept functions with stricter contracts:

h : int[>9] ! int[50,99]

69

val rec h = � x. � � �

g(h),

functions without explicit contracts:

g(� x. 50),

functions that process external data:

read num : int[>9] ! int[0,99]
val rec read num = � n. � � � read the nth entry from a file � � �

g(read num),

and functions whose behavior depends on the context:

val rec dual purpose = � x.
if � � � predicate on some global state � � �

then 50
else 5000.

as long as the context is properly established when g applies its argument.

Clearly, there is no algorithm to determine whether proc matches its contract. Even

worse, it is impossible to tell if g applies proc to ints greater than 9 because g may hand

proc to some other function.

Additionally, higher-order functions complicate blame assignment. With first-order

functions, blame assignment is directly linked to pre- and post-condition violations. A pre-

condition violation is the fault of the caller and a post-condition violation is the fault of the

callee. In a higher-order world, however, promises and obligations are tangled in a more

complex manner, mostly due to function-valued arguments.

The key observation for higher-order contract checking is that a contract checker cannot

ensure that g’s argument meets its contract when g is called. Instead, it must wait until proc

is applied. At that point, it can ensure that proc’s argument is greater than 9. Similarly,

when proc returns, it can ensure that proc’s result is in the range from 0 to 99. Enforc-

ing contracts in this manner ensures that the contract violation is signalled as soon as the

contract checker can prove that the contract has indeed been violated. The proof takes the

70

form of a first-order witness to the violation. Additionally, the witness enables the contract

checker to properly assign blame for the violation.

5.2 Example Contracts

This section contains a series of Scheme examples that explain how contracts are written

and the difficulties of checking them. The first few examples illustrate the syntax and the

basic principles of contract checking. Sections 5.2.2 and 5.2.3 discuss the problems of

contract checking in a higher-order world. Section 5.2.4 explains why it is important for

contracts to be first-class values. Section 5.2.5 demonstrates how contracts can help with

callbacks, the most common use of higher-order functions in a stateful world. The sections

also include examples from the DrScheme [12] code base, demonstrating that each issue is

important in practice.

5.2.1 Contracts: A First Look

Our first example is the sqrt function:

;; sqrt : number ! number
(define/contract sqrt

((� (x) (� x 0)) 7�! (� (x) (� x 0)))
(� (x) � � �))

Following the tradition of How to Design Programs [10], the sqrt function is proceeded

by an ML-like [43] type specification. Like Scheme’s define, a define/contract expression

consists of a variable and an expression for its initial value, a function in this case. In

addition, the second subexpression of define/contract specifies a contract for the variable.

Contract expressions are either simple predicates or function contracts. Function con-

tracts, in turn, consist of a pair of contracts, one for the domain of the function and one for

the range of the function:

CD 7�! CR.

The domain portion of sqrt ’s contract ensures that it always receives a positive number. The

range portion of the contract guarantees that the result is bigger than zero. The example

71

illustrates that, in general, contracts check only certain aspects of a function’s behavior,

rather than the complete semantics of the function.

The contract position of a definition can be an arbitrary expression that evaluates to a

contract. This allows us to improve the contract on sqrt by defining a bigger-than-zero?

predicate and using it in the definition of sqrt ’s contract:

;; bigger-than-zero? : number ! boolean
(define bigger-than-zero? (� (x) (� x 0)))

;; sqrt : number ! number
(define/contract sqrt

(bigger-than-zero? 7�! bigger-than-zero?)
(� (x) � � �))

The contract on sqrt can be strengthened by making sure that its result properly re-

lates to its argument. The dependent function contract constructor allows the programmer

to specify range contracts that depend on the values of the arguments. This constructor

is similar to 7�!, except that the range position of the contract is not simply a contract.

Instead, it is a function that accepts the arguments to the original function and returns a

contract:

CD d
7�! (� (arg) CR)

Here is an example of a dependent contract for sqrt :

;; sqrt : number ! number
(define/contract sqrt

(bigger-than-zero? d
7�!

(� (x)
(� (res)

(and (bigger-than-zero? x)
(� (abs (� x (� res res))) 0.01)))))

(� (x) � � �))

This contract, in addition to stating that the result of sqrt is positive, also ensures that the

square of the result is within 0.01 of the argument.

72

(module preferences scheme/contract
(provide add-panel open-dialog)

;; add-panel : (panel ! panel) ! void
(define/contract add-panel

((any 7�!

(� (new-child)
(let ([children (send (send new-child get-parent)

get-children)])
(eq? (car children) new-child))))

7�! any)
(� (make-panel)

(set! make-panels (cons make-panel make-panels))))

;; make-panels : (listof (panel ! panel))
(define make-panels null)

;; open-dialog : ! void
(define open-dialog

(� ()
(let� ([d (make-object dialog%)]

[sp (make-object single-panel% d)]
[children (map (call-make-panel sp) make-panels)])

� � �)))

;; call-make-panel : panel ! (panel ! panel) ! panel
(define call-make-panel

(� (sp)
(� (make-panel)

(make-panel sp)))))

Figure 5.1: Contract specified with add-panel

5.2.2 Enforcement at First-Order Types

The key to checking an assertion contract on a higher-order function is to postpone the

contract enforcement until the higher-order function receives a flat value as an argument or

produces a flat value as a result. This section demonstrates why these delays are necessary

and discusses some ramifications of delaying the contracts. Consider the following toy

73

module:

(module delayed scheme/contract
(provide save use)

;; saved : integer ! integer
(define saved (� (x) 50))

;; save : (integer ! integer) ! void
(define/contract save

((bigger-than-zero? ! bigger-than-zero?) ! any)
(� (f) (set! saved f)))

;; use : integer ! integer
(define use

(bigger-than-zero? ! bigger-than-zero?)
(� (n) (saved n))))

The module declaration� consists of a name for the module, the language that the module

is written in, a provide declaration and a series of definitions. This module provides save

and use. The variable saved holds a function that is supposed to map positive numbers to

positive numbers. Since it is not exported from the module, it has no contract. The getter

(use) and setter (save) are the two visible accessors of saved . The function save stores

a new function and use invokes the saved function. Naturally, it is impossible for save

to detect if the value of saved will always be applied to positive numbers since it cannot

determine every argument to use. Worse, save cannot guarantee that each time saved’s

value is applied that it will return a positive result. Thus, the contract checker delays

the enforcement of save’s contract until save’s argument is actually applied and returns.

Accordingly, violations of save’s contract might not be detected until use is called.

In general, a higher-order contract checker must be able to track contracts during evalu-

ation from the point where the contract is established (the call site for save) to the discovery

of the contract violation (the return site for use), potentially much later in the evaluation.

To assign blame, the contract checker must also be able to report both where the violation

was discovered and where the contract was established.

�For details of the module language used here, see the MzScheme manual [14].

74

(module preferences scheme
(provide add-panel open-dialog)

;; add-panel : (panel ! panel) ! void
(define add-panel

(� (make-panel)
(set! make-panels (cons make-panel make-panels))))

;; make-panels : (listof (panel ! panel))
(define make-panels null)

;; open-dialog : ! void
(define open-dialog

(� ()
(let� ([d (make-object dialog%)]

[sp (make-object single-panel% d)]
[children (map (call-make-panel sp) make-panels)])

� � �)))

;; call-make-panel : panel ! (panel ! panel) ! panel
(define call-make-panel

(� (sp)
(� (make-panel)

(let ([new-child (make-panel sp)]
[children (send (send new-child get-parent)

get-children)])
(unless (eq? (car children) new-child)

(contract-error make-panel))
new-child)))))

Figure 5.2: Contract manually distributed

Our toy example is clearly contrived. The underlying phenomenon, however, is com-

mon. As a real world example, consider DrScheme’s preferences panel. Plug-ins to

DrScheme can add additional panels to the preferences dialog. To this end, extensions

register callbacks that add new panels containing GUI controls (buttons, list-boxes, pop-up

menus, etc.) to the preferences dialog.

