Greedy but Safe Replanning under Kinodynamic Constraints

Kostas E. Bekris Lydia E. Kavraki

Abstract—We consider motion planning problems for a i
vehicle with kinodynamic constraints, where there is partal sgvehicle
knowledge about the environment and replanning is required ;’a“r't“;‘;"me
We present a new tree-based planner that explicitly deals wh workspace

kinodynamic constraints and addresses the safety issues wai
planning under finite computation times, meaning that the
vehicle avoids collisions in its evolving configuration spze. In
order to achieve good performance we incrementally update
a tree data-structure by retaining information from previo us
steps and we bias the search of the planner with a greedy,
yet probabilistically complete state space exploration sategy.
Moreover, the number of collision checks required to guaratee
safety is kept to a minimum. We compare our technique with
alternative approaches as a standalone planner and show tha
achieves favorable performance when planning with dynamis.
We have applied the planner to solve a challenging replannip
problem involving the mapping of an unknown workspace with
a non-holonomic platform. Fig. 1.

I. INTRODUCTION - . .
) i) overhead of collision checking. It also uses computations
~As automobiles and other mobile platforms achieve @yecuted during previous planning periods and an effective
higher degree of autonomy, generating safe and effective M@ate space exploration scheme to bias its search. This pape
tions for autonomous vehicles emerges as a great apphicatigisy describes the application of the planner to a task that
for motion planning. In realistic tasks, however, vehitlese equires replanning: mapping of unknown environments.
only partial information about their environment. S°|V'”9|nitially the vehicle knows only a small part of the space but
such problems requires interleaving sensing, planning afdmyst eventually cover the entire workspace. Fig. 1 shows
execution, where a planner is called frequently and hagfinign example from our simulations with a car-like robot with
time to replan a trajectory [1]-[3]. Moreover, vehicles Bth - oynded acceleration. We have experimented with various
kinodynamic constraints that restrict their motion, whichy,gpile platforms on different scene types and compared
must be accounted for at the motion planning stage so th@fe approach as a standalone planner against alternative
a planned trajectory can be followed. In this paper, a trégjanners. We present results that demonstrate the algesith
based planner is presented that respects such constmathts foraple performance and its effectiveness in replanning

generates safe paths under finite computation times. Safefyger kinodynamic constraints, limited computation time a
means that the vehicle does not collide with obstacles eV%ndynamic representation of the workspace.

when the configuration space of the robot changes. This is _
an important consideration when replanning for real velsicl A- Related Literature

as a collision-free trajectory may bring the system close to Sampling-based planners have proved effective in dealing
an obstacle with high-velocity and no maneuver to avoidith high-dimensional problems [6] and, in particular,ere
collisions [4], [5]. like planners [7], [8], have been successful dealing with dy
For replanning applications, the computational perforaamic constraints. Especially, the Path-Directed Subitini
mance of the planner is of primary importance. A slowTree PDST) planner [9] has shown good performance in
planner delays taking into account new sensing informatiosuch planning instances and allows biasing the search of the
and the vehicle does not react on time to changes in thggorithm while providing probabilistic completeness.
workspace. In the proposed framework, the planner itself Typical tree-based planners assume complete workspace
selects the duration of the planning cycle, which allows thenowledge. Hsu et al. [8] have experimented with a real
implementation of a lazy evaluation approach to reduce thebot that navigates among moving obstacles by replanning
. _ from scratch. Bruce and Veloso [1] describe ways of using
Work on this paper has been supported in part by NSF 0308237
NSF0205671, and a Sloan Fellowship to LEK. Experimentsntedan this previous calls to th&RT algorlthm to bias the eXploratlon of
paper has been obtained on equipment supported by NSF CN&ZBI5 a new tree. Ferguson et al. [2] repBIRTs while replanning

NSF CNS 0421109 in partnership with Rice University, AMDdaBray. by Creating a probabilistic ana|og to the D* family of
Kostas E. Bekris and Lydia E. Kavraki are with the Com-

puter Science Department, Rice University, Houston, TXQ0h{ USA deterministic replanning methods [101- Var' den Berg et al.
{bekris, kavraki }@i ce. edu [3] create a roadmap that covers the planning space and later

+
0
*
+
.
.
+
i
H

Pop—

“Trajectory
~
.

