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Abstract

This paper addresses the problem of path planning for
a class of deformable volumes under fairly general manip-
ulation constraints. The underlying geometric model for
the volume is provided by a mass-spring representation. It
is augmented by a realistic mechanical model. The latter
permits the computation of the shape of the considered ob-
ject with respect to the grasping constraints by minimizing
the energy function of the deformation of the object. Pre-
vious research in planning for deformable objects consid-
ered the case of elastic plates and proposed a randomized
framework for planning paths for plates under manipula-
tion constraints. The present paper modifies and extends
the previously proposed framework to handle simple vol-
umes. Our planner builds a roadmap in the configuration
space. The nodes of the roadmap are equilibrium configura-
tions of the considered volume under the manipulation con-
straints, while its edges correspond to quasi-static equilib-
rium paths. Paths are found by searching the roadmap. We
present experimental results that illustrate our approach.
Our work finds important applications in industrial set-
tings, in graphics animation, in virtual prototyping, and in
medical applications.

1 Introduction

The Problem The problem considered in this paper is an
extension of the traditional path planning problem: given
a deformable object/robot with known physical characteris-
tics (e.g., an elastic object) and a set of ways that the object
can be manipulated (called manipulation constraints here-
after), find a quasi-static path for the object from an initial
to a goal configuration. The deformations of the object are
prescribed by the manipulation constraints in combination
with a physical model of the object. Importantly, in our
work we consider the geometry and the physical properties
of the manipulated object simultaneously. Our goal is to
compute paths that are as close as possible to the paths that
we expect to observe in practice. That is why our collision-
free paths consist of low-energy equilibrium deformations
at all times. In this paper we consider simple volumes, such
as pipes and cables, that are manipulated by constraining
the position and the orientation of two opposite faces. An

Figure 1: An elastic cable fixed to a base is manipulated
around a frame and finally attached to it.

illustration is offered in Figure 1, where a cable attached to a
base is manipulated by its free end and is finally attached to
a frame. This example could have been extracted from an
assembly maintainability study: determining whether the
motion of the cable is feasible and showing the possible mo-
tions to the engineer could help in the overall design of the
assembly. Our work in this paper complements and extends
our previous work on planning for elastic plates [9, 10].

Motivation and Related Work Several important appli-
cations motivate our research: in industrial settings there is
a need to manipulate sheets of metal, pipes that can bend,
and cables. In assembly maintainability studies done with
virtual prototyping, planning is used to evaluate the design
when only the CAD models are available [2]. As many
assemblies are designed to be compact and include de-
formable parts, our studies can be used for design verifica-
tion. In medical and surgical procedures, flexible catheters
are inserted in human vessels [16]. Accurate planning stud-
ies may help in choosing the size and properties of the
catheter used. An interesting application of our work is in
computer generated animation, where our methods can be
used to produce the motion of objects with certain phys-
ical properties with minimal user input. In that case ma-
nipulation constraints can be specified to induce a realistic
behavior of the animated object. Additional applications
of our work include computer-assisted pharmaceutical drug
design, where the internal energy of molecules is consid-
ered when computing docking paths [14].



Recent work on the path planning problem has produced
several practical planners for robots that consist of rigid
parts (for recent articles see [5]). These methods routinely
take into account geometric constraints such as joint lim-
its and obstacles. With the exception of the areas of dy-
namics and control that have guided the design of modern
robots, there are few cases where physical constraints and
planning have been tightly coupled. The issue of flexibil-
ity has been primarily investigated by building and study-
ing flexible robots. Those robots can perform tasks such as
hammering a peg into a hole or inserting one end of a wire
into a hole while holding the other end. But research in
this field deals mainly with the control of these robots and
not motion planning (see [11]). Although planning with de-
formable parts has not been addressed in robotics, there is
a large amount of work concerning deformable objects in
mechanics [17] where elasticity is a well understood issue.
Additionally, graphics applications use deformable models
[1, 6, 12, 15]. In subsequent sections, we discuss the models
that we borrow from these domains.

Our Approach In our work we combine the geometry
and the mechanics of our objects/robots under a unified ran-
domized framework. This framework was introduced in
[9, 10] for elastic plates. In previous work deformations
were essentially two-dimensional. In the present paper we
consider true three dimensional deformations of three di-
mensional volumes. We model our volumes with a mass-
spring representation. Mass spring-models have been used
in computer graphics [4] and physically-based modeling
(e.g. [7, 13]), but have not been applied to motion planning
problems. Our manipulation constraints restrict the posi-
tion and orientation of two opposite faces. Our planner is
a variation of probabilistic roadmaps [8]. At a preprocess-
ing stage, it creates random deformations of the robot by
varying the manipulation constraints. Random configura-
tions having the above deformations are then generated and
interconnected in a roadmap with low-energy quasi-static
paths. Given an initial and a final configuration, the planner
connects these to the roadmap and searches the roadmap for
a path.