75

Every GUI control needs two values: a parent for the control, and a callback that is

invoked when the control is manipulated. Some GUI controls need additional control-

specific values, such as a label or a list of choices. In order to add new preference panels,

extensions define a function that accepts a parent panel, creates a sub-panel of the parent

panel, fills the sub-panel with controls that configure the extension, and returns the sub-

panel. These functions are then registered by calling add-panel . Each time the user chooses

DrScheme’s preferences menu item, DrScheme constructs the preferences dialog from the

registered functions.

The contract on add-panel ensures that add-panel ’s arguments are functions. In addi-

tion, it guarantees that the result of each call to its argument is the first child in its parent

panel. This ensures that the ordering of the preferences dialog’s children panels corre-

sponds to the order of the calls to make-panel .

Figure 5.1 shows the code that implements add-panel and open-dialog, with the boxed

contract attached to the definition of add-panel . The body of add-panel saves the panel

making function in a list. Later, when the user opens the preferences dialog, the make-

panel functions are called and the contracts are checked, in the context of call-make-panel .

In comparison, figure 5.2 contains the checking code, written as if there were no higher-

order contract checking. The boxed portion of the figure, excluding the inner box, is the

contract checking code. The code that enforces the contracts is co-mingled with the code

that implements the preferences dialog. Co-mingling these two decreases the readability

of both the contract and call-make-panel , since client programmers now need to determine

which portion of the code is the contract checking and which portion of the code is per-

forming the work of the function. In addition, the author of the preferences module must

find every call-site for each higher-order function. Finding these sites in general is impos-

sible, and in practice the call sites are often in collaborators’ code, whose source might not

be available.

76

5.2.3 Blame and Contravariance

Assigning blame for contractual violations in the world of first-class functions is complex.

The boundaries between cooperating components are more obscure than in the world with

only first-order functions. In addition to invoking a component’s exported functions, one

component may invoke a function passed to it from another component. Applying such

first-class functions corresponds to a flow of values between components. Accordingly, the

blame for a corresponding contract violation must lie with the supplier of the bad value, no

matter if the bad value was passed by directly applying an exported function or by applying

a first-class function.

Consider the abstract example from the introduction again, but with a little more detail.

Imagine that the body of g is a call to f with 0:

;; g : (integer ! integer) ! integer
(define/contract g

((greater-than-nine? 7�! between-zero-and-ninety-nine?)
7�!

between-zero-and-ninety-nine?)
(� (f) (f 0)))

At the point when g invokes f , the greater-than-nine? portion of g’s contract fails. This is a

violation of g’s domain contract which, in a first-order world, is the fault of g’s caller. But

in this case, the blame for the violation must lie with g itself, since g promises to apply its

argument only to values greater than 9. This reversal of blame is due to the contra-variance

of function application and occurs because functions are first-class values.

Imagine a variation of the above example where g applies f to 10 instead of 0. Further,

imagine that f returns�10. If g were to return that value, it would be blamed for producing

a bad result. Rather than blame g, however, the contract on f ’s result is checked before g

returns. Accordingly, the �10 would trigger a contract violation error because g’s contract

obliges its callers to supply functions that produce numbers greater than 9. In this case, f

would be blamed for supplying a bad value to g.

As with first-order function contract checking, two parties are involved for each con-

77

tract: the function and its caller. Unlike first-order function contract checking, a more

general rule applies for blame assignment. The function itself is responsible for the posi-

tive positions (covariant positions) of the contract and the function’s caller is responsible

for negative positions (contravariant positions) of the contract. This means that the con-

tract enforcement mechanism must be able to track the negative and positive positions of a

contract to determine which party is to blame.

This problem of assigning blame naturally appears in contracts from DrScheme’s im-

plementation. For example, DrScheme creates a separate thread to evaluate user’s pro-

grams. Typically, extensions to DrScheme need to initialize thread-specific hidden state

before the user’s program is run. The accessors and mutators for this state implicitly accept

the current thread as a parameter, so the code that initializes the state must run on the user’s

thread.y

To enable DrScheme’s extensions to run code on the user’s thread, DrScheme provides

the primitive run-on-user-thread . It accepts a thunk, queues the thunk to be run on the

user’s thread and returns. It has a contract that promises that when the argument thunk is

applied, the current thread is the user’s thread:

(define/contract run-on-user-thread
(((� () (eq? (current-thread) user-thread)) 7�! any)
7�!

any)
(� (thunk)
� � �))

This contract is a higher-order function contract. It only has one interesting aspect: the pre-

condition of the function passed to run-on-user-thread . This is a covariant position of the

function contract (since the contravariant position of a contravariant position is again co-

variant) which, according to our rule for blame assignment, means that run-on-user-thread

is responsible for establishing this contract. Therefore, run-on-user-thread contractually

yThis state is not available to user’s program because the accessors and mutators are not lexically

available to the user’s program.

78

;; make/c : (� �! bool) ! �! �! bool
(define (make/c op) (� (x) (� (y) (op y x))))

;; >=/c, <=/c : number ! number ! bool
(define >=/c (make/c �))
(define <=/c (make/c �))

;; eq/c, equal/c : any ! any ! bool
(define eq/c (make/c eq?))
(define equal/c (make/c equal?))

;; any : any ! bool
(define any (� (x) #t))

Figure 5.3: Abstraction for Predicate Contracts

promises clients of this function that the thunks they supply are applied on the user’s thread.

Thus, these thunks can initialize the user’s thread’s state.

5.2.4 First-class Contracts

Experience with DrScheme has shown that certain patterns of contracts recur frequently.

To support abstraction over these patterns, contracts are values that can be passed to and

returned from functions. For example, curried versions of comparison operators are com-

monly used (see figure 5.3).

More interestingly, certain patterns of higher-order function contracts are also common.

As an example, it is common in DrScheme to pass mixins [13, 17] as values. In DrScheme,

a mixin is a function that accepts a class and returns a class derived from its argument.

Since extensions of DrScheme supply mixins to DrScheme, it is important to ensure that

the result of a mixin is, in fact, derived from its input. Since this contract is so common, it

is defined as a part of DrScheme’s contract library:

;; mixin-contract : (class ! class) contract
(define mixin-contract

(class? d
7�! (� (arg) (� (res) (subclass? res arg)))))

79

(module preferences scheme/contract
(provide add-panel � � �)
;; preferences:add-panel : (panel ! panel) ! void
(define/contract add-panel

((any d
7�!

(� (sp)
(let ([pre-children (copy-spine (send sp get-children))])

(� (new-child)
(let ([post-children (send sp get-children)])

(and (= (length post-children)
(add1 (length pre-children)))

(andmap eq?
(cdr post-children)
pre-children)

(eq? (car post-children) new-child)))))))
7�!

any)
(� (make-panel)

(set! make-panels (cons make-panel make-panels))))

� � �)

Figure 5.4: Preferences panel contract, protecting the panel

This contract is a dependent contract. It states that the input to the function is a class and

its result is a subclass of the input.

Further, it is common for the contracts on these mixins to guarantee that the base class

passed to the mixin is not just any class, but a class that implements a particular inter-

face. To support these contracts, DrScheme’s contract library provides this function that

constructs a contract:

;; mixin-contract/interface : interface ! (class ! class) contract
(define mixin-contract/interface

(� (interface)
((� (x) (implements? x interface))

d
7�!

(� (arg) (� (res) (subclass? res arg))))))

80

The mixin-contract/interface function accepts an interface as an argument and produces

a contract similar to mixin-contract , except that the contract guarantees that input to the

function is a class that implements the given interface.

Although the mixin contract is, in principle, checkable by a type system, no such type

system is currently implemented. OCaml [33] is rich enough to express mixins, but type-

checking fails for any interesting use of mixins [31, 46]. This contract is an example where

the expressiveness of contracts leads to an opportunity to improve existing type systems.

Hopefully this example will encourage type system designers to build richer type systems

that support practical mixins.