+
p—

Mapping an unknown space with an acceleration chetaar.

replan using this graph. Van den Verg and Overmars [11] tia t; tin
provide algorithms for computing shortest safe paths amids - ”;
moving obstacles. Safety issues related to replanning an Maupnpi;:ng Compute mapts | Compute map to
kinodynamic constraints arise when collision-free states Motion | compute plan to Compute plan }'
Inevitable Collision Statesl CS). The notion ofl CS has Planner |foven merirom ti | oivon s et o]:ime
been employed in the partial motion planning framework Execute plan Execute plan 7

of Fraichard et al. [4], [L2]. Frazolli et al. [5] introduced Controller® “rrom ¢ from t;

the notion ofr-safety and use®RTs that guaranteed states Fig. 2. The robot's synchronization scheme.

along the produced tree weresafe. Then for the planning cyclét;,_ : t;), the following steps

B. Contribution are executed:

Our goal is to combine the above contributions with new ¢ A representation()V,¢;1) built in the previous cycle.
ideas to define a single, efficient framework for replanning * A targetF;, , C Q is defined for the current cycle.
under kinodynamic constraints. In particular: « A motion planner computes a plan.

(a) We follow an incremental approach similar to methods * The plan will be executed during cyc(e; : ti+1).
that repairRRTs [1], [2], but we deal explicity with A plan is a time-sequence of controlgi(dt) =
kinodynamic constraints and safety issues. {(u',dth),..., (u",dt")} wheredt = 37, dt'. When a plan
(b) The planner uses theCS formalization [4] and pro- p(dt) of durationdt is executed at staig it defines a trajec-
vides safety guarantees similar tesafety [5]. It re- tory tr(q, p(dt)), which is the sequence of states propagated
duces, however, the cost of achieving safety by controfccording toj = f(g, u). A trajectory that respectf(q,) <
||ng the duration of the p|anning Cyc|e and emp|0yind) is called feasible, and if it lies il@free is collision free.
lazy evaluation [13]. In this way, the number of states'he motion planner solves the following problem:
that must be checked for safety are reduced, resulting Replanning under Kinodynamic Constraints: Given:
in considerable speedups as our experiments show. « the latest representatiof\V, t;_1)
(c) A state space exploration scheme similaPBRST [9] is « a set of target stateB;, , € Q
applied, but the search is biased using information easily « the initial robot state; at timet;
extracted directly from sensor data. Our experiments « the tree structure from the previous cy¢le o : t;,_1).

show that the proposed algorithm performs favorablyompute plam(t) to execute duringt; : t;11) that produces
against the "Voronoi-bias” selection strategiesRRTS (¢, p(¢)) which is: (a) collision-free, (b) leads &}, ., (c)
given the same metrics [7]. minimizes the distance traveled by the robot and (d) does
In the following section we formally describe the problemnot lead to Inevitable Collision States [4] past, ;.
that the proposed motion planner solves. A detailed descrip
tion of the planer, calledsRlI P for GReedy, Incremental, Ill. THE PLANNER: GRI P
Path-directed planner, is provided in section Ill. Sectign The GRI P (Greedy, Incremental, Path-directed) planner
illustrates the application of the planner to a mapping taskxpands greedily and incrementally a tree data structure in
with non-holonomic robots. The setup for our experimentthe state-time space and return safe paths for kinodynamic
and our results are presented in sections V and VI. systems. The planner containk) A retainment step that
reuses part of the previous tree (llI-A}) An exploration
Il. PROBLEM OVERVIEW strategy that achieves probabilistic completeness batvall
Assume a drift-less non-holonomic robot whose motion igreedy search (I11-B)3) Safety checking so that the selected
governed byy = f(q,u) andg(q,¢) <0, whereq € Q is a plans do not lead to inevitable collisions (I1I-C).
state,u is a control andf, g are smooth() is the state space)
of the robot with a metrigp(q1, ¢2), whereqi, g2 € Q. The A Tree Retainment
robot is in a workspac®/, equipped with a sensor of limited The algorithm uses a planning horizon longer than the
range. The robot uses its sensors to update an evolvidgration of the next planning cycle, e.¢t; : ¢;+1). This
workspace representatios(WV,t). A stateq € Qs iS implies that a large part of the tree constructed during the
considered collision-free at time if it places the robot previous planning cycle may still be valid and it can be used
chassis in the known collision-free part efWV, t). to accelerate the search for a new path given new sensor
Our framework is applicable to multiple tasks where thelata similarly to DynamidRRTs [2]. Note, however, that
workspace changes dynamically. We focus on the case tkmodynamic constraints add an additional limitation,csin
robot does not know anything about the workspace and mustis not possible to go backwards along the tree. The sub-
cover it in order to build a map. A similar dynamic tasktree of the initial robot state for the new planning cycle is
not covered here due to space limitations is planning amomnglid for planning and everything above it is unreachable
dynamic obstacles. Our approach towards these high-levatd must be discarded. Trimming other parts of the tree
tasks is to break them into a sequence of smaller plannirtigat are invalid due to unexpected collisions can similarly
problems. To achieve this, we synchronize the mapping untie executed. Moreover, if a path to the desired target exists
the planner and the motion controller as shown by Fig. 2n the remaining tree, every path that does not lead to the

