
Greedy but Safe Replanning under Kinodynamic Constraints

Kostas E. Bekris Lydia E. Kavraki

Abstract— We consider motion planning problems for a
vehicle with kinodynamic constraints, where there is partial
knowledge about the environment and replanning is required.
We present a new tree-based planner that explicitly deals with
kinodynamic constraints and addresses the safety issues when
planning under finite computation times, meaning that the
vehicle avoids collisions in its evolving configuration space. In
order to achieve good performance we incrementally update
a tree data-structure by retaining information from previo us
steps and we bias the search of the planner with a greedy,
yet probabilistically complete state space exploration strategy.
Moreover, the number of collision checks required to guarantee
safety is kept to a minimum. We compare our technique with
alternative approaches as a standalone planner and show that it
achieves favorable performance when planning with dynamics.
We have applied the planner to solve a challenging replanning
problem involving the mapping of an unknown workspace with
a non-holonomic platform.

I. INTRODUCTION

As automobiles and other mobile platforms achieve a
higher degree of autonomy, generating safe and effective mo-
tions for autonomous vehicles emerges as a great application
for motion planning. In realistic tasks, however, vehicleshave
only partial information about their environment. Solving
such problems requires interleaving sensing, planning and
execution, where a planner is called frequently and has finite
time to replan a trajectory [1]–[3]. Moreover, vehicles exhibit
kinodynamic constraints that restrict their motion, which
must be accounted for at the motion planning stage so that
a planned trajectory can be followed. In this paper, a tree-
based planner is presented that respects such constraints and
generates safe paths under finite computation times. Safety
means that the vehicle does not collide with obstacles even
when the configuration space of the robot changes. This is
an important consideration when replanning for real vehicles
as a collision-free trajectory may bring the system close to
an obstacle with high-velocity and no maneuver to avoid
collisions [4], [5].

For replanning applications, the computational perfor-
mance of the planner is of primary importance. A slow
planner delays taking into account new sensing information
and the vehicle does not react on time to changes in the
workspace. In the proposed framework, the planner itself
selects the duration of the planning cycle, which allows the
implementation of a lazy evaluation approach to reduce the

Work on this paper has been supported in part by NSF 0308237,
NSF0205671, and a Sloan Fellowship to LEK. Experiments reported in this
paper has been obtained on equipment supported by NSF CNS 0454333,
NSF CNS 0421109 in partnership with Rice University, AMD, and Cray.

Kostas E. Bekris and Lydia E. Kavraki are with the Com-
puter Science Department, Rice University, Houston, TX, 77005, USA
{bekris,kavraki}@rice.edu

Fig. 1. Mapping an unknown space with an acceleration controlled car.

overhead of collision checking. It also uses computations
executed during previous planning periods and an effective
state space exploration scheme to bias its search. This paper
also describes the application of the planner to a task that
requires replanning: mapping of unknown environments.
Initially the vehicle knows only a small part of the space but
it must eventually cover the entire workspace. Fig. 1 shows
an example from our simulations with a car-like robot with
bounded acceleration. We have experimented with various
mobile platforms on different scene types and compared
the approach as a standalone planner against alternative
planners. We present results that demonstrate the algorithm’s
favorable performance and its effectiveness in replanning
under kinodynamic constraints, limited computation time and
a dynamic representation of the workspace.

A. Related Literature

Sampling-based planners have proved effective in dealing
with high-dimensional problems [6] and, in particular, tree-
like planners [7], [8], have been successful dealing with dy-
namic constraints. Especially, the Path-Directed Subdivision
Tree (PDST) planner [9] has shown good performance in
such planning instances and allows biasing the search of the
algorithm while providing probabilistic completeness.

Typical tree-based planners assume complete workspace
knowledge. Hsu et al. [8] have experimented with a real
robot that navigates among moving obstacles by replanning
from scratch. Bruce and Veloso [1] describe ways of using
previous calls to theRRT algorithm to bias the exploration of
a new tree. Ferguson et al. [2] repairRRTs while replanning
by creating a probabilistic analog to the D* family of
deterministic replanning methods [10]. Van den Berg et al.
[3] create a roadmap that covers the planning space and later

replan using this graph. Van den Verg and Overmars [11]
provide algorithms for computing shortest safe paths amidst
moving obstacles. Safety issues related to replanning and
kinodynamic constraints arise when collision-free statesare
Inevitable Collision States (ICS). The notion ofICS has
been employed in the partial motion planning framework
of Fraichard et al. [4], [12]. Frazolli et al. [5] introduced
the notion ofτ -safety and usedRRTs that guaranteed states
along the produced tree wereτ -safe.