5.2.5 Callbacks and Stateful Contracts

Callbacks are notorious for causing problems in preserving invariants. Szyperski shows

why callbacks are important and how they cause problems [50]. In short, code that invokes

the callback must ensure that some state is not modified during the dynamic extent of

the callback. Typically, this invariant is maintained by examining some state before the

callback is invoked and comparing it to the state after the callback returns.z

Consider this simple library for registering and invoking callbacks.

(module callbacks scheme/contract
(provide register-callback invoke-callback)

;; register-callback : (! void) ! void
(define/contract register-callback

(any
d

7�!

(� (arg)
(let ([old-state � � � save the relevant state � � �])

(� (res)
� � � compare the new state to the old state � � �))))

(� (c)
(set! callback c)))

zIn practice lock variables are often used for this; the technique presented adapts mutatis mutan-

dis. to a lock-variable based solution to the callback problem

81

;; invoke-callback : ! void
(define invoke-callback

(� ()
(callback)))

;; callback : ! void
(define callback (� () (void))))

The function register-callback accepts a callback function and registers it as the current

callback. The invoke-callback function calls the callback. The contract on register-callback

makes use of the dependent contract constructor in a new way. The contract checker applies

the dependent contract to the original function’s arguments before the function itself is

applied. Therefore, the range portion of a dependent contract can determine key aspects

of the state and save them in the closure of the resulting predicate. When that predicate

is called with the result of the function and it can compare the current version of the state

with the original version of the state, ensuring that the callback is well-behaved.

This technique is useful in the contract for DrScheme’s preferences panel, whose con-

tract we have already considered. Consider the revision of add-panel ’s contract in fig-

ure 5.4. The revision does more than just ensure that the new child is the first child. In

addition, it ensures that the original children of the preferences panel remain in the panel

in the same order, thus preventing an extension from removing preference panels.

5.3 Contract Calculus

Figure 5.5 contains the syntax for the contract calculus. It is presented in a typed context to

show how contracts refine types. Each program consists of a series of definitions, followed

by a single expression. Each definition consists of a variable, a contract expression and an

expression for initializing the variable. All of the variables bound by val rec in a single

program must be distinct. Expressions (M) include abstractions, applications, variables,

numbers and numeric primitives, lists and list primitives, if expressions, booleans, and

predicates. The final expression forms specify contracts. The contract(S) and S 7�! S

expressions construct flat and function contracts, respectively. A flatp expression returns

82

core syntax

P = D � � � S
D = val rec x : S = S
M = � x.M j M M j x

j n j M aop M j M rop M
j M::M j [] j hd(M) j tl (M) j mt(M)
j if M then M else M j true j false j str
j M 7�! M j contract(M)
j flatp(M) j pred(M) j dom(M) j rng(M) j blame(M)

str = "" j "a" j "b" j � � � j "aa" j "ab" j � � �
rop = + j � j � j /
aop = � j =

x = variables
n = 0 j 1 j � � � j �1 j �2 j � � �

types

t = t ! t j t list j int j bool j string j t contract

Figure 5.5: �CON Syntax and Types

true if its argument is a flat contract and false if its argument is a function contract. The

pred , dom, and rng expressions select the fields of a contract.x The blame primitive is used

to assign blame to a definition that violates its contract. It aborts the program. This first

model omits dependent contracts; we return to them later.

In this model, each definition is treated as if it were written by a different programmer.

Thus, each definition is considered to be a separate entity for the purpose of assigning

blame. In an implementation, this is too fine-grained. Blame should instead be assigned

to a coarser construct, e.g., Modula’s modules, ML’s structures and functors, or Java’s

packages. In DrScheme, we blame modules.

The types for �CON are standard as in core ML (without polymorphism), plus types for

contract expressions. The typing rules for contracts are given in figure 5.8. Contracts on flat

xContracts are analogous to a datatype definition that has two variants, one for flat contracts and

one for higher-order contracts.

83

evaluation contexts

D = val rec x : V = V � � �

val rec x : E = M
val rec x : M = M � � �

M
j val rec x : V = V � � �

val rec x : V = E
val rec x : M = M � � �

M
j val rec x = V � � �

E

E = E M j V E
j E aop M j V aop E j E rop M j V rop E
j E :: M j V :: E j hd(E) j tl (E)
j if E then M else M
j E 7�! M j V 7�! E j contract(E)
j dom(E) j rng(E) j pred(E) j flatp(E) j blame(E)
j 2

values

V = V :: V j � x. M j str j n j true j false
Vd = val rec x : V = V � � �

V

Figure 5.6: �CON Evaluation Contexts and Values

values are tagged by the contract value constructor and must be predicates that operate on

the appropriate type. Contracts for functions consist of two contracts, one for the domain

and one for the range of the function. The typing rule for definitions mandates that the

type of the contract corresponds to the type of definition. The rest of the typing rules are

standard.

For example, consider this definition of the sqrt function:

val rec sqrt : contract(� x.x � 0) 7�! contract(� x.x � 0) =
� n. � � �

The body of the sqrt function has been elided. The contract on sqrt must be an 7�! con-

84

D[dn1e / 0] �! error(/)
D[dn1e + dn2e] �! D[dn1 + n2e]
D[dn1e � dn2e] �! D[dn1 � n2e]
D[dn1e / dn2e] �! D[dn1 / n2e]

D[dn1e � dn2e] �! D[dn1 � n2e]
D[dn1e � dn2e] �! D[true]

if n1 � n2
D[dn1e � dn2e] �! D[false]

if n1 < n2
D[dn1e = dn2e] �! D[true]

if n1 = n2
D[dn1e = dn2e] �! D[false]

if n1 6= n2
D[� x.M V] �! D[M[x/V]]

D[x] �! D[M]
where D contains (define x M)

D[if true then M1 else M2] �! D[M1]
D[if false then M1 else M2] �! D[M2]

D[hd(V1 :: V2)] �! D[V1]
D[hd([])] �! error(hd)

D[tl (V1 :: V2)] �! D[V2]
D[tl ([])] �! error(tl)

D[flatp(contract(V))] �! D[true]
D[flatp(V1 7�! V2)] �! D[false]

D[pred(contract(V))] �! D[V]
D[pred(V1 7�! V2)] �! error(pred)
D[dom(V1 7�! V2)] �! D[V1]

D[dom(contract(V))] �! error(dom)
D[rng(V1 7�! V2)] �! D[V2]

D[rng(contract(V))] �! error(rng)
D[blame(p)] �! error(p)

Figure 5.7: Reduction Semantics of �CON

tract because the type of sqrt is a function type. Further, the domain and range portions

of the contract are predicates on integers because sqrt consumes and produces integers.

More succinctly, the predicates embedded in this contract augment the type specification,

indicating that the domain and range must be positive.

85

� + f xi = ti, � � � g ` M1i : ti contract � � �
� + f xi = ti, � � � g ` M2i : ti � � �
� + f xi = ti, � � � g ` M : t
� ` val rec xi : M1i = M2i � � � M : h ti � � � t i

� ` M : t ! bool
� ` contract(M) : t contract

� ` M1 : t1 contract � ` M2 : t2 contract
� ` (M1 7�! M2) : t1 ! t2 contract

� ` E : t1
� ` blame(E) : t2

� ` M : t1 ! t2 contract
� ` dom(M) : t1 contract

� ` M : t1 ! t2 contract
� ` rng(M) : t2 contract

� ` M : t contract
� ` pred(M) : t ! bool

� ` M : t contract
� ` flatp(M) : bool

� + fx:tg ` M : s
� ` � x. M : t ! s

� ` M1 : t ! s � ` M2 : t
� ` (M1 M2) : s � + fx:tg ` x : t

� ` n : int
� ` M1 : int � ` M2 : int

� ` M1 aop M2 : bool
� ` M1 : int � ` M2 : int

� ` M1 rop M2 : int

� ` M1 : t � ` M2 : t list
� ` M1 :: M2 : t list � ` [] : t list

� ` M : t list
� ` mt(M) : bool

� ` M : t list
� ` hd(M) : t

� ` M : t list
� ` tl (M) : t list

� ` M1 : bool � ` M1 : t � ` M1 : t
� ` if M1 then M2 else M3 : t

� ` true : bool � ` false : bool � ` str : string

Figure 5.8: �CON Type Rules

Figures 5.6 and 5.7 define a conventional reduction semantics for the base language

without contracts [11].