n “ B | 2 “ B | AN “ | TN “ jlga
bl s " Re
' Z G

Fig. 3. An illustration of GRI P's exploration. A discrete potential function is used fefe, F'). The numbers denote edge prioritipée). The second
figure shows an edge broken intg; ande’, while a new edge: is propagated from statg”. The last figure shows the final tree that reaches the target.
target can also be pruned. In this way, when a path has beshere parameter is greater than 1 > 1 and controls the
found, the technique focuses on obtaining plans of incngasi importance of the bias vs. the priority counters. The edges
quality. There are also computations during tree retairimeare stored in a heap that returns the minimum score edge.
that are related to state-space exploration and plan safetyThe scoring function must also be recomputed during

which will be described in the following sections. tree retainment. The distance estimate, F') is updated
for all retained edges given the newly acquired represen-
B. Selection/Propagation: Completeness with Bias tation: s(W,t;,—1). An advantage of the approach, is that

We follow the selection/propagation scheme for explorind/ith the use of simple metrics instead of path subdivision
the state-space, typical for tree-based planners [7]. fe st&8S N PDST [9], this update is inexpensive. The priority
from the tree is selected for propagating a trajectory fodwa counters of retained edges, which are children of the Initia
in time. Our approach follows theDST algorithm [9], which robot state, are set to 1 and the priority counters along the

deterministically biases the search, so as to search stitege remaining tree are recursively set by Eq. 2. This choice

parts of the state space faster. Although the search ischiasi®"ds 0 produce increasingly smoother paths towards the
the approach is still probabilistically complete. goal during consecutive planning cycles, when a solution

The basic sampling module is a path, which correspon(?é”‘lt\lh has arl]lreqdy bedenffoun((jj. | . Id
to an edge of the tree data structure. In this way, all thestat otice that instead of random controls, propagation cou

along the tree are candidates for propagation. The algmrithbe achua_yed with controls selected from an appropriate
first deterministically selects an edgeto expand from. The set specifically constructed for the system (e.g., maneuver

actual stateg” used for propagation is randomly sampleo"j“mmata [14], Reeds and Shepp curves [15] etc.).

along the edge’. Edgee’ is then broken into two parts; ¢ Efficient Safety Checking
ande), by creating a node at the selected stgte For the
new edgee, a random plam(¢,,q.) of maximum duration
tmaz Produces a trajectory(q”, p(tmaz)). This trajectory is
checked for collisions so as to calculdig.., the last point
in time that the trajectory is collision-free. Figure 3 pices
an illustration of the selection/propagation procedure.

The fact thattr(¢”, p(tfree)) is collision-free does not
guarantee safety, sinde(q¢", p(tfrc)) may lead to an In-
evitable Collision Statd (CS) [4]. Computing whether a state
is | CS is difficult, since it requires to consider the set of all
possible future trajectories. Taking a conservative agginp
however, a superset dfCS can be computed much faster by

The selection of edge’ is based on a combination of ™ | Il set of “cont " laiisand def
metric information to greedily bias the search towards theSINg only a small Set ot “contingency” plansand detine
a stateg to be unsafeiff:

target and a priority scheme that guarantees that eveptual
all the edges will be selected for propagation. For a new edge 3~ el st tr(q,v(t)) is collision free (4)
e, states along are sampled. For each state, we compute the

distance to the target sét, so as to get a distance estimatéExamples of contingency plans for static workspaces are
between the edge and the target: breaking maneuvers that bring the robot to a complete stop.

