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Abstract

The subject of this paper is the analysis of a random-
ized preprocessing scheme that has been used for query
processing in robot path planning. The attractiveness
of the scheme stems from its general applicability to vir-
tually any path-planning problem, and its empirically
observed success. In this paper we initiate a theoreti-
cal basis for explaining this empirical success. Under
a simple assumption about the configuration space, we
show that it is possible to perform preprocessing follow-
ing which queries can be answered quickly. En route,
we consider related problems on graph connectivity in
the evasiveness model, and art-gallery theorems.

1 Introduction

Planning obstacle-avoiding motion for a rigid or artic-
ulated robot from a given initial configuration to a goal
configuration is an important problem in robotics [3, 8].
Typically, the environment is static and the robot must
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perform a series of complicated maneuvers to achieve
a sequence of goals.

A number of recent papers in the robotics literature
[4, 5, 6, 7, 12, 13] have described the success of a
class of randomized preprocessing heuristics for query
processing in robot path planning. The key idea is
the use of random sampling in a preprocessing stage,
following which queries of the form “Is configuration
B reachable from configuration A?” can be answered
quickly. The method is very general and can be applied
to virtually any type of holonomic robot. It has proved
especially effective for robots with many degrees of
freedom, where traditional methods have either failed
to yield algorithms or have yielded algorithms that are
too slow for normal use. There is another motivation for
such a general query processing scheme not bound to the
specifics of any particular robot: it is clearly infeasible
to invest effort in tailor-made complete algorithms for
every robot in existence. While the scheme is general,
it is possible to tailor it to any specific type of robot and
further enhance its performance [6].

Figure 1 depicts several positions of a robot with 7
revolute joints to which the method has been success-
fully applied. This paper initiates a theoretical basis for
explaining the success of this method.

The configuration of a robot at any instant is de-
scribed by an ordered tuple of real values, each entry
of which is the value of one component of its position.
For example, a unit square moving freely in the plane is
captured by a triple: the � - and � -coordinates of a des-
ignated corner, together with the angle made by the line
containing a designated edge with the � -axis. We there-
fore say that such a square has 3 degrees of freedom,
and represent its position by a point in 3-space. The
motion of the square forms a trajectory in this space.
Given static obstacles in the plane that constrain the
motion of the square, we may represent them in the
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Figure 1: Several configurations of a robot arm with a fixed base. This arm has 7 revolute joints, and must maneuver
through gaps in two walls. (a) a planar arm with 7 revolute joints, (b) and (c) two different configurations of the
arm, and (d) a path followed by the arm when it moves between configurations (b) and (c).

space as a set of forbidden regions that must never be
entered by the motion trajectory. The 3-dimensional
space representing the position of the square together
with these forbidden regions is known as the configura-
tion space for this setting. Such a configuration space
can be defined for any motion planning problem and,
together with a cost measure and possible constraints
on the shapes of trajectories, defines the problem com-
pletely. For instance, the position of the arm in Figure 1
may be represented in a space with 7 dimensions, with
each dimension corresponding to the angular position
of one of the revolute joints. Figure 1 (a) depicts the
7 angles giving rise to the seven degrees of freedom.
Figure 1 (b) and 1 (c) depict the start and finish con-
figurations, while Figure 1 (d) depicts a sequence of
configurations found by the algorithm for going from
the start configuration to the finish configuration. We
refer to the subset of the configuration space that is not
forbidden as the free space; it may consist of more than
one connected component.

More generally, we assume here that the configura-
tion space is the cube � 0 � 1 �� , where

	
is the number of

degrees of freedom for the robot. (Our definitions and
results can be extended to cases where one or more di-
mensions of the configuration space — say the angular

position of a joint of an arm — can “wrap around”, but
for simplicity we assume � 0 � 1  � here.) For the purposes
of this abstract, we also assume that the space is reflex-
ive: if a point � 1 in free space is reachable from � 2, then
� 2 is reachable from � 1. Non-reflexive spaces arise, for
instance, when there are moving obstacles so that time
becomes one dimension, or if the robot has asymmetric
motion capabilities such as when only forward motion
is permitted.