B. Contribution

Our goal is to combine the above contributions with new
ideas to define a single, efficient framework for replanning
under kinodynamic constraints. In particular:

(a) We follow an incremental approach similar to methods
that repairRRTs [1], [2], but we deal explicitly with
kinodynamic constraints and safety issues.

(b) The planner uses theICS formalization [4] and pro-
vides safety guarantees similar toτ -safety [5]. It re-
duces, however, the cost of achieving safety by control-
ling the duration of the planning cycle and employing
lazy evaluation [13]. In this way, the number of states
that must be checked for safety are reduced, resulting
in considerable speedups as our experiments show.

(c) A state space exploration scheme similar toPDST [9] is
applied, but the search is biased using information easily
extracted directly from sensor data. Our experiments
show that the proposed algorithm performs favorably
against the “Voronoi-bias” selection strategies ofRRTs
given the same metrics [7].

In the following section we formally describe the problem
that the proposed motion planner solves. A detailed descrip-
tion of the planer, calledGRIP for GReedy, Incremental,
Path-directed planner, is provided in section III. SectionIV
illustrates the application of the planner to a mapping task
with non-holonomic robots. The setup for our experiments
and our results are presented in sections V and VI.

II. PROBLEM OVERVIEW

Assume a drift-less non-holonomic robot whose motion is
governed by:q̇ = f(q, u) andg(q, q̇) ≤ 0, whereq ∈ Q is a
state,u is a control andf, g are smooth.Q is the state space
of the robot with a metricρ(q1, q2), whereq1, q2 ∈ Q. The
robot is in a workspaceW , equipped with a sensor of limited
range. The robot uses its sensors to update an evolving
workspace representations(W , t). A state q ∈ Qfree is
considered collision-free at timet if it places the robot
chassis in the known collision-free part ofs(W , t).

Our framework is applicable to multiple tasks where the
workspace changes dynamically. We focus on the case the
robot does not know anything about the workspace and must
cover it in order to build a map. A similar dynamic task
not covered here due to space limitations is planning among
dynamic obstacles. Our approach towards these high-level
tasks is to break them into a sequence of smaller planning
problems. To achieve this, we synchronize the mapping unit,
the planner and the motion controller as shown by Fig. 2.

Fig. 2. The robot’s synchronization scheme.

Then for the planning cycle(ti−1 : ti), the following steps
are executed:

• A representations(W , ti−1) built in the previous cycle.
• A targetFti−1

⊂ Q is defined for the current cycle.
• A motion planner computes a plan.
• The plan will be executed during cycle(ti : ti+1).

A plan is a time-sequence of controls:p(dt) =
{(u1, dt1), . . . , (un, dtn)} wheredt =

∑

i dti. When a plan
p(dt) of durationdt is executed at stateq, it defines a trajec-
tory tr(q, p(dt)), which is the sequence of states propagated
according toq̇ = f(q, u). A trajectory that respectsg(q, q̇) ≤
0 is called feasible, and if it lies inQfree is collision free.
The motion planner solves the following problem:

Replanning under Kinodynamic Constraints: Given:

• the latest representations(W , ti−1)
• a set of target statesFti−1

∈ Q

• the initial robot stateq at time ti
• the tree structure from the previous cycle(ti−2 : ti−1).

Compute planp(t) to execute during(ti : ti+1) that produces
tr(q, p(t)) which is: (a) collision-free, (b) leads toFti−1

, (c)
minimizes the distance traveled by the robot and (d) does
not lead to Inevitable Collision States [4] pastti+1.

III. THE PLANNER: GRIP

The GRIP (Greedy, Incremental, Path-directed) planner
expands greedily and incrementally a tree data structure in
the state-time space and return safe paths for kinodynamic
systems. The planner contains:1) A retainment step that
reuses part of the previous tree (III-A).2) An exploration
strategy that achieves probabilistic completeness but allows
greedy search (III-B).3) Safety checking so that the selected
plans do not lead to inevitable collisions (III-C).