The time it takes to execute the contingency plan is unrelate
ple, F) = {min(p(q, f)), Vg € e andVf € F}. (1) to the duration of the planning cycle. Note that traject®rie
o leading to safe states are also safe. Fraichard et al. [12] an
Edges also have priority counters. A newly expanded edg&,0]ii et al. [5] used this property to reduce the overhead
e has priority equal to the iteration countefe) = i, where ot safety checking. We can use the fact that the planner
i is the number of edges propagated befoiie the current can select the duration of the consecutive planning cycle to
cycle. The two parts of the old edg¢ ande; get a lower ¢ ther reduce the overhead of safety checking. In this way,
priority that decreases exponentially when the same sampigy states that are reached at the end of the next planning
is selected for propagation, e.g.: cycle have to be checked for safety.
Ny / Theorem: Assume a drift-less non-holonomic system ex-
pler) = plez) =2-ple) + 1. 2) ecuting a replanning task witBRI P in a static environment.
The overall score of an edge is: The planner selects duratidhfor the next planning cycle. It
is then sufficient to guarantee collision avoidance to pcedu
s(e) = aP(e) . ple, F). (3) trajectories during the current cycle that are safe onlyifoe

T, given contingency plans that are breaking maneuvers. Algorithm 1 GRI P (tree, g, sOW,ti—1), I')

Proof Sketch:Assume the vehicle is safe at timie.; and TREE RETAINMENT

has a planp(t) of durationt > T that is safe at least for (i nitialization)

T. The question is whether reachin@S can be avoided Compute duratiorf’ of consecutive planning cycle
while replanning. There are two cases: (a) The planner wiettree — root = ¢ and prune everything before it
either succeed in producing a new safe plan for the neksaf ety check for retained tree)
planning period and at time; the robot will again have a for each edge € tree do

collision-free plan to follow. (b) The planner fails to cootp if e contains state’ reachable frony a time T then
a plan for the next period. However, the previous piét) extend contingency trajectoy(¢’, y(t))

was safe for at leasT’, which means that there is at least if tr(¢’,~(t)) is not collision-freethen

one planvy(t) € T that can be executed afteft), which Prune everything below’

is collision-free and brings the robot to a complete stop in end if
a collision-free configuration. So, in every case there is a end if
collision-free plan.O end for

The contingency plans do not have to be breaking mgf ocus on snoothing if path exists)
neuvers. Looping maneuvers would work as well, given thé a path toF’ exists intree then
assumptions. If we provide-safety guarantees in the case Prune every path on the tree that does not leaff' to
of moving obstacles, which means that collision avoidancend if
is guaranteed only for a time periodafter the failure of the (update scores for existing edges)
algorithm, then we can use any plan of duration Set the priority of edges that are childrengfo 1.

Consequently, the planner does not check for safety pa3gcursively update the priorities of edges as in Eq. 2.
time 7. During propagation ofr(q”, p(t r.)), we compute Initialize an emptyheap
whether it intersects tim@& at a statey. If it does not or if for all the edges: € tree do
¢ is safe given sef, then the completer(q”, p(tsree)) is computep(e, F') for the new target” given Eq. 1
added as a new edge. Otherwise, the part of the trajectoryupdates(e) according to Eq. 3
pastq is pruned, so that all the trajectories stored in the adde in heap
tree are safe at least for tinE. A possible drawback of €end for
the approach is that the robot might start following a path
that is not safe past tim&. This is not a safety risk since Main loop: SELECTION-PROPAGATION
the unsafe part of the trajectory will be pruned during tre#hile time is less thari; do
retainment when it will fall within the planning pericf. It (determnistic selection)
could be an undesired effect, however, since it could result Remove fromheap edgee’ = argmin(s(e)) V e € heap
in often selection of contingency plans. But we can check (random propagati on)
for safety only the solution trajectories and accept them as Select random statg” alonge’
solutions only if they are completely safe, following theya ~ Break edge:’ at stateg” into edgese} ande;
evaluation approach, where a path is checked for validity Select random plap(t;,..) for a planning duratior,,q..
only after it is considered as a good candidate for a solution Create trajectoryr(q", p(tmaz))