86

5.4 Contract Monitoring

As explained earlier, the contract monitor must have two properties. First, it must track

higher-order functions to discover contract violations. Second, it must properly assign

blame for contract violations. To this end, it must be able to track the covariant and con-

travariant portions of each contract.

To monitor contracts, we extend the calculus with a new form of expression, some new

values, evaluation contexts and reductions rules. Figure 5.10 contains the new expression

form, representing an obligation:

MM,x,x

The first superscript is a contract expression that the base expression is obliged to meet. The

last two are variables. The variables enable the contract monitoring system to assign blame

for covariant and contravariant positions. The first variable names the party responsible for

positive positions of the contract and the second variable names the party responsible for

negative positions.

An implementation would add a fourth superscript, representing the source location

where the contract is established. This superscript would be carried along during evaluation

until a contract violation is discovered, at which point it would be reported as part of the

error message.

Programmers do not write obligation expressions. Instead, contracts are extracted from

the definitions and turned into obligations. To enforce this, the judgement P ok holds when

there are no obligation expressions in P.

Figure 5.9 shows how obligations are placed on each reference to a val rec defined vari-

able. The first part of the obligation is the definition’s contract expression. The first variable

initially is the name of the referenced definition. The second variable initially is the name

of the definition where the reference occurs (or main if the reference occurs in the last

expression). The I function calls Ie for each expression in the program. The Ie function

accepts a program that is being transformed, a variable that specifies blame for negative

positions of obligations in the expression, a set of variables that might lexically shadow val

87

I: P ! P
I(P = val rec x : M1 = M2 � � � M3) =

val rec x : Ie(P ,x,;,M1) = Ie(P ,x,;,M2) � � �
Ie(P ,main,;,M3)

Ie: P � x � fxg � M ! M
Ie(P ,n,� y. M,s) = � y. Ie(n,P ,M,s [fyg)
Ie(P ,n,M1(M2),s) = Ie(n,P ,M1,s)(Ie(n,P ,M2,s))

Ie(P ,n,x,s) =

(
xM,x,n if H(P , x, M) and x 62 s
x otherwise

Ie(P ,n,s,num) = num
Ie(P ,n,s,M1 aop M2) = Ie(P ,n,s,M1) aop Ie(P ,n,s,M2)
Ie(P ,n,s,M1 aop M2) = Ie(P ,n,s,M1) rop Ie(P ,n,s,M2)
Ie(P ,n,s,M1 :: M2) = Ie(P ,n,s,M1) :: Ie(P ,n,s,M2)
Ie(P ,n,s,[]) = []
Ie(P ,n,s,hd(M)) = hd(Ie(P ,n,s,M))
Ie(P ,n,s,tl (M)) = tl (Ie(P ,n,s,M))
Ie(P ,n,s,mt(M)) = mt(Ie(P ,n,s,M))
Ie(P ,n,s,if M1 then M2 else M3) =

if (Ie(P ,n,s,M1)) then (Ie(P ,n,s,M1)) else (Ie(P ,n,s,M1))
Ie(P ,n,s,true) = true
Ie(P ,n,s,false) = false
Ie(P ,n,s,str) = str
Ie(P ,n,s,M1 7�! M2) = Ie(P ,n,s,M1) 7�! Ie(P ,n,s,M2)
Ie(P ,n,s,contract(M)) = contract(Ie(P ,n,s,M))
Ie(P ,n,s,flatp(M)) = flatp(Ie(P ,n,s,M))
Ie(P ,n,s,pred(M)) = pred(Ie(P ,n,s,M))
Ie(P ,n,s,dom(M)) = dom(Ie(P ,n,s,M))
Ie(P ,n,s,rng(M)) = rng(Ie(P ,n,s,M))
Ie(P ,n,s,blame(M)) = blame(Ie(P ,n,s,M))

H(P , x, M1) holds if val rec x : M1 = M2 is in P

Figure 5.9: Obligation Expression Insertion

rec defined variables and an expression to transform. It produces the transformed expres-

sion. The Hrelation relates programs, variables, and expressions. A particular program,

variable, and expression are related if the variable is defined by val rec in the program and

the expression is the contract on the definition.

88

The introduction of obligation expressions induces the extension of the set of evaluation

contexts. Figure 5.10 shows the new evaluation contexts. They specify that the value of

the superscript in an obligation expression is determined before the base value. Addition-

ally, the obligation expression induces a new type rule. The type rule guarantees that the

obligation is an appropriate contract for the base expression.

Finally, we add a new class of values so that the calculus can express the delay in a

higher-order contract. The new values are values labelled with function obligations (see

figure 5.10). Although the grammar allows any value to be labelled with a function con-

tract, the type soundness theorem coupled with the type rule for obligation expressions

guarantees that the delayed values are always functions.

For the reductions in figure 5.7, superscripted evaluation proceeds just like the original

evaluation, except that the superscript is carried from the instruction to its result. There

are two additional reductions. First, when a predicate contract reaches a flat value, the

predicate on that flat value is checked. If the predicate holds, the contract is discarded and

evaluation continues. If the predicate fails, execution halts and the definition named by the

variable in the positive position of the superscript is blamed.

The final reduction of figure 5.10 is the key to contract checking for higher-order func-

tions. At an application of a superscripted procedure, the domain and range portion of the

function position’s superscript are moved to the argument expression and the entire ap-

plication. Thus, the obligation to maintain the contract is distributed to the argument and

the result of the application. The sense of positive and negative positions is reversed for

the argument, ensuring that blame is properly assigned for contravariant portions of the

contract.

For example, consider our definition of sqrt with a single use in the main expression.

The reduction sequence for the application of sqrt is shown in figure 5.11. For brevity,

references to variables defined by val rec are treated as values, even though they would

actually reduce to the variable’s current values. The first reduction is an example of how

obligations are distributed on an application. The domain portion of the superscript contract

89

is moved to the argument of the procedure and the range portion is moved to the application.

The second reduction and the second to last reduction are examples of how flat contracts

are checked. In this case, each predicate holds for each value. If, however, the predicate

had failed in the second reduction step, main would be blamed, since main supplied the

value to sqrt . If the predicate had failed in the second to last reduction step sqrt would be

blamed, since sqrt produced the result.

For a second example, recall the toy higher-order program from the introduction:

val rec gt9 = � x. x � 9
val rec bet0 99 = � x. if 99 � x then x � 0 else false
val rec g : ((gt9 7�! bet0 99) 7�! bet0 99) =

� f. f 0

g (� x. 25)

The definitions of gt9 and bet0 99 are merely helper functions for defining contracts and,

as such, do not need contracts. Although our calculus does not allow such definitions, it is

a simple extension to add them; the contract checker would simply ignore them.

Accordingly, the variable g in the body of the main expression is the only reference to

a definition with a contract. Thus, it is the only variable that is compiled into an obligation.

The contract for the obligation is g’s contract. If a positive position of the contract is not

met, g is blamed and if a negative position of the contract is not met, main is blamed. Here

is the reduction sequence:

g((gt9 7�! bet0 99) 7�! bet0 99),g,main (� x. 25)
�! (g (� x. 25)(gt9 7�! bet0 99),main,g)bet0 99 ,g,main

�! ((� x. 25)(gt9 7�! bet0 99),main,g 0)bet0 99 ,g,main

�! (((� x. 25) 0gt9 ,g,main)bet0 99 ,main,g)bet0 99 ,g,main

�! (((� x. 25)
(if gt9 0 then 0

else blame(g)))bet0 99 ,main,g)bet0 99 ,g,main

�!
� blame(g)

In the first reduction step, the obligation on g is distributed to g’s argument and to the

result of the application. Additionally, the variables indicating blame are swapped in (�

x. 25)’s obligation. The second step substitutes � x. 25 in the body of g, resulting in an

90

obligation expressions

M = � � � j MM,x,x

obligation type rule
� ` M1 : t � ` M2 : t contract

� ` M1
M2,x,x : t

obligation evaluation contexts

E = � � � j ME,x,x j EV,x,x

obligation values

V = � � � j VV 7�! V,x,x

obligation reductions

D[V1
contract(V2),p,n] flat

�! D[if V2(V1) then V1 else blame("p")]

D[(V1
(V3 7�! V4),p,n V2)] hoc

�! D[(V1 V2
V3,n,p)V4,p,n]

Figure 5.10: Monitoring Contracts in �CON

application of � x. 25 to 0. The third step distributes the contract on � x. 25 to 0 and

to the result of the application. In addition, the variables for positive and negative blame

switch positions again in 0’s contract. The fourth step reduces the flat contract on 0 to an

if test that determines if the contract holds. The final reduction steps assign blame to g for

supplying 0 to its argument, since it promised to supply a number greater than 9.