A key ingredient of the method is a fast simple plan-
ner that, given two points � 1 and � 2 in the configuration
space, tries to connect them using a fast but simple strat-
egy. For example, one simple planner that has been used
for this purpose [6, 7] checks whether the line segment
between � 1 and � 2 lies entirely in free space; if not, it
reports failure (even though a more complicated path
might exist). This is usually implemented by a walk
along the line segment (suitably discretized), checking
whether each of these discrete points is in free space.
In addition we assume that we have access to a com-
plex planner that is expensive to run, but is error-free
in that it discovers a path between � 1 and � 2 whenever
one exists, and reports failure when there is none. One
example of such a complex planner for general config-
uration spaces is due to Barraquand and Latombe [1].



Such an error-free planner may be extremely slow and
may not be run to completion in practice. However, if
even the complex planner cannot discover a path be-
tween two connected configurations, then we may as
well assume that these points are disconnected (i.e., we
can view connectivity between configurations as being
defined by the ability of the complex planner to find
connections). Because of its expense, we seek to use
this complex planner sparingly. As we will show, with
high probability the preprocessing will ensure that only
the simple planner is needed for answering queries. Our
randomized preprocessing scheme may be summarized
as follows:

1. [Sampling] Pick a random set of points in the free
space. Call these points milestones.

2. [Simple Permeation] Try to connect all pairs of
milestones using the simple planner.

3. [Resampling] For any milestones that are con-
nected to relatively few others in this process, pick
additional milestones “near” them at random.

4. [Complex Permeation] As a last resort, try us-
ing the complex planner to connect some pairs of
milestones.

Step 4 is seldom used in practice, and would ide-
ally be eliminated. In certain settings in practice this
elimination may be possible with resampling and other
related techniques.

The result of this preprocessing may be viewed as
a graph

�
each of whose vertices corresponds to a

milestone, with an edge signifying that its end-points
are in the same component of free space. This graph is
sometimes called a probabilistic roadmap [7].

Given a query pair of configurations � 1 and � 2 in free
space, we detect whether it is possible to move from � 1

to � 2 as follows: we use the simple planner to connect
� 1 and � 2 to milestones � 1 and � 2 respectively. We
then use a graph search algorithm to determine whether
the milestones � 1 and � 2 are in the same connected
component of the roadmap

�
. Queries are never an-

swered incorrectly; with some probability though, the
query processing algorithm may fail to give an answer.

In our analysis, we assume that the configuration
space is available as a membership oracle: given a point
� in the configuration space, we can decide whether or
not the point is in free space. This is reasonable in
implementations [6, 8]: such a membership test cor-
responds to checking whether a configuration violates

any of the constraints in the input, and this can be done
rather efficiently. We treat the simple planner (denoted���

) and the complex planner (
���

) as black-boxes. We
assume without loss of generality that both planners are
reflexive: i.e., if a planner succeeds in connecting � 1 to
� 2, it can also connect � 2 to � 1.

A word about the random sampling in Step 1 of the
preprocessing: in the experimental work [5, 6, 7, 13]
this is done simply by choosing a point at random from
� 0 � 1  � . If the chosen point is in the free space, it is
retained; else it is discarded and the process repeated.
Clearly a point chosen at random in this fashion is uni-
formly distributed in the free space, but in order for
the number of repetitions to be reasonably small we
need the free space to constitute a good fraction of the
configuration space. We assume this is the case based
on empirical evidence (else no analysis is possible).
Choosing a random sample has a minuscule cost in
practice compared with the other operations, and can
be repeated a very large number of times if necessary
(see also Section 5).

Our main thesis is that the empirically observed suc-
cess of the scheme stems from a property we call � -
goodness which we now define. Let 	 denote the free
space. For a point ��
�	 , let  � � � consist of those
points of 	 that can be connected to � by the simple
planner

���
. For a subset � of the configuration space,

let � � � �
denote its volume.