[13]. Compute duratiort ¢,.c. thattr(q”, p(tmaz)) is free
(saf ety check)
D. RIP if tr(q", p(tsree)) coONtainsg’ reachable fromy a timeT
Algorithm 1 provides an overview of the compleB®l P then

algorithm. The main loop selects greedily the edge that has extend contingency trajectory(¢’, v(t))
the maximum score and expands the tree from a state along if ¢r(¢’,~(¢)) is not collision-freethen
the selected edge. Prune everything below’ and adjust ;,..
An implementation choice is related to the metric end if
p(q1,q2). A possible solution could be the cost-to-go func- end if
tion in an obstacle free space, which can be computed with (priority schene)
dynamic programming as described by Frazzoli et al. [5]. if ¢f... iS above a minimum threshotltien
Lavalle and Kuffner [7] used a weighted Euclidean metric. ~ Create edge e from the remaining part of
In our implementation, we use an occupancy grid to represent tr(q", p(tfrec))

the workspace and define the meiic- (¢1, g2) using the A* set priorities:p(e) = i+ + andp(e}) = p(e}) as in Eq.
holonomic distance between the coordinates of the twosstate 2.
q1 andgs. Althoughp 4+ (-) carries poor distance information computep(-, F') and scores(-) for e, €], €}

for high-dimensional problems, the planner achieves good adde, ¢}, €} in heap
performance for the dynamically constrained platforms we end if

have experimented with and outperforRRTs when the end while

same metric is used. return tree

Differential Drive

IV. APPLICATION TO MAPPING

x cos - £ (Vi + VR) V] <3
This section describes ho®RI P can solve the task of Y siné - é - (VL + VRr) 6] < 90 deg
mapping a workspace while respecting dynamics. 9 = 2= (VR — V1) la] < 0_6%_?
1) Workspace representation and collisiong&n occu- Ve L 16 < 39eg”
pancy grid is used that has 3 values: explored free space, on -0
obstacle and unexplored space. Given a state, the robot is Car-like
positioned on the map and if the chassis intersects an dbstac x cosf-coss-V —0.57% < ‘; <3
or an unexplored space cell, it is in collision. Figure 1 seow 5ol szi;fz v ls| <452
an example of mapping in our simulator. v o a <067
2) Selection of target” for the planner: We follow a $ t 1] < 195
frontier-based approach to select a target for the motion TABLE |
planner at each cycle. A frontier is the boundary between STATE UPDATE EQUATIONS AND CONTROL LIMITS.

the free explored space and the unexplored one. Neighboring
frontier cells are grouped by applying a flooding operation Owhered,.. is the sensing radius of the robot. Théftr) =

the_grid and the segrch is b_iased towards a particular fmn_’cizvc d(tr, ¢). In this way, trajectories that see a large number
during each planning period. There are many alternatié fronier cells and which are closer to them have a smaller
heuristic approaches for selecting target frontiers [I8pur gisiance parameter. If there is no state along the tree able t
implementation, we select frontiers that are: (a) cloS\® t gense the frontier, we definkitr) as the minimum distance
initial robot state giverp.1. and (b) small in size, to avoid peyeen the end state of the trajectory and a frontier cell
returning to small unexplored regions after covering 'argﬁccording top4.. Both I(tr) and d(tr) can be computed

distances. Figure 4 shows the A* distance on the grid maR.sjvely during the tree construction. The trajectofy o
from a frontier and a tree expanded towards the frontier. - imum weight that has duration at ledktis finally

3) Path selection given &RI P tree: The objective in rorned. If no such trajectory exists, a collision-free1co

path selection is to maximize visibility of the unexploredtingency plan is guaranteed to exist by the theorem.
space and minimize the length of the trajectory. Candidate

trajectories are all those that initiate from the root to deno
of the constructed tree. A weight(¢r) for every candidate V. EXPERIMENTAL SETUP

trajectorytr is defined as: , , i
We have experimented with three systen{g) A differ-

w(tr) = e (ML) ential drive robot (DD-robot) with velocity control;, V.

where d(tr) describes how close the trajectory is to theTh|s platform is reducible to a simpler holonomic robot,

) . since we can retain the entire tree at each time step and

selected frontier and(¢r) expresses the trajectory length. . L
' he contingency plan is trivialV, = Vg = 0. (2) A DD-
Parameter\ expresses the importance of the path lengt . . .
.~ robot with acceleration controla;, ag. The contingency

over the distance to the frontier. There are two distinct . : .
cases, however, for the distance parameter) depending plan is selected so that the wheel with the largest velocity
on whether the algorithm has managed to produce states tf|\jrv1<’i\gn|tude is assigned maximum de-acceleration. The second