This example shows that higher-order functions and first-order functions are treated

uniformly in our calculus. Higher-order functions merely require more distribution reduc-

tions that first-order functions. In fact, each nested arrow contract expression induces a

distribution reduction during evaluation. For consistency, we focus on our sqrt example for

the remainder of the chapter.

91

ORIGINAL PROGRAM

val rec sqrt : contract(� x.x � 0) 7�! contract(� x.x � 0) =
� n. � � � body intentionally elided � � �

sqrt 4.0

REDUCTIONS IN �CON

sqrt(contract(� x.x � 0) 7�! contract(� x.x � 0)),main,sqrt

4.0
�! (sqrt 4.0contract(� x.x � 0),main,sqrt)contract(� x.x � 0),sqrt ,main

�! (sqrt (if (� x.x � 0) 4.0 then 4.0 else blame(main)))contract(� x.x � 0),sqrt ,main

�!� (sqrt 4.0)contract(� x.x � 0),sqrt ,main

�!� 2.0contract(� x.x � 0),sqrt ,main

�! if (� x.x � 0) 2.0 then 2.0
else blame(sqrt)

�!� 2.0

Figure 5.11: Reducing sqrt in �CON

5.5 Contract Implementation

To implement �CON, we must compile away obligation expressions. The key to the com-

pilation is the wrapper function in figure 5.13. The wrapper function is defined in the

calculus. It accepts a contract, a value to test, and two strings. These strings correspond to

the variables in the superscripts.

Once wrap is defined, compiling the obligations is merely a matter of replacing an

obligation expression with an application of wrap. The first argument is the contract of the

referenced variable. The second argument is the expression under the obligation and the

final two arguments are string versions of the variables in the obligation. Accordingly, we

define a compiler (C, as shown in figure 5.14) that maps from programs to programs. It

replaces each obligation expression with the corresponding application of wrap.

92

ORIGINAL PROGRAM

val rec sqrt : contract(� x.x � 0) 7�! contract(� x.x � 0) =
� n. � � � body intentionally elided � � �

sqrt 4.0

REDUCTIONS OF THE COMPILED EXPRESSION

(wrap (contract(� x.x � 0) 7�! contract(� x.x � 0))
sqrt "sqrt")

4.0
�!� ((� y. wrap (contract(� x.x � 0))

(sqrt (wrap (contract(� x.x � 0))
y
"main" "sqrt"))

"sqrt" "main")
4.0)

�! wrap (contract(� x.x � 0))
(sqrt (wrap (contract(� x.x � 0))

4.0
"main" "sqrt"))

"sqrt" "main"
�! wrap (contract(� x.x � 0))

(sqrt (if ((� x.x � 0) 4.0) then 4.0
else blame("main")))

"sqrt" "main"
�!� wrap (contract(� x.x � 0)) (sqrt 4.0) "sqrt" "main"
�!� wrap (contract(� x.x � 0)) 2.0 "sqrt" "main"
�! if (� x.x � 0) 2.0 then 2.0

else blame("sqrt")
�!� 2.0

Figure 5.12: Reducing sqrt with wrap

The function wrap is defined case-wise, with one case for each kind of contract. The

first case handles flat contracts; it merely tests if the value matches the contract and blames

the positive position if it doesn’t. The second case of wrap deals with function contracts.

93

wrap : t contract ! t ! string ! string ! t
val rec wrap = � ct. � x. � p. � n.

if flatp(ct) then
if (pred(ct)) x then x else error(p)

else
let d = dom(ct)

r = rng(ct)
in

� y. wrap r
(x (wrap d y n p))
p
n

Figure 5.13: Contract Compiler Wrapping Function

The let expression is used as shorthand for two inlined applications of � expressions. The

body of the let is a wrapper function that tests the original function’s argument and its result

by recursive calls to wrap. The first textual recursive call to wrap corresponds to the post-

condition checking. It applies the range portion of the contract to the result of the original

application. The second recursive call to wrap corresponds to the pre-condition checking.

It applies the domain portion of the contract to the argument of the wrapper function. This

call to wrap has the positive and negative blame positions reversed as befits the domain

checking for a function.

Figure 5.12 shows how the compiled version of the sqrt program reduces. It begins

with one call to wrap from the one obligation expression in the original program. The first

reduction applies wrap. Since the contract in this case is a function contract, wrap takes the

second case in its definition and returns a � expression. Next, the � expression is applied

to 4.0. At this point, the function contract has been distributed to sqrt ’s argument and to

the result of sqrt ’s application, just like the distribution reduction in �CON (as shown in

figure 5.11). The next reduction step is another call to wrap, in the argument to sqrt . This

contract is flat, so the first case in the definition of wrap applies and the result is an if test.

If that test had failed, the else branch would have assigned blame to main for supplying a

94

C(D � � � S) = C(D) � � � C(S)
C(val rec x : S = S) = val rec x : C(S) = C(S)
C(� x. M) = � x. C(M)
C(M1

M2,p,n) = wrapu C(M2) C(M1) "p" "n"
C(M M) = C(M) C(M)
C(x) = x
C(n) = n
C(M aop M) = C(M) aop C(M)
C(M rop M) = C(M) rop C(M)
C(M :: M) = C(M) :: C(M)
C([]) = []
C(hd(M)) = hd(C(M))
C(tl (M)) = tl (C(M))
C(mt(M)) = mt(C(M))
C(if M then M else M) = if C(M) then C(M) else C(M)
C(true) = true
C(false) = false
C(str) = str
C(M 7�! M) = C(M) 7�! C(M)
C(flatp(M)) = flatp(C(M))
C(pred(M)) = pred(C(M))
C(dom(M)) = dom(C(M))
C(rng(M)) = rng(C(M))
C(blame(M)) = blame(C(M))

Figure 5.14: Contract Compiler

bad value to sqrt . The test passes, however, and the if expression returns 4.0 in the next

reduction step. After that, sqrt returns 2.0. Now we arrive at the final call to wrap. As

before, the contract is a flat predicate, so wrap reduces to an if expression. This time,

however, if the if test had failed sqrt would have been blamed for returning a bad result. In

the final reduction, the if test succeeds and the result of the entire program is 2.0.

5.6 Correctness

The type soundness theorem for �CON is standard [52].

95

V1
(V2 7�! V3),p,n � � x. (V1 xV2,n,p)V3,p,n

� val rec x : M0
1
= M0

2
� � �

M0

if M1 � M0
1
� � �, M2 � M0

2
� � �,

and M � M0

� x. M � � x. M0 if M � M0

(M1 M2) � (M0
1

M0
2
) if M1 � M0

1
and M2 � M0

2

n � n
(M1 aop M2) � (M0

1
aop M0

2
) if M1 � M0

1
and M2 � M0

2

(M1 rop M2) � (M0
1

rop M0
2
) if M1 � M0

1
and M2 � M0

2

(M1 :: M2) � (M0
1

:: M0
2
) if M1 � M0

1
and M2 � M0

2

[] � []
hd(M) � hd(M0) if M � M0

tl (M) � tl (M0) if M � M0

if M1

then M2

else M3

� if M0
1

then M0
2

else M0
3

if M1 � M0
1
, M2 � M0

2
, and M3 � M0

3

true � true
false � false

str � str
M1 7�! M2 � M0

1
7�! M0

2
if M1 � M0

1
and M2 � M0

2

dom(M) � dom(M0) if M � M0

rng(M) � rng(M0) if M � M0

pred(M) � pred(M0) if M � M0

flatp(M) � flatp(M0) if M � M0

blame(M) � blame(M0) if M � M0

error(x) � error(x)

Figure 5.15: Simulation between Efw and Efw

THEOREM 5.1.(TYPE SOUNDNESS FOR �CON) For any program, D , such that

; ` D : h t � � � i

one of the following holds:

� D �!
� Vd : h t � � � i

� D �!
� error(x), where x is either a val rec defined variable in D , / , hd , tl , pred

dom , or rng , or

96

� for any D1 such that D �!
� D1, there exists a D2 such that D1 �! D2. That is, D

diverges.