This paper is organized as follows. Section 2 describes
the deformation of volumes and our model for represent-
ing them. Section 3 explains the path planning algorithm.
Section 4 presents the case of an elastic pipe and our exper-
imental results.

2 Volume Deformation

We represent a volume as a lattice of point masses con-
nected by springs. The volume deforms according to spec-
ified types of manipulation, such as grasping by robotic
arms. We attempt to find physically realistic deformations
by minimizing the elastic energy of the volume while ob-
serving the given manipulation constraints. The use of a

mass spring model provides a geometric representation for
the shape as well as a simple framework for calculating
deformation energies. We chose this model, among many
other that are possible [1, 3, 7, 18], because one can easily
approximate the energy of the object from the continuous
mechanical model and because of the simplicity of energy
and gradient calculations.

2.1 Continuous Mechanical Model

We use the linear elastic physical model [17] as the basis
for our spring-mass energy model. For the physical model,
we must first choose some embedding of our volume

�
into���

. We call the undeformed shape � . This is the shape
that

�
assumes when nothing affects it. For example, if�

is an elastic cube, the undeformed shape is a cube. Let��� ���	�
���
be a diffeomorphism (that is a smooth bi-

jection whose inverse is also smooth) which represents a
deformation of our volume from its undeformed state � .
The deformed volume is the image �� ��� . The linear elas-
tic model associates a certain amount of energy with each
deformation. For a given deformation � , define the energy
density � at a point ��� �� ��� by

� � ����� ���� ����� �"!$#"�%# �&�('*),+ ���-�.!/#.�%# '0�21 (1)

where ��� �.!/# of a matrix ����354 � is 6873:9<; �.3=3 and

# � �� ��>�?@>8ACB � (2)

is the Green-Lagrange tensor of the deformation. Here >
is the matrix of partial derivatives of � evaluated at �D<EF� ���
and B is the identity matrix. � and + are constants deter-
mined by the physical properties of the material [17].

The energy of � is thenG
HJILKNM � �O� �&P �2Q (3)

2.2 Discrete Spring Model

The space of all possible deformations on a volume is
infinite dimensional, but heavily constrained by the require-
ment to consider minimal energy deformations. We approx-
imate it with a discretization using the mass spring model
(Figure 2). We require that the total energy of the springs is
an approximation of Eq. (3).

The spring model divides the volume into a set of boxesR
with lattice points as the vertices. Noticing that there

is one box per point mass (ignoring the boundary special
cases), we associate each box with its bottom, left, back
point S . We associate six springs with each box, three
straight springs connecting S to the masses above, right and
in front of it and three angular springs constraining the an-
gles between pairs of the straight springs. Other configu-
rations of springs are possible; the above choice serves our
purposes well.
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Figure 2: A two-dimensional spring system.

We then discretize the energy function, setting the total
energy to 

�����
G
� � �O� �&P �2Q (4)

To use the above discretization of the energy function, we
need the spring energy of each of these boxes to approx-
imate � � � �O� �&P � , the mechanical energy for that box. This
requires picking the appropriate spring constants for the two
types of springs.

2.2.1 Straight Springs
To compute the constant � E for straight springs, we need
a deformation whose energy comes only from the straight
springs. Simple stretching, a type of deformation given by

���� 1��N1��.�� � ��� ) � � � 1��N1��.� (5)

is exactly that. It represents the stretching of the volume in
the � -direction. We use the equations given in Section 2.1
to find the exact elastic energy � � of a box � under simple
stretching, obtaining

� � � 	���	 
 	�� � �� � ),+ � � �� � � ) � � ) � '0�21 (6)

where
	��

,
	 


, and
	��

are the undeformed spring lengths in
the � , � and � directions.

To compute � E , we equate � � with E' � E�!
	 A 	�� ! ' , which

is the energy for a spring with stretched length
	

according
to Hooke’s law. We would now solve the equation for � E ,
except that doing so yields � E as a function of � . To ob-
tain an actual constant we remove the � � and � � terms from� � . Since the volumes we consider do not stretch beyond a
small percentage of their undeformed dimension, � should
be close to 0 and therefore � � and � � are small compared to� ' . Solving the resulting equation yields � E and finally

�#"%$�&(' 3�)+* $�
	 
 	��
	�� � +�) � � � ! 	 A 	 � ! ' Q (7)

The energies of the straight springs in the � and � directions
are obtained similarly.

Figure 3: A deformed volume with minimal energy.

2.2.2 Angular Springs
An angular spring stretches with the cosine of the angle,

between the two straight springs it constrains. In other
words, -+. / � , � is used as the distance in Hooke’s law instead
of a displacement.