Definition 1.1 Let � be a positive real. We say that
a point � in the free space 	 is � -good if � �  � � � ���
��� � 	 �

. We say that the free space 	 is � -good if for all
points ��
�	 we have � �  � � � ��� ��� � 	 �

.

While any non-degenerate configuration space is � -good
for some positive � , the intent in this definition is that
the space be � -good for a “reasonably large” value of
� . Many configuration spaces arising in practice do
not have the � -good property; for example, consider a
crescent-shaped region or one where a circular obsta-
cle is tangential to a rectangular obstacle. However,
in these cases, our definition applies to the subset of
free space obtained by removing a small neighborhood
of the cusp or tangency points from the configuration
space. (See Section 5.1 for a more rigorous treatment
of this issue.)

Contributions and Organization

The first contribution of this paper is a model of com-
putation appropriate for the analysis of the probabilistic



roadmap scheme, taking into account the realities of
the problem at hand. In Section 2 we define a con-
crete algorithm based on the high-level outline given
above. This algorithm and its analysis do not make
use of resampling (Step 3 above); we present this sim-
plified version first because it succinctly outlines the
main ideas using only the simple notion of � -goodness.
We argue in Section 3 that if the free space is � -good
then every point of the free space 	 can, with high
probability, be connected to a milestone using only

� �
.

In Section 4 we give a bound on the number of in-
vocations of the complex planner

� �
in constructing

the probabilistic roadmap; this involves a new random-
ized algorithm for determining connected components
in a model related to the decision tree model used in
the study of evasive graph properties [10], and may
be of independent interest. We complement this with
tight bounds for deterministic algorithms. These results
imply bounds on the work done in preprocessing and
in query processing, in terms of the running times of���

and
���

; in particular, the complex planner is not
used for answering queries. Section 5 summarizes re-
sults from experiments with the robot arm of Figure 1;
these suggest that most but not all points in the corre-
sponding free space are � -good for a reasonably large
value of � . Interestingly, the resampling step seems
to be helpful for settings such as this arm. We there-
fore extend (Section 5.1) the definition of � -goodness
and use it to explain these observations: assuming the
configuration space satisfies a weaker condition we call
( � � � � -goodness for a small integer

�
, we give an expla-

nation for the resampling step similar to the analysis in
Sections 3 and 4. Finally, our work is related to classic
problems in art-gallery theorems. In Section 6 we es-
tablish this connection, give some new results related to
our work, and mention some resulting open problems
in art-gallery theorems.

2 Algorithms and Results

For the remainder of the paper, we say that two points
� 1 � � 2 
 	 are mutually visible when

���
can connect � 1

and � 2. We use this terminology primarily for brevity,
and our usage is inspired by a commonly used simple
planner [7, 6] that checks whether the straight line seg-
ment joining � 1 and � 2 is in 	 (equivalently, � 1 and � 2

are mutually visible in 	 ); however, our entire analysis
works for any simple planner

� �
.

Let � 
 �
0 � 1  be a positive real constant which rep-

resents the failure probability we can tolerate in the
preprocessing (this will become clear in the statements
of Theorems 2.1, 2.2 and 2.3). Let

�
be a fixed pos-

itive constant large enough that for any � 
 �
0 � 1  ,�

1 � �
�������
	 ln 1 ��	��� ����� 4. Let ��� ��� � � � � ln 1 � � � . The

algorithm for preprocessing is listed in Figure 2.
As we will see in Section 4, Step 4 probes the “edge-

slots” of the roadmap, trying to determine the structure
of the connected components without expending too
many calls to

���
. Note that the algorithm in Figure 2

does not make use of resampling; we will get to this
in Section 5. In practice Step 4 is a last resort; much
if not all of the connectivity information should have
been discovered before this step.

The query processing algorithm is listed in Figure 3.
Given the query points � 1 and � 2, we connect them to
milestones � 1 and � 2 using

���
as in Figure 3. Here� 
 �

0 � 1  is the allowable failure probability for a
query. For each � , Step 1a can be implemented using �
invocations of

� �
, one for each milestone. Each trial

of Step 1b can be implemented using � invocations of���
.