A. Tree Retainment

The algorithm uses a planning horizon longer than the
duration of the next planning cycle, e.g.(ti : ti+1). This
implies that a large part of the tree constructed during the
previous planning cycle may still be valid and it can be used
to accelerate the search for a new path given new sensor
data similarly to DynamicRRTs [2]. Note, however, that
kinodynamic constraints add an additional limitation, since
it is not possible to go backwards along the tree. The sub-
tree of the initial robot stateq for the new planning cycle is
valid for planning and everything above it is unreachable
and must be discarded. Trimming other parts of the tree
that are invalid due to unexpected collisions can similarly
be executed. Moreover, if a path to the desired target exists
in the remaining tree, every path that does not lead to the

Fig. 3. An illustration ofGRIP’s exploration. A discrete potential function is used forρ(e, F). The numbers denote edge prioritiesp(e). The second
figure shows an edge broken into:e′

1
ande′

2
, while a new edgee is propagated from stateqr . The last figure shows the final tree that reaches the target.

target can also be pruned. In this way, when a path has been
found, the technique focuses on obtaining plans of increasing
quality. There are also computations during tree retainment
that are related to state-space exploration and plan safety,
which will be described in the following sections.

B. Selection/Propagation: Completeness with Bias

We follow the selection/propagation scheme for exploring
the state-space, typical for tree-based planners [7]. A state
from the tree is selected for propagating a trajectory forward
in time. Our approach follows thePDST algorithm [9], which
deterministically biases the search, so as to search interesting
parts of the state space faster. Although the search is biased,
the approach is still probabilistically complete.

The basic sampling module is a path, which corresponds
to an edge of the tree data structure. In this way, all the states
along the tree are candidates for propagation. The algorithm
first deterministically selects an edgee′ to expand from. The
actual stateqr used for propagation is randomly sampled
along the edgee′. Edgee′ is then broken into two partse′1
and e′2 by creating a node at the selected stateqr. For the
new edgee, a random planp(tmax) of maximum duration
tmax produces a trajectorytr(qr , p(tmax)). This trajectory is
checked for collisions so as to calculatetfree, the last point
in time that the trajectory is collision-free. Figure 3 provides
an illustration of the selection/propagation procedure.

The selection of edgee′ is based on a combination of
metric information to greedily bias the search towards the
target and a priority scheme that guarantees that eventually
all the edges will be selected for propagation. For a new edge
e, states alonge are sampled. For each state, we compute the
distance to the target setF , so as to get a distance estimate
between the edge and the target:

ρ(e, F) = {min(ρ(q, f)), ∀q ∈ e and∀f ∈ F}. (1)

Edges also have priority counters. A newly expanded edge
e has priority equal to the iteration counter:p(e) = i, where
i is the number of edges propagated beforee in the current
cycle. The two parts of the old edgee′1 ande′2 get a lower
priority that decreases exponentially when the same sample
is selected for propagation, e.g.:

p(e′1) = p(e′2) = 2 · p(e′) + 1. (2)

The overall score of an edge is:

s(e) = αp(e) · ρ(e, F). (3)

where parameterα is greater than 1:α > 1 and controls the
importance of the bias vs. the priority counters. The edges
are stored in a heap that returns the minimum score edge.

The scoring function must also be recomputed during
tree retainment. The distance estimateρ(e, F) is updated
for all retained edges given the newly acquired represen-
tation: s(W , ti−1). An advantage of the approach, is that
with the use of simple metrics instead of path subdivision
as in PDST [9], this update is inexpensive. The priority
counters of retained edges, which are children of the initial
robot state, are set to 1 and the priority counters along the
remaining tree are recursively set by Eq. 2. This choice
tends to produce increasingly smoother paths towards the
goal during consecutive planning cycles, when a solution
path has already been found.

Notice that instead of random controls, propagation could
be achieved with controls selected from an appropriate
set specifically constructed for the system (e.g., maneuver
automata [14], Reeds and Shepp curves [15] etc.).

C. Efficient Safety Checking

The fact thattr(qr , p(tfree)) is collision-free does not
guarantee safety, sincetr(qr , p(tfree)) may lead to an In-
evitable Collision State (ICS) [4]. Computing whether a state
is ICS is difficult, since it requires to consider the set of all
possible future trajectories. Taking a conservative approach,
however, a superset ofICS can be computed much faster by
using only a small set of “contingency” plansΓ and define
a stateq to beunsafe iff:

∄ γ ∈ Γ s.t.: tr(q, γ(t)) is collision free. (4)

Examples of contingency plans for static workspaces are
breaking maneuvers that bring the robot to a complete stop.
The time it takes to execute the contingency plan is unrelated
to the duration of the planning cycle. Note that trajectories
leading to safe states are also safe. Fraichard et al. [12] and
Frazolli et al. [5] used this property to reduce the overhead
of safety checking. We can use the fact that the planner
can select the duration of the consecutive planning cycle to
further reduce the overhead of safety checking. In this way,
only states that are reached at the end of the next planning
cycle have to be checked for safety.