PROOF Combine the preservation and progress lemmas for �CON. 2

LEMMA 5.2. (Preservation for �CON) If ; ` D : h t � � � i and D1 �! D2 then ; ` D2 :

h t � � � i.

LEMMA 5.3. (Progress for �CON) If ; ` D : h t � � � i then either D = Vd, or D �! D0,

for some D0.

The remainder of this section formulates and proves a theorem that relates the evalua-

tion of programs in the instrumented semantics from section 5.4 and the contract compiled

programs from section 5.5.

To relate these two semantics, we introduce a new semantics and show how it relates to

both semantics. The new semantics is an extension of the semantics given in figures 5.5, 5.6

and 5.7. In addition to those expressions it contains obligation expressions, evaluation

contexts, and flat
�! reduction from figure 5.10 (but not the new values in figure 5.10), and

the
wrap
�! reduction:

D[(� x. M)(V1 7�! V2),p,n]
wrap
�!

D[� y. ((� x. M) yV1,n,p)V2,p,n]

where y is not free in M.

LEMMA 5.4. The evaluators defined in figure 5.16 are partial functions that are only

undefined when a program diverges.

PROOF From an inspection of the evaluation contexts, we can prove that there is a

unique decomposition of each program into an evaluation context and an instruction, unless

it is a value. From this, it follows that the evaluators are functions. Moreover, by the type

soundness theorem we know that they are only undefined for programs that diverge. 2

THEOREM 5.5.(COMPILER CORRECTNESS)

E = Efh

97

DEFINITION 5.1 (EVALUATORS). Define fh
�!� to be the transitive closure of (�! [

flat
�! [

hoc
�!)

and define fw
�!� to be the transitive closure of (�! [

flat
�! [

wrap
�!). The following functions are

defined on programs P such that P ok.

E(P) =

8><
>:

<fn> if C(I(P)) �!� � x. M
V if C(I(P)) �!� V and V 6= � x. M

error(x) if C(I(P)) �!� error(x)

Efh(P) =

8>>>>>>>>>><
>>>>>>>>>>:

<fn> if I(P) fh
�!� � x. M

<fn> if I(P) fh
�!� VV2 7�! V3,p,n

V if I(P) fh
�!� V where

V 6= � x. M and

V 6= V1
V2 7�! V3,p,n

error(x) if I(P) fh
�!� error(x)

Efw(P) =

8>><
>>:

<fn> if I(P) fw
�!� � x.M

V if I(P) fw
�!� V and V 6= � x. M

error(x) if I(P) fw
�!� error(x)

Figure 5.16: Evaluators

PROOF Combine lemma 5.6 with lemma 5.7. 2

LEMMA 5.6. E = Efw

PROOF This proof establishes that the reduction sequences for E and for Efw proceed in

lockstep. First it shows that the evaluation contexts for any term and its compiled counter-

part match and then it shows that each possible reduction in E is mirrored in E fw.

Except for obligations, the compiler does not change a program. Therefore, except for

obligation expressions, a program and the compiled version of the program decompose into

an instruction and a context identically. For obligation expressions, the compiler produces

an application expression. From the definition of evaluation contexts for applications and

for obligation expressions, we know that the obligation expressions and the compiled ver-

sions of obligation expressions also decompose in parallel. Accordingly, for the purposes

of the proof we extend C as follows:

98

C(2) = 2

so we can write C(E[i]) = C(E)[C(i)].

Since the compiler does not change any expressions except obligations, we merely need

to show that if an obligation expression is the instruction it reduces to the same expression

that its compiled counterpart does. There are two cases. First, consider obligation expres-

sions whose exponent is a flat contract:

E[Vcontract(V2),p,n
1]

fh
�! E[if V2(V1) then V1 else blame("p")]

The corresponding compiled expression reduces to the compiled version of the same if

expression:

C(E[Vcontract(V2),p,n
1

])
= C(E)[wrap contract(C(V2)) C(V1) "p" "n"]
�! C(E)[if flatp(contract(C(V2))) then

if pred(contract(C(V2)))(C(V1)) then C(V1) else blame("p")
else

let d = dom(contract(C(V1)))
r = rng(contract(C(V1)))

in
� y. wrap r

(x (wrap d y "n" "p"))
"p" "n"]

�! C(E)[if (pred(contract(C(V2))))(C(V1)) then C(V1) else blame("p")]
�! C(E)[if C(V2)(C(V1)) then C(V1) else blame("p")]
= C(E[if V2(V1) then V1 else blame("p")])

Second, consider the result of reducing an obligation expressions whose exponent is a

higher-order contract:

(� x. M)V1 7�! V2,p,n
fh
�! � y. ((� x. M) yV1,"p","n")V2,"n","p"

Here is the reduction sequence for the compiled expression (with the short-hand for the let

expression expanded):

C(E[(� x. M)V2 7�! V3,p,n])
= C(E)[wrap (C(V1) 7�! C(V2)) (� x. C(M)) "p" "n"]
�! C(E)[if flatp(C(V1) 7�! C(V2)) then

99

if (C(V1) 7�! C(V2))(� x. C(M)) then (� x. C(M)) else blame("p")
else

(� d.
(� r.
� y. wrap r

(x (wrap d y "n" "p"))
"p" "n")

dom(C(V1) 7�! C(V2)))
rng(C(V1) 7�! C(V2))]

�! C(E)[(� d.
(� r.
� y. wrap r

(x (wrap d y "n" "p"))
"p" "n")

rng(C(V1) 7�! C(V2)))
dom(C(V1) 7�! C(V2))]

�! C(E)[(� d.
(� r.
� y. wrap r

(x (wrap d y "n" "p"))
"p" "n")

rng(C(V1) 7�! C(V2)))
C(V1)]

�! C(E)[(� r.
� y. wrap r

(x (wrap (C(V1) y "n" "p"))
"p" "n")

rng(C(V1) 7�! C(V2)))]
�! C(E)[(� r.

� y. wrap r
(x (wrap (C(V1) y "n" "p"))
"p" "n")

C(V2))]
�! C(E)[� y. wrap (C(V2))

(x (wrap (C(V1)) y "n" "p"))
"p" "n"]

= C(E[� y. ((� x. M) yV1,"p","n")V2,"n","p"])

Since the above expression and the result of the fh
�! reduction is the same, E = Efw. 2

LEMMA 5.7. Efw = Efh

100

PROOF Intuitively, the difference between fw
�! and fh

�! is that the hoc
�! reductions in

fh
�! are split into two steps for fw

�!, a
wrap
�! and an application, where the

wrap
�! reduction

may come much earlier in the reduction sequence than the application.

This proof formalizes that intuition via the a simulation between E fh and Efw, defined in

figure 5.15. It relates fw
�! reduced programs that have taken the first half of a hoc

�! reduction

with their fh
�! counterparts. The first clause establishes the connection between sub-terms

where the
wrap
�! reduction has occurred and their counterparts in the fh

�! world.

In addition, we write that D[M] �̂ D0[M0] if both D[M] � D0[M0] and both D[M] and

D0[M0] are both valid decompositions, or are both values or errors.

The proof first establishes that all reductions steps match this diagram:

M1

fh
�! M3

�̂ �̂

M0

1

fw
�!