For an � -good free space 	 call a set of milestones�
adequate if the volume of the subset of 	 not vis-

ible from any milestone of
�

is at most
� ��� 2

� � � 	 �
.

Intuitively, if we were to place a point source of light at
each milestone, we would like a fraction at least 1 � ��� 2
of 	 to be illuminated. Note that as � increases, the re-
quirement for adequacy grows weaker but the number
of milestones needed becomes smaller.

Theorem 2.1 The preprocessing stage will generate an
adequate set of milestones with probability at least 1 �
� .

Theorem 2.1 only says that most of 	 is likely to
be visible from some milestone in

�
; using this prop-

erty alone, we can show that queries can be answered
quickly. However, we need a stronger property —
which we may think of as permeation — to guaran-
tee that queries can be answered correctly. Permeation
is essentially the following: for any two milestones
in the same connected region of 	 , we can infer this
connectedness from the preprocessing algorithm. The-
oretically, we cannot hope to show that the use of

� �
alone will provide such permeation: if 	 consists of
two spheres each of diameter 1 � 2 and the spheres touch
at a single point � , we have a free space that is � -
good for ��� 0 � 5. Yet it is extremely unlikely that���

can yield permeation in this case (if for instance



1. Pick � points in
�

at random, and call these milestones.

2. Invoke ��� on every pair of milestones.

3. Pick a representative milestone from each component that results. Let � be the set of these
representatives and �����
	�� .

4. Invoke the Randomized Permeation algorithm (Figure 5) on these representatives.

Figure 2: The Preprocessing Algorithm

1. For �	 1 � 2 do:

(a) If ��� can see a milestone � , set ����	�� .
(b) Else Repeat log � 2 ����� times:

i. Choose � � uniformly at random from ����� � � ;
ii. If a milestone is visible from � � then set � � to be that milestone.

(c) If all log � 2 �
��� trials fail then declare FAILURE and halt.

2. If � 1 and � 2 are in the same component of  then output YES else output NO.

Figure 3: The Query Processing Algorithm

���
simply checks visibility between milestones). In

such configuration spaces, the use of the complex plan-
ner

���
in Step 4 is inevitable to ensure a good over-

all success probability. Define a function ! � � on an
ordered " -tuple of positive integers # 1 �$# 2 � . . . �%#'& by! � # 1 �%# 2 � . . . �%# & � �)( &*,+

1 �-# * .
Theorem 2.2 Let  be a set of # milestones lying in" connected components denoted  1 � . . . �  & such that.  1

. �/.  2
. �

. . .
�/. �& . . The preprocessing stage

will determine the partition correctly and the expected
number of invocations of

���
is at most

2! �0.  1
. � .  2

. � . . . � . '& . � �
Theorem 2.3 Suppose that the set of milestones chosen
during preprocessing is adequate. Then the probability
that the query processing algorithm outputs FAILURE is
at most � . When the query processing algorithm does
not output FAILURE, it correctly answers the query by
either producing a path or declaring that none exists.

In fact, our analysis will imply that the expected num-
ber of executions of Step 1b in the query processing
algorithm (Figure 3) is at most 2.

3 Nearly Complete Coverage

This section establishes Theorems 2.1 and 2.3. The
expectation of the volume of points not visible from
any of the � randomly chosen milestones in

�
is1 � � �32 ��
�	 . �54
76�8:9<;  � � �3= �  �>@?

9@ACB�D � �74
76�8E9F;  � � �  �

The probability that a fixed point is not visible from any
of the � milestones is at most

�
1 � � �HG . Thus, the above

is bounded by>@?
9IA �

1 � � � G � � � 	 � �
1 � � � G

� � � 	 � �
��� 4 �
By the Markov inequality, it follows that

BJD � � �32 ��
�	 . �K4
76�8E9F;  � � �3= �ML � � 	 � ��� 2 
is at most ��� 2. Thus with probability 1 � ��� 2 the
“shadow region” not visible from any � 
 �

has
volume at most � � 	 � ��� 2, in which case it follows that



for any � 
�	 , the volume of the subset of  � � � visible
from some � 
 �

is at least � �  � � � � � � � 	 � ��� 2
�

� � 	 � � � 2.
This establishes Theorem 2.1 and leads to Theo-

rem 2.3: for either query point � * , the probability that a
random point chosen from  � � * � is not visible from any
� 
 �

is
� � � 2 � �  � � * � � 1 � 2. The probability that we

fail on log
�
2 � � � trials is less than � � 2. Since we do this

for the two query points, the overall failure probability
is at most � .