Theorem: Assume a drift-less non-holonomic system ex-
ecuting a replanning task withGRIP in a static environment.
The planner selects durationT for the next planning cycle. It
is then sufficient to guarantee collision avoidance to produce
trajectories during the current cycle that are safe only fortime

T , given contingency plans that are breaking maneuvers.
Proof Sketch:Assume the vehicle is safe at timeti−1 and
has a planp(t) of duration t > T that is safe at least for
T . The question is whether reachingICS can be avoided
while replanning. There are two cases: (a) The planner will
either succeed in producing a new safe plan for the next
planning period and at timeti the robot will again have a
collision-free plan to follow. (b) The planner fails to compute
a plan for the next period. However, the previous planp(t)
was safe for at leastT , which means that there is at least
one planγ(t) ∈ Γ that can be executed afterp(t), which
is collision-free and brings the robot to a complete stop in
a collision-free configuration. So, in every case there is a
collision-free plan.2

The contingency plans do not have to be breaking ma-
neuvers. Looping maneuvers would work as well, given the
assumptions. If we provideτ -safety guarantees in the case
of moving obstacles, which means that collision avoidance
is guaranteed only for a time periodτ after the failure of the
algorithm, then we can use any plan of durationτ .

Consequently, the planner does not check for safety past
time T . During propagation oftr(qr , p(tfree)), we compute
whether it intersects timeT at a stateq′. If it does not or if
q′ is safe given setΓ, then the completetr(qr , p(tfree)) is
added as a new edge. Otherwise, the part of the trajectory
past q′ is pruned, so that all the trajectories stored in the
tree are safe at least for timeT . A possible drawback of
the approach is that the robot might start following a path
that is not safe past timeT . This is not a safety risk since
the unsafe part of the trajectory will be pruned during tree
retainment when it will fall within the planning periodT . It
could be an undesired effect, however, since it could result
in often selection of contingency plans. But we can check
for safety only the solution trajectories and accept them as
solutions only if they are completely safe, following the lazy
evaluation approach, where a path is checked for validity
only after it is considered as a good candidate for a solution
[13].

D. GRIP

Algorithm 1 provides an overview of the completeGRIP
algorithm. The main loop selects greedily the edge that has
the maximum score and expands the tree from a state along
the selected edge.

An implementation choice is related to the metric
ρ(q1, q2). A possible solution could be the cost-to-go func-
tion in an obstacle free space, which can be computed with
dynamic programming as described by Frazzoli et al. [5].
Lavalle and Kuffner [7] used a weighted Euclidean metric.
In our implementation, we use an occupancy grid to represent
the workspace and define the metricρA∗(q1, q2) using the A*
holonomic distance between the coordinates of the two states
q1 andq2. AlthoughρA∗(·) carries poor distance information
for high-dimensional problems, the planner achieves good
performance for the dynamically constrained platforms we
have experimented with and outperformsRRTs when the
same metric is used.

Algorithm 1 GRIP (tree, q, s(W , ti−1), F)
TREE RETAINMENT
(initialization)
Compute durationT of consecutive planning cycle
Set tree → root = q and prune everything before it
(safety check for retained tree)
for each edgee ∈ tree do

if e contains stateq′ reachable fromq a timeT then
extend contingency trajectorytr(q′, γ(t))
if tr(q′, γ(t)) is not collision-freethen

Prune everything belowq′

end if
end if

end for
(focus on smoothing if path exists)
if a path toF exists intree then

Prune every path on the tree that does not lead toF

end if
(update scores for existing edges)
Set the priority of edges that are children ofq to 1.
Recursively update the priorities of edges as in Eq. 2.
Initialize an emptyheap

for all the edgese ∈ tree do
computeρ(e, F) for the new targetF given Eq. 1
updates(e) according to Eq. 3
adde in heap

end for

Main loop: SELECTION-PROPAGATION
while time is less thanti do
(deterministic selection)
Remove fromheap edgee′ = argmin(s(e)) ∀ e ∈ heap