� M0

3

First we consider the reductions in figure 5.7. Each of them preserves the simulation

relation, so we know that M3 � M0

2
, where M0

2
is the term resulting by taking a single step

in fw
�! from M0

1
. By lemma 5.8 we know that there exists M0

3
to satisfy the above diagram.

The only other reduction to consider is M1

hoc
�! M3. In this case, we have:

M1 = D1[(V
V2 7�! V3,p,n
1

V4)]

and

M3 = D1[(V1 VV2,n,p
4)V3,p,n]

By the definition of �̂, M0

1
must either be:

D0

1
[(V 0

1

V0

2
7�! V0

3
,p,n V0

4
)]

or

D0

1
[((� (y) (V0

1
yV0

2
,n,p)V

0

3
,p,n) V0

4
)]

by the definition of �. In the first case, M0

1
reduces to the second expression by

wrap
�!. The

second expression reduces to

D0

1
[((V1 VV2,n,p

4
)V3,p,n)]

101

which simulates M3. By lemma 5.8 we know that there exists an M0

3
to complete the

diagram.

Finally, to prove the lemma, we must examine the overall reduction sequences by piec-

ing together the above diagram. There are three situations to consider:

� The program runs forever under fh
�!. Clearly, by the piecing together the above

diagram many times, the same program runs forever under fw
�!.

� The program reduces to an error under fh
�!. From the definition of the � relation,

we can see that the program must also reduce to the same error under fw
�!.

� The program reduces to a value under fh
�!. If the value is not a procedure, we know

that the program must reduce to the same value under fw
�!, by the definition of �. If

the value is a procedure, it might reduce to a different procedure, but the definitions

of Efw and Efh identify any procedure values, and thus produce the same result.

2

LEMMA 5.8. If M1 � M2, then there exists M3 such that M1 �̂ M3 and M2

wrap
�!

� M3.

PROOF If M1 is a value, then � and �̂ are the same, so taking M3 = M2 completes the

proof.

If M1 is not a value then, by the progress lemma, it must decompose into an evaluation

context and an instruction, M1 = E1[i]. Along the spine of E1 are some number higher-

order contract obligation values. We proceed by an inductive argument on the number of

these expressions.

If there are zero such values, then M2 must decompose into an evaluation context and

an instruction, identically to M1. This follows because the definition of � says that the

terms are structurally the same and the definition of evaluation contexts and values for fw
�!

and fh
�! are the same if there are no higher-order contract obligation expressions in the

spine of the term. So, we can just take M3 = M2.

If there are n such values, then M2 reduces via
wrap
�! replacing the outermost higher-

order contract obligation with a � expression. This new term still simulates M1 and has one

102

dependent contract expressions

M = � � � j M d
7�! M

dependent contract evaluation contexts

E = � � � j E d
7�! M j V d

7�! E

dependent contract reductions

D[V3
(V1

d
7�! V2),p,n V4] �! D[(V3 V4

V1,n,p)(V2 V4),p,n]

Figure 5.17: Dependent Function Contracts for �CON

fewer higher-order contract value. Therefore, by the inductive hypothesis, we can conclude

that there exists and M3 such that M2

wrap
�!

� M3 and M1 �̂ M3. 2

5.7 Dependent Contracts

Adding dependent contracts to the calculus is straightforward. The reduction relation for

dependent function contracts naturally extends the reduction relation for normal function

contracts. The reduction for distributing contracts at applications is the only difference.

Instead of placing the range portion of the contract into the obligation, an application of

the range portion to the function’s original argument is placed in the obligation, as in fig-

ure 5.17.

The evaluation contexts given in figure 5.10 dictate that an obligation’s superscript is

reduced to a value before its base expression. In particular, this order of evaluation means

that the application resulting from the dependent contract reduction in figure 5.17 is reduced

before the base expression. Therefore, the procedure in the dependent contract can examine

the state (of the machine) before the function proper is applied. This order of evaluation is

critical for the callback examples from section 5.2.5.

103

5.8 Tail Recursion

Since the contract compiler described in section 5.5 checks post-conditions, it does not

preserve tail recursion [7, 49] for procedures with post-conditions. Typically, determining

if a procedure call is tail recursive is a simple syntactic test. In the presence of higher-order

contracts, however, understanding exactly which calls are tail calls is a complex task. For

example, consider this program:

val rec gt0 = contract(� x.x � 0)
val rec f : (gt0 7�! gt0) 7�! gt0

= ng. g 3

f (� x. x+1)

The body of f is in tail position with respect to a conventional interpreter. Hence, a tail-

call optimizing compiler should optimize the call to g and not allocate any additional stack

space. But, due to the contract that g’s result must be larger than 0, the call to g cannot be

optimized, according to our semantics of contract checking.{

Even worse, since functions with contracts and functions without contracts can co-

mingle during evaluation, sometimes a call to a function is a tail-call but at other times

a call to the same function call is not a tail-call. Extending the above program, imagine

that the argument to f was a locally defined recursive function. The recursive calls would

be tails calls, since they would not be associated with any top-level variable, and thus no

contract would be enforced.

Because contracts are most effective at module boundaries and experience has shown

that module boundaries are typically not involved in tight loops, we conjecture that losing

tail recursion for contract checking is not a problem in practice. In particular, adding these

contracts to DrScheme has had no detectable effect on its performance. Removing the

tail-call optimization entirely, however, would render DrScheme useless.

{At a minimum, compiling it as a tail-call becomes much more difficult.

104

5.9 Conclusion

This chapter presents the first contract checker for higher-order functions. There are two

key insights. The first is to delay the checks for function contracts until the function is

applied or it returns. This allows the contract checker to enforce contracts for higher-order

functions. The second insight is that blame for contract violations switches sense in the

contra-positive positions of function contracts and how to track the positive and negative

positions of function contracts during evaluation.

Chapter 6

Conclusions and Future Work

A serious impediment to a software component marketplace is assigning blame for run-

time errors in a system composed of many components. Sound type systems mitigate this

difficulty by statically rejecting certain incorrect component compositions. Static systems,

however, are inherently limited to decidable approximations of a component’s true interface

requirements.

In contrast, behavioral contracts have no such limitation. Although they cannot express

complete correctness specifications for a component, experience building DrScheme sug-

gests that full correctness specifications are not particularly interesting. In particular, they

are too complex and they do not improve the overall quality of the software much over

merely specifing key behavioral properties. In fact, the most useful contracts are simple

contracts, since programmers of client components must understand the contract to be able

to program to it.

This work improves the state of the art of behavioral contract checking in three ways.

First, it explains and fixes flaws in contract checking for object-oriented languages. Sec-

ond, it extends contract checking to higher-order languages in a natural and intuitive man-

ner. Finally, it lays the groundwork for a theory of contract checking, in the spirit of type

checking.

I consider this work as the starting point for many interesting research directions. First,

I believe that experience with behavioral contracts will reveal which contracts have the

biggest impact on software quality. This information, in turn, will help focus type system

research in the most fruitful directions.

Second, runtime software contract checking and static analyses like PLT’s static de-

106

bugger are synergistic. The static debugger improves the contract checking by validating

some contracts statically; contract checking allows the static debugger to operate on each

component of the program independently, dramatically increasing the size of programs that

can be analyzed.

Third, trace-based debugging [6, 30] can also be improved with software contracts.

Imagine a developer who buys components from several different companies, only to find

that a particular component fails to live up to its contracts. Typically, merely reporting

the problem is not enough for the company to be able to fix the defect. The component

producer also needs test cases that reliably reproduce the problem. Such test cases help

developers ensure that the problem really is with their components. Furthermore, the test

cases also help them ensure that the defect is removed and does not re-appear in future

releases.

Since it is not feasible for the component developer to buy every other component that

might be useful in this context, finding the test cases is de facto the responsibility of the

component consumer. Doing this, however, is not a simple matter. Typically, the program-

mer must extract a small test case from a very large program, often with no guidance. I

believe that the combination of trace-based debugging and software contract specifications

can automatically extract these test cases.