. A . ‘heel's acceleration is set so that its velocity reaches zer
can sense the frontier or not. In the first case, for a trajgcto . ! .
. . . as the same time the first wheel stop8) A car-like robot
tr and a cellc in the target frontier group we define the

distance as- that moves packwards and forwar.ds with acceleration cbntro
. o « and steering velocity. The contingency plan sets the de-
d(tr,c) = { pax(q,¢) if Igetrstcisvisible fromg acceleration parameter to its maximum value so as to reach a
dmaz otherwise configuration with zero forward and steering velocitiesl€a

| provides the state update equations for the last two system
and the bounds we have used for the controls. Parameters R
and L are the radius of the wheel and the distance between a
wheel and the robot’s center. The three scenes we have used
for our experiments can be seen in Figure 8. The total area
that the robot must sense in all of the scenes is comparable.
The sensing radius of the robot is equal to one tenth the
width of the scenes.

The simulation component of our program is responsible
for updating the map and transmitting it over socket com-
munication to the planneGRI P is executed on a different
processor than the simulator and after the computation of
a plan the planner communicates a sequence of controls

Fig. 4. Biased tree expansion. The A* distance used to biasdarch is .
shown in the background. The light colored triangles cqwes! to vehicle ~back to the simulator. The planner was tested on an Athlon

configurations. The darker trajectory is the selected path. 1900MPs with one gigabyte of RAM.

(e) ® @ (h)
Fig. 5. Goal finding in (top row) scene meandros with a 2nd oi@©-robot and (bottom row) scene labyrinth with an acceierabounded car-like
robot: (a-e) a trivial random tree does not find the targetrafi00,000 iterations, (b-f) aRRT- EXTEND selection strategy finds the target after (top)
48,410 iterations and (bottom) 51,245 iterations (&RBI- EXTEND- Bl AS, where 20% of the time the target is the attractor, finds thgetaafter (top)
42,855 iterations and (bottom) 17,212 iterations (d=R) P reaches the target after (top) 13,774 edges and (bottor6B 4e&pectively.

VI. RESULTS Comparison between GRIP and RRT-based selection policies
This sections summarizes experiments conducted witl g7
GRI P for the three non-holonomic platform. 24 ‘
2
30000; [CIRRT
A. GRI P as a stand-alone planner E’: i ﬁ‘ W RRT-BIAS
. . . . S 20000 W GRIP
The first set of experiments corresponds to typical motior . =
. . . £ 10000 1
planning problems with dynamics that do not make use = ||] -
Of replanning’ SO as tO Compare againSt the “VoronOi-biaS, 077DD@Meandms Car @Meandros DD @ Labyrinth Car @ Labyrinth
selection strategies d®RT. In these experiments, the same Experiment

prOQr_amming infra_StrUCture a:nd parameters have bee.n Us8g 6. Comparison between t@RI P selection/propagation scheme and
but different selection strategies are tested. Figure plaljs Voronoi biased selections.

the resulting trees for different selection strategiegufé 6 | Time | DD-velocity | DD-acceleration| Car-like |
provides averages over 10 experiments in these two sceneSAverage Time in secs. 0.39 0.63 0.66
All strategies are using the same metrig-(-). A trivial | Maximum Time in secs| 0.90 1.57 119
random selection policy fails to produce any path after TABLE ||

100,000 edges have been added to the tree. In order to AVER. COST IN SECONDS TO PRODUCEB50EDGES

implement the Voronoi-bias approach, we randomly sample
points in the free part of the workspace and pge to select
the closest edge to them. THRRT approach offers goo
coverage of the state space but it is slow in reaching t . ;
target configuration. We have experimented with a version L:tfer:)zzgfshat?;Cst:a?ggrer:etrieé\év:IC‘Pheedk()j\iI:fse;gﬁcpelairr:n;re
RRT that is biased to promote exploration towards the target. o . pace. . .

In this version, 20% of the time the state that is used to Sele%ee SIZ€ 1S mamly due 1o th_e additional collision checking
the closest edge is a state in the target set. The value 20¥cessany to provide safety in the second case.

gave the best results over different scenes. Although tisere
an improvement compared to the strictly exploring versibn o
the RRT algorithm, the approach is still slow in reaching the
goal configuration. On the other hand, t&88l P algorithm
manages to aggressively search the state space towards -
goal configuration. Considering the poor quality of the neetr
used, this is a positive result. This behavior was consister
across all experiments.