4 Permeation

This section establishes Theorem 2.2. En route, we
connect our problem to the decision tree model used
to study evasive graph properties, and prove some re-
lated results. The permeation problem is the follow-
ing: given a free space 	 containing # � ��� � � � ln1 � �
milestones, determine which milestones are reachable
from each other. (Note that because of Step 2 in the
Preprocessing Algorithm of Section 2, # may be much
smaller than

��� � � � ln1 � � .) Given any pair of milestones
the complex planner

���
will decide whether they are

connected. The graph
�

can be computed with � � # 2 �
invocations of

� �
by trying it on every pair of points,

but we show that far fewer invocations may suffice.
We work with the following abstract version of the

permeation problem. The input is a graph
� ��� ��� �

with # vertices, consisting of " disjoint cliques. The
goal is to determine this clique partition of

�
. The

cost of an algorithm is measured by the number of
entries it examines in the adjacency matrix of

�
. This

is the edge probe model used in the study of evasive
graph properties [10]. Let � � # ��� �

denote the non-
deterministic complexity of this problem.

Theorem 4.1 � � # �$" � � Θ
� #	� " 2 � .

We now characterize the worst-case deterministic
complexity of this problem, denoted 
 � # �%" � . Consider
the following deterministic algorithm: by probing all
edge slots incident on an arbitrary vertex � , determine
the neighborhood of � , say Γ

�
�
�
; let � 	 � 2

�
= 6 Γ

�
�
�
,

and output � 	 ; then, recur on the vertex-induced sub-
graph

� � �� � 	  . The proof of correctness is obvious,
and we sketch only the analysis of the running time.
The number of levels in the recursion is " , since one
of the " cliques is removed from

�
prior to each recur-

sive call. The number of probes made in the process
of determining each such clique is at most # . The total

number of probes is � � #'" � . In Figure 4, we illustrate
the Deterministic Permeation Algorithm, which is an it-
erative version of the recursive algorithm. The iterative
version will prove useful when describing a randomized
algorithm. By the preceding discussion, we have:

Theorem 4.2 The Deterministic Permeation Algo-
rithm correctly solves the permeation problem using
� � #�" � probes.

The following lower bound establishes that the De-
terministic Permeation Algorithm is optimal.

Theorem 4.3 For 1
� " � # , 
 � # �%" � � Ω

� #'" � .
Proof Sketch: We sketch an adversary argument in

terms of the complementary problem: given a graph
�

which is a complete " -partite graph for some " , deter-
mine the " -partition of the vertices of

�
into indepen-

dent sets. The adversary responds to each probe for an
edge by some deterministic algorithm, and its strategy
is to say that edges are present, as far as possible.

The adversary maintains a graph � in which the
edges are those edges of

�
which have been probed

already and for which the response was that the edge
is present. When the adversary is forced to concede
that an edge

� � ��� � is absent in
�

, it then collapses the
two vertices � and � into a single meta-vertex whose
neighborhood is the union of the neighbors of � and � .
Collapsing two vertices is equivalent to conceding that
they are in the same independent set of the " -partition;
meta-vertices can also be collapsed into each other. The
missing edges in � correspond to edge slots in

�
that

have not been probed so far. The adversary maintains
the following invariants at all times.

1. The chromatic number of � is " ; in particular, it
maintains a partition of the (meta)-vertices into "
non-empty color classes � 1 � . . . ��� & such that each
color class is an independent set.

2. For each meta-vertex, every vertex therein has had
at least " � 1 incident edges already probed that
were deemed to be present in

�
.