(random propagation)
Select random stateqr alonge′

Break edgee′ at stateqr into edgese′1 ande′2
Select random planp(tmax) for a planning durationtmax

Create trajectorytr(qr , p(tmax))
Compute durationtfree that tr(qr, p(tmax)) is free
(safety check)
if tr(qr , p(tfree)) containsq′ reachable fromq a timeT

then
extend contingency trajectorytr(q′, γ(t))
if tr(q′, γ(t)) is not collision-freethen

Prune everything belowq′ and adjusttfree

end if
end if
(priority scheme)
if tfree is above a minimum thresholdthen

Create edge e from the remaining part of
tr(qr , p(tfree))
set priorities:p(e) = i++ andp(e′1) = p(e′2) as in Eq.
2.
computeρ(·, F) and scoress(·) for e, e′1, e′2
adde, e′1, e′2 in heap

end if
end while
return tree

IV. APPLICATION TO MAPPING

This section describes howGRIP can solve the task of
mapping a workspace while respecting dynamics.

1) Workspace representation and collisions:An occu-
pancy grid is used that has 3 values: explored free space,
obstacle and unexplored space. Given a state, the robot is
positioned on the map and if the chassis intersects an obstacle
or an unexplored space cell, it is in collision. Figure 1 shows
an example of mapping in our simulator.

2) Selection of targetF for the planner: We follow a
frontier-based approach to select a target for the motion
planner at each cycle. A frontier is the boundary between
the free explored space and the unexplored one. Neighboring
frontier cells are grouped by applying a flooding operation on
the grid and the search is biased towards a particular frontier
during each planning period. There are many alternative
heuristic approaches for selecting target frontiers [16].In our
implementation, we select frontiers that are: (a) close to the
initial robot state givenρA∗ and (b) small in size, to avoid
returning to small unexplored regions after covering large
distances. Figure 4 shows the A* distance on the grid map
from a frontier and a tree expanded towards the frontier.

3) Path selection given aGRIP tree: The objective in
path selection is to maximize visibility of the unexplored
space and minimize the length of the trajectory. Candidate
trajectories are all those that initiate from the root to a node
of the constructed tree. A weightw(tr) for every candidate
trajectorytr is defined as:

w(tr) = e−(d(tr)+λ·l(tr))

where d(tr) describes how close the trajectory is to the
selected frontier andl(tr) expresses the trajectory length.
Parameterλ expresses the importance of the path length
over the distance to the frontier. There are two distinct
cases, however, for the distance parameterd(tr) depending
on whether the algorithm has managed to produce states that
can sense the frontier or not. In the first case, for a trajectory
tr and a cellc in the target frontier group we define the
distance as:

d(tr, c) =

{

ρA∗(q, c) if ∃ q ∈ tr s.t. c is visible fromq

dmax otherwise

Fig. 4. Biased tree expansion. The A* distance used to bias the search is
shown in the background. The light colored triangles correspond to vehicle
configurations. The darker trajectory is the selected path.

Differential Drive
0

B

B

B

B

@

ẋ
ẏ

θ̇

V̇L

V̇R

1

C

C

C

C

A

=

0

B

B

B

B

@

cos θ · R
2
· (VL + VR)

sin θ · R
2
· (VL + VR)

R
2·L

· (VR − VL)
αL

αR

1

C

C

C

C

A

|V | ≤ 3m
s

|θ̇| ≤ 20 deg

s

|α| ≤ 0.6m2

s

|θ̈| ≤ 3 deg2

s

Car-like
0

B

B

B

@

ẋ
ẏ

θ̇

V̇
ṡ

1

C

C

C

A

=

0

B

B

B

@

cos θ · cos s · V
sin θ · cos s · V

sin s · v
α
t

1

C

C

C

A

−0.5m
s

≤ V ≤ 3m
s

|s| ≤ 4 deg

s

α ≤ 0.6m2

s

|t| ≤ 1 deg2

s

TABLE I

STATE UPDATE EQUATIONS AND CONTROL L IMITS .

wheredmax is the sensing radius of the robot. Thend(tr) =
∑

∀c d(tr, c). In this way, trajectories that see a large number
of frontier cells and which are closer to them have a smaller
distance parameter. If there is no state along the tree able to
sense the frontier, we defined(tr) as the minimum distance
between the end state of the trajectory and a frontier cell
according toρA∗. Both l(tr) and d(tr) can be computed
recursively during the tree construction. The trajectory of
maximum weight that has duration at leastT is finally
returned. If no such trajectory exists, a collision-free con-
tingency plan is guaranteed to exist by the theorem.