Notice that angular springs have 0 energy when
,

equals0
' , the undeformed position of the angle. Since /�1�2 � , �43 ,
for small

,
and /�1�2 � 0 ' A , � �5-+.6/ � , � , -7.6/ � , �83 0

' A ,
for,

close to
0
' . To find a good spring constant � ' for this type

of spring, we use the shear deformation, which is:

���� 1��N1��.� � ��� 1���) � � 1(�"� Q (8)

This deformation stretches our volume in addition to bend-
ing it. However, the deformation of the angular springs is
much larger than that of the straight springs in this case so
we ignore the latter. Once again, we find the exact energy
of the deformation �

� � � �� 	 � 	�
9	 � � �� � �6� ) �� + � � ) + � ' �/1 (9)

equate it with E' � ' � -+.6/
, � ' , and solve for � ' . Again we must

drop the � � term to get a constant for � ' . In this manner, we
obtain

� ' 7 );:=< ';& � �� 	��>	 
 	�� + � -7.6/ , �&' Q (10)

Because of energy minimization concerns (Section 2.4),
we found it convenient to further restrict extreme bending.
Since A �@? -+. / � , � ? �

, the energy contribution of the an-
gular springs is bounded, whereas the energy of the straight
springs is not. Because the energy provided by Eq. (10) is
bounded, the volume might bend during energy minimiza-
tion so that some angular spring approaches its maximum
deformation. This is not good behavior, however, since a
real volume should resist extreme bending, just as it resists
extreme stretching. To correct this problem, we add an ex-
tra energy �BA � $�&(' to �#' 7 );:C< ';& when � -7.6/ , � ' gets large, i.e.
greater than some constant D . �EA � $�&(' is given by

�#A � $�&F'�� � -7.6/ , � ' A D� A � -7.6/ , � ' Q (11)



(a) The initial illegal configuration

�
R

(b) The minimal energy configuration

�

R
�

(c) Initialization

Figure 4: At (a) the pipe is at an illegal configuration as its length is compressed. In (b) the minimization has restored the
pipe close to its physical length. (c) shows how (a) was obtained given constraints at ends

�
and

R
.

2.3 Grasp/Manipulation Constraints

Now we impose manipulation constraints on our vol-
ume. That is, we restrict positions of some parts of

�
. In

the spring-mass model, this means fixing the positions of
some point masses. For example, we may want to hold a
thick elastic plate on two sides and poke a third face (Fig-
ure 3). Then the positions of all the point masses on the
surface of the two sides are fixed, and a point on the sur-
face of the third face is fixed at a location translated from
its undeformed position by the amount of poking.

2.4 Energy Minimization

In our planner we need to find deformations of minimal
energy that satisfy given manipulation constraints. Because
real objects tend toward minimal energy configurations, en-
ergy minimization approximates the shape that our volume
physically assumes under the specified manipulation. We
use a conjugate gradient descent method treating the energy
as a scalar function of the positions of the point masses that
are not fixed by the manipulation constraints. An illustra-
tion can be found in Figure 4 (a) and (b).

3 Path Planning

Main Algorithm We use a version of the Probabilistic
Roadmap Planner (PRM) to plan paths for elastic volumes.
For a detailed explanation of the scheme see [10]. Here we
offer a brief outline of the algorithm.

We first generate a random manipulation constraint.
Then, we compute the volume according to this constraint
by minimizing the energy. We test if the obtained defor-
mation abides by the elasticity limit (see below). If this
deformation is valid, generate � random rigid-body trans-
formations of this deformation, and then test each corre-
sponding configuration for collision with the obstacles. The
next step is to update the roadmap by trying to connect the
new configurations generated to the configurations already

in the roadmap using the local planner. Finally, we enhance
the roadmap by identifying “difficult” areas of the configu-
ration space and generate � more nodes in those areas. We
connect these nodes to the roadmap. After we have a dense
enough roadmap, we search it to find a path from the initial
to the goal configuration.

Local Planner An important issue in the above frame-
work is the local planner. Here we follow [10] where the
rigid-body transformation is computed first and then defor-
mation paths are planned by interpolating between the ma-
nipulation constraints to form a sequence of intermediate
constraints.

Elasticity Limit Our planner should ensure that all used
deformations are within elasticity limits of the material so
that our volume is not damaged during manipulation. The
amount of deformation is defined by two coefficients:

� Plane Strain Limit This is how much the material
stretches locally. To estimate this in our spring model,
we find the linear spring which is most deformed.

� Curvature Limit We also do not want our volume to
bend too much locally. We find the angular spring
such that -+.6/ � , ��� P is maximal, where P is the dis-
tance over which this spring approximates the curva-
ture (e.g.,

	 � ) 	�

).