Initially, the adversary arbitrarily partitions the vertices
into " non-empty color classes; since � is empty then,
this ensures the first invariant. The second invariant
holds trivially since there are no meta-vertices at the
beginning.



1. Mark all vertices in � as being LIVE.

2. Initialize ��� 1.

3. While ��� � do:

(a) Γ � � � ��� .
(b) For �E	 ��� 1 to � do:

i. If vertex � is marked LIVE

then probe the edge � � �	�I� in  .
ii. If edge � � �	�I� is probed and found present

then mark � as DEAD and add � to Γ � � � .
(c) Output 
 ���� Γ � � � as being a clique.

(d) Mark � as being DEAD.

(e) Set � to the smallest numbered LIVE vertex, or � � 1 if there are no LIVE vertices left.

Figure 4: The Deterministic Permeation Algorithm

Thereafter, the adversary responds as follows to a
probe

� � � � � by the algorithm. Note that a probe involv-
ing an edge

� � ��� � , where � is contained in a meta-vertex
� �

, will be treated as referring to the edge
� � � ��� � .

� If � and � belong to distinct color classes, it will
say that the edge is present and will add this edge
to the graph � .

� If � and � belong to the same class ��� , then it will
check to see if there exists a color class ��� with� 4��� such that at least one of � and � does not
have neighbors in ��� . Suppose that � does not
have any neighbors in ��� , then the adversary will
transfer � from ��� to ��� and will then respond as
in the previous case (i.e., say that the

� � ��� � edge is
present).

� Finally, there is the case where both � and � belong
to the same component ��� and each has at least one
neighbor in every other color class. In this case, the
adversary will concede that the edge

� � ��� � is indeed
absent and will then collapse � and � together.

The first invariant holds since edges are only introduced
between vertices in distinct color classes. The color
classes remain non-empty since a vertex is transferred
from a color class only when it has at least two ver-
tices. To verify the second invariant, observe that when
two vertices

� � � � � are collapsed, both have at least one
neighbor in the remaining " � 1 color classes.

The algorithm can terminate only when the number
of (meta)-vertices in each color class is down to one,
and there is an edge between each pair of color classes,
since otherwise the algorithm cannot be certain of the" -partition of

�
, or even whether there is a " -partition

in the first place.
We claim that, upon termination, every one of the# vertices must have at least " � 1 edges incident on

it which were probed and deemed to be present in
�

.
The second invariant implies that this is true for any
vertex which participated in a collapse and is a part of
some meta-vertex when the algorithm terminates. A
vertex which did not participate in any collapse must
also have at least " � 1 edges incident on it since it is
the only vertex in its color class, and there is an edge
from its color class to every other class. Thus, the
total number of edges probed and deemed present in�

is at least # � " � 1
� � 2. Also, there must be at least# � " edges which were probed and deemed absent in�

, since in going from # vertices to " vertices at least#�� " collapses need to be performed and each collapse
requires a distinct absent edge. Thus, the total number
of probes must be Ω

� #'" � . �
We now give a randomized algorithm that beats the

lower bound of Theorem 4.3 when the sizes of the "
cliques differ significantly. This is crucial in our appli-
cation to motion planning because in practice the free
space 	 often consists of components of very differ-
ent sizes. The Randomized Permeation Algorithm (see



Figure 5) labels the vertices in a random order and then
invokes the Deterministic Permeation Algorithm.

Let � 1
� �

2
������� � � & be the sizes of the cliques

in an instance
�

arranged in a non-increasing order,
where # � ( &*,+

1
� * . Denote by � * the � th largest

clique in
�

.

Theorem 4.4 The Randomized Permeation Algorithm
correctly determines the clique structure and incurs an
expected cost that is at most

2 ! � � 1 � � 2 � . . . � � & � �K# �K" �
Furthermore, with high probability, the cost is at most

� � ! � � 1 � � 2 � . . . � � & � log # � �
Remark: Observe that the worst case is when all� * are equal to # �F" , in which case the expected cost

is � � #'" � . On the other hand when there is one giant
clique and " � 1 cliques of size � �

1
�

the expected cost
is Θ

� # �C" 2 � , which is essentially the non-deterministic
lower bound.