V. EXPERIMENTAL SETUP

We have experimented with three systems:(1) A differ-
ential drive robot (DD-robot) with velocity controlsVL, VR.
This platform is reducible to a simpler holonomic robot,
since we can retain the entire tree at each time step and
the contingency plan is trivial:VL = VR = 0. (2) A DD-
robot with acceleration controlsαL, αR. The contingency
plan is selected so that the wheel with the largest velocity
magnitude is assigned maximum de-acceleration. The second
wheel’s acceleration is set so that its velocity reaches zero
as the same time the first wheel stops.(3) A car-like robot
that moves backwards and forwards with acceleration control
α and steering velocityt. The contingency plan sets the de-
acceleration parameter to its maximum value so as to reach a
configuration with zero forward and steering velocities. Table
I provides the state update equations for the last two systems
and the bounds we have used for the controls. Parameters R
and L are the radius of the wheel and the distance between a
wheel and the robot’s center. The three scenes we have used
for our experiments can be seen in Figure 8. The total area
that the robot must sense in all of the scenes is comparable.
The sensing radius of the robot is equal to one tenth the
width of the scenes.

The simulation component of our program is responsible
for updating the map and transmitting it over socket com-
munication to the planner.GRIP is executed on a different
processor than the simulator and after the computation of
a plan the planner communicates a sequence of controls
back to the simulator. The planner was tested on an Athlon
1900MPs with one gigabyte of RAM.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 5. Goal finding in (top row) scene meandros with a 2nd order DD-robot and (bottom row) scene labyrinth with an acceleration-bounded car-like
robot: (a-e) a trivial random tree does not find the target after 100,000 iterations, (b-f) anRRT-EXTEND selection strategy finds the target after (top)
48,410 iterations and (bottom) 51,245 iterations (c-g)RRT-EXTEND-BIAS, where 20% of the time the target is the attractor, finds the target after (top)
42,855 iterations and (bottom) 17,212 iterations (d-h)GRIP reaches the target after (top) 13,774 edges and (bottom) 4,363 respectively.

VI. RESULTS

This sections summarizes experiments conducted with
GRIP for the three non-holonomic platform.

A. GRIP as a stand-alone planner

The first set of experiments corresponds to typical motion
planning problems with dynamics that do not make use
of replanning, so as to compare against the “Voronoi-bias”
selection strategies ofRRT. In these experiments, the same
programming infrastructure and parameters have been used
but different selection strategies are tested. Figure 5 displays
the resulting trees for different selection strategies. Figure 6
provides averages over 10 experiments in these two scenes.
All strategies are using the same metricρA∗(·). A trivial
random selection policy fails to produce any path after
100,000 edges have been added to the tree. In order to
implement the Voronoi-bias approach, we randomly sample
points in the free part of the workspace and useρA∗ to select
the closest edge to them. TheRRT approach offers good
coverage of the state space but it is slow in reaching the
target configuration. We have experimented with a version of
RRT that is biased to promote exploration towards the target.
In this version, 20% of the time the state that is used to select
the closest edge is a state in the target set. The value 20%
gave the best results over different scenes. Although thereis
an improvement compared to the strictly exploring version of
theRRT algorithm, the approach is still slow in reaching the
goal configuration. On the other hand, theGRIP algorithm
manages to aggressively search the state space towards the
goal configuration. Considering the poor quality of the metric
used, this is a positive result. This behavior was consistent
across all experiments.

Figure 7 shows the benefits of replanning with a selected
duration for the next planning cycle. We have compared
our algorithm that tests for safety only states that areT

away from the root node of the tree with an approach that

Fig. 6. Comparison between theGRIP selection/propagation scheme and
Voronoi biased selections.

Time DD-velocity DD-acceleration Car-like

Average Time in secs. 0.39 0.63 0.66
Maximum Time in secs. 0.90 1.57 1.19

TABLE II

AVER. COST IN SECONDS TO PRODUCE250 EDGES.

produces a tree where all the leaf nodes are safe. If the two
approaches are provided with the same planning period, then
GRIP produces a much bigger tree, which allows the planner
to better search the state-time space. The difference in the
tree size is mainly due to the additional collision checking
necessary to provide safety in the second case.