4 The Case of an Elastic Pipe

We now look at a specific type of volume, the case of
an elastic pipe. Since our spring-mass representation uses a
lattice, a long, thin rectangular solid represents the shape of
the pipe (Figure 4(a) and (b)).

4.1 Manipulation Constraints

A manipulation constraint specifies the position and ori-
entation of both ends of the pipe. We represent it with 5
parameters � � 1 �N1 � 1 , 1 � � . If we imagine that the left end

�



is held steady at a fixed orientation, then we can fix a co-
ordinate frame whose origin coincides with

�
and whose

x-axis follows along the length of the pipe at the left end. � ,� , and � refer to the position of the right end
R

with respect
to the left one. The angles

,
and � orient

R
with respect to

the orientation of
�

. We do not allow twisting of the faces.

Initialization and Energy Minimization Given� � 1 � 1 � 1 , 1 �� , we must then find a minimal energy
deformation respecting these constraints. The conjugate-
gradient method used in minimization requires an initial
guess. Note that the initial position of the point masses
in the lattice can effect the outcome and the speed of
minimization. The initial guess needs to avoid unnatural
starting conditions, which could cause the conjugate
gradient method to become trapped in an undesirable
high-energy local minimum. Furthermore, the method
converges to a solution faster with an initial guess near a
desirable minimum. A local minimum found starting from
Figure 4(a) is shown in Figure 4(b).

The initial guess is specified as follows. We first con-
struct the third degree polynomial curve which satisfies the
following constraints:

� It is a parameterized curve
�

whose parameter ranges
from 0 to 1.

� � � � � and
� � � � are the center point masses of the left

face
�

and the right face
R

, respectively.

� The tangent vector at
� � � � is the normal vector of the

leftmost face, and the tangent vector at
� � � � is the nor-

mal vector of the rightmost face, scaled appropriately.

This gives a one dimensional approximation of the shape
of the pipe (Figure 4(c)), although such an approximation
becomes less accurate the closer

�
and

R
get to each other,

since
�

does not try to preserve the pipe’s length. To gener-
ate the full lattice we evenly divide the space of the param-
eter of

�
into as many divisions as we have point masses

along the pipe’s length. At each chosen point on the curve
we place a cross section (square) of the pipe, perpendicu-
lar to the tangent of

�
at that point. The tangent vector

uniquely specifies a plane, but the cross-sectional square
could be rotated by any angle about the curve. To prevent
twisting, we place the square in the plane by constructing it
as a rotation of the left face in the following way.

� The tangent vector to the curve uniquely defines a nor-
mal plane. This plane is the image of the plane con-
taining the left face by a rotation (or a translation if
these planes are parallel). The axis of the rotation is
the intersection between the planes.

� We apply the corresponding rotation (or translation) to
the left face of the pipe to obtain a face in the normal
plane. We translate this face in the normal plane to
center it on the point of the curve.

Figure 5: Snapshots along a path of a deformable cable
whose one end is fixed to a base.

This process provides us with a good initial guess for the
positions of the lattice points of the pipe which has no twist-
ing. However, if the manipulation constraints are outside a
certain range, there may be self-intersections. We detect
such occurrences and discard them.

4.2 Experimental Results

In Figure 5 the pipe remains fixed to a base, while it is
manipulated around a frame and then attached to it. The
pipe robot is represented by 32x3x3 lattice of point masses.
The parameters for the basic step in the PRM algorithm are
� � ���

(random nodes), and � ��� . � is the num-
ber of neighbors considered for connection. Planning for
this example took a mean time of 14.5 mins over 10 runs.
All times reported in this paper were gathered on an SGI
R10000.

The example in Figure 6 involves planning an anima-
tion to take an elastic pipe through an L-shaped hole in-
side a cube. Here the pipe is 21x3x3, with � � �����

and
� � ���

. The path took 8h 39min, considerably longer than
the above, since only a small portion of the possible defor-
mations will fit through the obstacle.

A crucial part of our algorithm is the energy minimiza-



Figure 6: Snapshots of an animation of a deformable pipe.

tion. With the pipe from the above example, we selected
and minimized 100 random deformations. The mean time
was 1.12s, with a standard deviation of .98.

5 Discussion

The paper developed a simple model for representing
three dimensional deformable objects in the context of path
planning. We demonstrated the validity of our approach
by applying it to elastic pipes. Our work raises several
interesting issues. These include representing more com-
plex shapes with lattices of springs, finding more efficient
energy minimization procedures, testing the limits of the
current geometric model ([18] is especially interesting), al-
lowing more complex manipulation constraints and contact
with the obstacles in the environment, and smoothing the
resulting paths to avoid unnecessary deformations.
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