Proof Sketch: The proof of correctness follows from
that for the Deterministic Permeation algorithm. We
first sketch the analysis of the expected cost.

We say that a clique � * beats another clique ��� if
some vertex of � * occurs before all vertices of � � in the
random permutation chosen by the Random Permeation
Algorithm. The probability that � * beats � � is the same
as the probability that a uniformly random choice from
� * 6 � � yields a vertex of � * , and, clearly, the latter is� * � � � * � � � � .

We divide the edge slots of the graph into intra-clique
and inter-clique edge slots. For each � , the number of
intra-clique edge slots in � * that are probed is precisely� * � 1, since the only such probes are between the
earliest vertex (according to the random permutation)
of � * and the remaining vertices of � * . The total number
of such probes is &�*,+

1

� � * � 1
� �)# �K" �

Fix some � and � , and suppose that � * beats ��� . The
inter-clique edge slots between these two cliques are
between the earliest vertex of � * and all vertices of � � .
This gives a total of � � probes that are “charged” to ���
(the beaten clique). The expected total charge to clique

� � is given by � *	�+ �
� *� * � � ��
 � � �

To bound the expected total number of inter-clique
edge slots that are probed, we sum the charges to the
various cliques and obtain&�

� + 1

� *	�+ �
� * � �� * � � � �

&�
� + 1

� *� � 2 � * � �� * � � �
� &�

� + 1

� *� � 2 � �
� 2

&�
� + 1

� � � 1
� � �

� 2 ! � � 1 � . . . � � & � � 2 # �
Adding together the bounds on the expected number
of intra- and inter-clique edge-slots that are probed, we
obtain the desired bound.

We now turn to the task of proving the high prob-
ability bound. Fix a clique � � and note that the total
charge to � � is the size of � � multiplied by the number
of other cliques that beat it. Since there are ��� 1 cliques
that are larger than � � , at most ��� 1 of the cliques that
beat � � are larger than � � . Let � � be the random vari-
able denoting the number of cliques smaller than � �
that beat ��� ; let ��� be the random variable denoting the
total number of vertices from cliques smaller than � �
that are earlier than all vertices in � � ; and, finally, let� � be a random variable having the geometric distribu-
tion with parameter � � � � � � ( &*,+ � � * and expectation
1 � � � . Clearly, � � � � � , and � � is stochastically dom-
inated by

� � . The probability that
� � is larger than

2��� 1� ln # is bounded by

�
1 � � � � 2

?��
1� ln � ��� � 2 ln � � 1# 2 �

Thus with probability at least 1 � 1 �F# , we have, for each
� , � � � 2��� 1� ln # . This implies that, with high proba-
bility, the total number of inter-clique edges probed is
given by&�
� + 1

� � � 1 ��� � � � � � &�
� + 1

� � � 1 � 2��� 1� ln # � � �



1. Permute the vertices randomly so that each is labeled by an integer in 
 1 � . . . � � � .
2. Invoke the Deterministic Permeation Algorithm.

Figure 5: The Randomized Permeation Algorithm

� &�
� + 1

� � � � 1
� � � � 2 ln # &� *,+ � � * �

�
&�
� + 1

� � � �K# � 2 ln # &�
� + 1

� � �
� �

1 � 2 ln # � ! � � 1 � . . . � � & � �K# �
Adding in the number of intra-clique edge slots that are
probed, we obtain the desired result. �

5 Experiments and Extensions

The robot arm of Figure 1 was tested for � -goodness
using 9000 random samples; on a DEC Alpha worksta-
tion, it took 9.24 seconds to create the random config-
urations, and 1399 seconds