Fig. 7. Replanning with a known duration reduces the overhead of
guaranteeing safety. For the same planning periodGRIP builds bigger trees.

Fig. 8. Exploration of scenes (from left to right) “meandros”, “rooms” with a DD-robot, “labyrinth” and “rooms” again with a car-like robot.

Fig. 9. The velocity profile for the car exploring “rooms” in Figure 8(d).

B. Performance for high-level tasks: mapping

Figure 8 provides a qualitative evaluation of the ex-
ploration paths produced byGRIP. The robot is initially
positioned at the bottom left corner of a scene and knows
only the part of the environment that it can sense. No
collision was observed during our experiments. If theICS
avoidance step is removed from the planner, however, then
the vehicle collides within a few seconds of execution. The
paths appear smooth and the robots do not unnecessarily
revisit parts of the space that are already covered. Figure 9
displays a velocity profile for an exploration procedure. The
robot velocity remains for a large duration of the exploration
procedure close to its maximum value and does not fluctuate
considerably. Table II presents computational performance
statistics. We ran 10 experiments for each robot and scene
type and measure the time it takes for the planner to compute
trees with 250 edges. We present: (a) the average time, (b)
and the maximum time, that the planner requires to produce
the tree. As expected systems with bounded acceleration are
more difficult to plan for.

VII. DISCUSSION AND EXTENSIONS

This paper describes a tree-based planner for replanning
under dynamic constraints for tasks with partial observability.
The algorithm provides safety guarantees for collision avoid-
ance even under limited computation time. This work pro-
vides a general framework for such applications by extending
previous work on kinodynamic planning [2], [4], [5], [8],
[9], [17] and uses new ideas to achieve good performance.
An efficient selection/propagation strategy manages to bias
state space exploration with the aid of simple metrics. The
planner reduces the amount of collision checking necessary
for providing safety guarantees and reuses computations
from previous cycles. The simulated experiments suggest
favorable computational performance against popular alter-
natives and returns smooth, safe paths.

An important extension is to take into account sensor
noise and positioning error. One of the problems in this
case is that the robot’s initial stateq during each cycle
does not necessarily lie on the previous tree. To achieve

tree retainment, the initial robot state must properly be
reconnected with the existing tree. Moreover, the notion of
collision safety is no longer deterministic but each state
has an associated probability of whether it collides with
an obstacle. We are actively researching extensions of the
framework to address planning under uncertainty without
sacrificing the nice properties of high-speed safe motion.

REFERENCES

[1] J. Bruce and M. Veloso, “Safe multi-robot navigation within dynamic
constraints,”Proc. of the IEEE, vol. 94(7), pp. 1398–1411, 2006.

[2] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in IEEE
ICRA, May 2006, pp. 1243–1248.

[3] J. v. d. Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” inIEEE ICRA, May 2006,
pp. 2366–2371.

[4] T. Fraichard and H. Asama, “Inevitable collision states- a step towards
safer robots?”Advanced Robotics, vol. 18(10), pp. 1001–1024, 2004.

[5] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,”Journal of Guidance, Control and
Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,”IEEE TRA, vol. 12, no. 4, pp. 566–580, Aug. 1996.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamicplanning,”
IJRR, vol. 20, no. 5, pp. 378–400, May 2001.

[8] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,”IJRR, vol. 21, no. 3,
pp. 233–255, 2002.

[9] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of state
space for robots with dynamics,” inWAFR, 2005, pp. 297–312.

[10] A. Stentz, “The focussed d* algorithm for real-time replanning,” in
IJCAI, August 1995, pp. 1652–1659.

[11] J. v. d. Berg and M. Overmars, “Planning the shortest safe path amidst
unpredictably moving obstacles,” inWAFR, July 2006.

[12] S. Petti and T. Fraichard, “Partial motion planning framework for
reactive planning within dynamic environments,” inAAAI Intl. Conf.
ICAR, Barcelona, Spain, September 2005.

[13] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in IEEE
ICRA, San Fransisco, CA, April 2000, pp. 521–528.

[14] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,”IEEE TR, vol. 21,
no. 6, pp. 1077–1091, December 2005.

[15] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards,”Pacific J. Math., vol. 145, no. 2, pp. 367–
393, 1990.

[16] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi-robot exploration,”IEEE TR, vol. 21, no. 3, 2005.

[17] S. LaValle and J. Kuffner, “Rapidly exploring random trees: Progress
and prospects,” inWAFR, 2001, pp. 293–308.