107

Bibliography

[1] America, P. Designing an object-oriented programming language with behavioural

subtyping. In Proceedings of Foundations of Object-Oriented Languages, volume

489 of Lecture Notes in Computer Science, pages 60–90. Springer-Verlag, 1991.

[2] AT&T Bell Labratories. Standard ML of New Jersey, 1993.

[3] Bartetzko, D. Parallelität und Vererbung beim Programmieren mit Vertrag. Diplo-

marbeit, Universität Oldenburg, April 1999.

[4] Bartetzko, D., C. Fischer, M. Moller and H. Wehrheim. Jass - Java with assertions. In

Workshop on Runtime Verification, 2001. Held in conjunction with the 13th Confer-

ence on Computer Aided Verification, CAV’01.

[5] Beugnard, A., J.-M. Jézéquel, N. Plouzeau and D. Watkins. Making components

contract aware. In IEEE Software, pages 38–45, june 1999.

[6] Choi, J. D., B. P. Miller and R. B. Netzer. Techniques for debugging parallel programs

with flowback analysis. ACM Transactions on Programming Languages and Systems,

13(4):491–530, October 1991.

[7] Clinger, W. D. Proper tail recursion and space efficiency. In Proceedings of ACM

SIGPLAN Conference on Programming Language Design and Implementation, pages

174–185, June 1998.

[8] Detlefs, D. L., K. Rustan, M. Leino, G. Nelson and J. B. Saxe. Extended static check-

ing. Technical Report 158, Compaq SRC Research Report, 1998.

108

[9] Duncan, A. and U. Hölzle. Adding contracts to Java with handshake. Technical

Report TRCS98-32, The University of California at Santa Barbara, December 1998.

[10] Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi. How to Design Programs.

MIT Press, 2001.

[11] Felleisen, M. and R. Hieb. The revised report on the syntactic theories of sequential

control and state. In Theoretical Computer Science, pages 235–271, 1992.

[12] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler and

M. Felleisen. DrScheme: A programming environment for Scheme. Journal of Func-

tional Programming, 2002. To appear. A preliminary version of this paper appeared

in PLILP 1997, LNCS volume 1292, pages 369–388.

[13] Findler, R. B. and M. Flatt. Modular object-oriented programming with units and

mixins. In Proceedings of ACM SIGPLAN International Conference on Functional

Programming, pages 94–104, September 1998.

[14] Flatt, M. PLT MzScheme: Language manual. Technical Report TR97-280, Rice

University, 1997.

[15] Flatt, M. and M. Felleisen. Units: Cool modules for HOT languages. In Proceedings

of ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 236–248, June 1998.

[16] Flatt, M., S. Krishnamurthi and M. Felleisen. Classes and mixins. In Proceedings

of ACM Conference Principles of Programming Languages, pages 171–183, Janurary

1998.

[17] Flatt, M., S. Krishnamurthi and M. Felleisen. A programmer’s reduction semantics for

classes and mixins. Formal Syntax and Semantics of Java, 1523:241–269, 1999. Pre-

liminary version appeared in proceedings of Principles of Programming Languages,

1998. Revised version is Rice University technical report TR 97-293, June 1999.

109

[18] Gamma, E., R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[19] Gomes, B., D. Stoutamire, B. Vaysman and H. Klawitter. A Language Manual for

Sather 1.1, August 1996.

[20] Gosling, J., B. Joy and J. Guy Steele. The Java(tm) Language Specification. Addison-

Wesley, 1996.

[21] Gosling, James. The Emacs Screen Editor. Unipress Software Inc., 1984.

[22] Holt, R. C. and J. R. Cordy. The Turing programming language. In Communications

of the ACM, volume 31, pages 1310–1423, December 1988.

[23] Jones, M. P., A. Reid and The Yale Haskell Group. The Hugs 98 User Manual, 1999.

[24] Karaorman, M., U. Hölzle and J. Bruno. jContractor: A reflective Java library to sup-

port design by contract. In Proceedings of Meta-Level Architectures and Reflection,

volume 1616 of lncs, July 1999.

[25] Kelsey, R., W. Clinger and J. R. (Editors). Revised5 report of the algorithmic language

Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

[26] Kiniry, J. R. and E. Cheong. JPP: A Java pre-processor. Technical Report CS-TR-98-

15, Department of Computer Science, California Institute of Technology, 1998.

[27] Kizub, M. Kiev language specification. http://www.forestro.com/kiev/,

1998.

[28] Kölling, M. and J. Rosenberg. Blue: Language Specification, version 0.94, 1997.

[29] Kramer, R. iContract — the Java design by contract tool. In Technology of Object-

Oriented Languages and Systems, 1998.

110

[30] Larus, J. R. Abstract execution: A technique for efficiently tracing programs. Soft-

ware Practice and Experience, 20(12):1241–1258, December 1990.

[31] Leroy, X. Manifest types, modules, and separate compilation. In Proceedings of ACM

Conference Principles of Programming Languages, pages 109–122, Janurary 1994.

[32] Leroy, X. Applicative functors and fully transparent higher-order modules. In Pro-

ceedings of ACM Conference Principles of Programming Languages, pages 142–153.

ACM Press, 1995.

[33] Leroy, X. The Objective Caml system, Documentation and User’s guide, 1997.

[34] Liskov, B. H. and J. Wing. Behavioral subtyping using invariants and constraints.

Technical Report CMU CS-99-156, School of Computer Science, Carnegie Mellon

University, July 1999.

[35] Liskov, B. H. and J. M. Wing. A behavioral notion of subtyping. ACM Transactions

on Programming Languages and Systems, November 1994.

[36] Luckham, D. Programming with specifications. Texts and Monographs in Computer

Science, 1990.

[37] Luckham, D. C. and F. von Henke. An overview of Anna, a specification language

for Ada. In IEEE Software, volume 2, pages 9–23, March 1985.

[38] Man Machine Systems. Design by contract for Java using JMSAssert.

http://www.mmsindia.com/DBCForJava.html, 2000.

[39] McIlroy, M. D. Mass produced software components. In Naur, P. and B. Randell,

editors, Report on a Conference of the NATO Science Committee, pages 138–150,

1968.

[40] Meyer, B. Object-oriented Software Construction. Prentice Hall, 1988.

[41] Meyer, B. Eiffel: The Language. Prentice Hall, 1992.

111

[42] Milner, R. A theory of type polymorphism in programming. Journal of Computer

Systems Science, 17:348–375, 1978.

[43] Milner, R., M. Tofte and R. Harper. The Definition of Standard ML. MIT Press, 1990.

[44] Parnas, D. L. A technique for software module specification with examples. Commu-

nications of the ACM, 15(5):330–336, May 1972.

[45] Plösch, R. and J. Pichler. Contracts: From analysis to C++ implementation. In Tech-

nology of Object-Oriented Languages and Systems, pages 248–257, 1999.

[46] Rémy, D. and J. Vouillon. Objective ML: A simple object-oriented extension of ML.

In Proceedings of ACM Conference Principles of Programming Languages, pages

40–53, January 1997.

[47] Rosenblum, D. S. A practical approach to programming with assertions. IEEE Trans-

actions on Software Engineering, 21(1):19–31, Janurary 1995.

[48] Stallman, R. GNU Emacs Manual. Free Software Foundation Inc., 675 Mass. Ave.,

Cambridge, MA 02139, 1987.

[49] Steele, G. L. J. Debunking the “expensive procedure call” myth; or, Procedure call

implementations considered harmful; or, LAMBDA: The ultimate goto. Technical

Report 443, MIT Artificial Intelligence Laboratory, 1977. First appeared in the Pro-

ceedings of the ACM National Conference (Seattle, October 1977), 153–162.

[50] Szyperski, C. Component Software. Addison-Wesley, 1998.

[51] The GHC Team. The Glasgow Haskell Compiler User’s Guide, 1999.

[52] Wright, A. and M. Felleisen. A syntactic approach to type soundness. Information

and Computation, pages 38–94, 1994. First appeared as Technical Report TR160,

Rice University, 1991.