�
to try connecting all pairs

using
���

. (These figures underscore that random sam-
pling is not a significant component of the cost.) The
samples with the “most” visibility could see about 0 � 06
(i.e., 6%) of the remaining samples, suggesting that they
are 0 � 06-good. As many as 3 � 3% of the random sam-
ples could see no other random samples, and fully 22%
could see 0 � 001 (i.e., 0 � 1%) or less; in other words, only
about 78% of the configuration space is 0 � 001-good or
better. (For ��� 0 � 001, we have

�
1 � � � ln 1 � � � 6908,

which is of the same order as our number of samples.)
We conjecture that the resampling step (Step 3 from our
high-level outline of Section 1) leads to better coverage
of the space in situations such as Figure 1. We have ob-
served that it helps eliminate the need for the Complex
Permeation step of the outline of Section 1 in some ex-
amples. To address this we introduce a generalization
of the notion of � -goodness.

�
In implementations used in practice, several additional tech-

niques offer substantial savings over the timings reported here. For
instance, we dynamically update a representation of the connected
components after testing each pair of configurations. Thus we would
not test a new pair if they are known to belong to the same connected
component.

5.1 The Extended Definition

Let us say that a point � in free space is ( � � 1 � -good
if � �  � � � � � ��� � 	 �

, corresponding to our original
definition of � -goodness for a point. Next, we say a
point � in free space is ( � � � � -good if � �32 � 
  � � � .
� is ( � � � � 1

�
-good

= � � � �  � � � � � 2. For
� L

1, we say
that 	 is ( � � � � -good if � �32 � 
 	 . � is ( � � 1 � -good

= ���
� � 	 � � 2 and every point of 	 is ( � � � � -good for � � �

.
If 	 is ( � � � � -good for a small value of

�
, we can give a

theoretical basis for the resampling step (Step 3 in the
outline of Section 1). The main idea is that single links
discovered by

���
in the algorithms of Section 2 are

now simulated using
�
-link paths found by resampling

and connecting using
���

. This leads to a generalized
definition of an adequate set of milestones, and eventu-
ally to a version of Theorem 2.3 in which the number
of invocations of

���
is larger by a factor of 2 � . This

extension requires that we can still sample the visibility
region of a query point. In practice, this is often accom-
plished by defining an appropriate “neighborhood” for
any point � , from which a sample likely to be in  � � �
can be chosen. We are currently designing experiments
to check the

� � � � � -goodness of practical examples; the
experiment design is non-trivial since the parameter 2
in the above definition (while sufficient for theorems) is
somewhat arbitrary, and affects the value of

�
observed.

6 Related Combinatorial Results

A number of combinatorial problems concerning art-
gallery theorems [11] are related to our work. For
instance, given a simple polygon that is � -good we ask:
how many guards are necessary and sufficient to cover
the entire polygon? (Another way of thinking of this
is to imagine point sources of light being placed in the
polygon with the objective of illuminating the entire
interior.) The following would be an ideal result: given
an � -good configuration space  , a random sample of
� ��� �

�
1 � � � points from the free space 	 will “illuminate”



the entire free space with high probability. In practice it
may be reasonable to assume that the number of “holes”
in the free space � is “small” (for instance, bounded by
a slowly growing function of the input size).

Conjecture 6.1 A random sample of � � � �
� � � 1 � � �

points is likely to cover an � -good free space with �
holes.

At present we only have the most rudimentary results
of this type; for instance, we give an upper bound on
� so that one guard suffices to cover an � -good simply-
connected region. In fact, a Helly-type theorem due to
Krasnosselsky [9] immediately yields:

Theorem 6.1 Let
�

be a compact, simply-connected
� -good region in Euclidean

	
-space for � L 	 � ��	 � 1

�
.

Then there is a point � in
�

such that  � � � � � .

Broder, Dyer, Frieze, Raghavan and Upfal [2] have
initiated progress in extending the above result: they
show that if � � 1 � 3 ��� for a simply-connected re-
gion in the plane, the number of guards is polynomial
in 1 ��� . Various interesting questions remain. For in-
stance, even the existential version of Conjecture 6.1
would be useful: given an � -good space 	 with � holes,
there exists a set of � ��� �

� � � 1 � � � points which covers
	 .
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