Figure 7 shows the benefits of replanning with a selecte(
duration for the next planning cycle. We have comparec.
our algorithm that tests for safety only states that @re Fig. 7. Replanning with a known duration reduces the ovetheh
away from the root node of the tree with an approach thgtlaranteelng safety. For the same planning pe@&dP builds bigger trees.

d produces a tree where all the leaf nodes are safe. If the two
proaches are provided with the same planning period, then

Benefits of reduced overhead for safety checking

=2 sec.
=
)
o
o

800;

600 [Complete Safety

[Periodical
Replanning

400y

N
o
Q

aver. # edges in the tree for T

bpe Car DD e Car@
Meandros @Meandros Labyrinth Labyrinth

o

|
)

gp—

g ;

T

\,,,\._,_A,w,-_v_\\l
|
|
\
5
|
|
j

s
24

Velocity A
18

T2sec

Fig. 9. The velocity profile for the car exploring “rooms” irigre 8(d).

Fig. 8. Exploration of scenes (from left to right) “meandtosooms” with a DD-robot, “labyrinth” and “rooms” again \h a car-like robot.

tree retainment, the initial robot state must properly be

reconnected with the existing tree. Moreover, the notion of
collision safety is no longer deterministic but each state

has an associated probability of whether it collides with

an obstacle. We are actively researching extensions of the
framework to address planning under uncertainty without
sacrificing the nice properties of high-speed safe motion.

B. Performance for high-level tasks: mapping 1]

Figure 8 provides a qualitative evaluation of the X~ 1y
ploration paths produced b@RI P. The robot is initially
positioned at the bottom left corner of a scene and know$3]
only the part of the environment that it can sense. No
collision was observed during our experiments. If theS 4]
avoidance step is removed from the planner, however, then
the vehicle collides within a few seconds of execution. Thel®]
paths appear smooth and the robots do not unnecessarily
revisit parts of the space that are already covered. Figure B]
displays a velocity profile for an exploration procedureeTh
robot velocity remains for a large duration of the explarati 7]
procedure close to its maximum value and does not fluctuate
considerably. Table Il presents computational perforreanc[
statistics. We ran 10 experiments for each robot and scene
type and measure the time it takes for the planner to computé]
trees with 250 edges. We present: (a) the average time, @8
and the maximum time, that the planner requires to produce
the tree. As expected systems with bounded acceleration &#
more difficult to plan for.

VII. DISCUSSION AND EXTENSIONS

This paper describes a tree-based planner for replanniiigl
under dynamic constraints for tasks with partial obsetitgbi [14]
The algorithm provides safety guarantees for collisioricdwvo
ance even under limited computation time. This work pro-
vides a general framework for such applications by exteydir{
previous work on kinodynamic planning [2], [4], [5], [8],
[9], [17] and uses new ideas to achieve good performandéé]
An efficient selection/propagation strategy manages te birfll7
state space exploration with the aid of simple metrics. The
planner reduces the amount of collision checking necessary
for providing safety guarantees and reuses computations
from previous cycles. The simulated experiments suggest
favorable computational performance against popular-alte
natives and returns smooth, safe paths.

An important extension is to take into account sensor
noise and positioning error. One of the problems in this
case is that the robot’s initial state during each cycle
does not necessarily lie on the previous tree. To achieve

[12]

REFERENCES

J. Bruce and M. Veloso, “Safe multi-robot navigation it dynamic
constraints,"Proc. of the IEEE vol. 94(7), pp. 1398-1411, 2006.

D. Ferguson, N. Kalra, and A. Stentz, “Replanning witts frin IEEE
ICRA May 2006, pp. 1243-1248.

J. v. d. Berg, D. Ferguson, and J. Kuffner, “Anytime patlanming
and replanning in dynamic environments,”IBEE ICRA May 2006,
pp. 2366-2371.

T. Fraichard and H. Asama, “Inevitable collision statesstep towards
safer robots?’Advanced Roboti¢gssol. 18(10), pp. 1001-1024, 2004.
E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time matiplanning
for agile autonomous vehiclesJournal of Guidance, Control and
Dynamics vol. 25, no. 1, pp. 116-129, 2002.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmé&psoba-
bilistic roadmaps for path planning in high-dimensionahfiguration
spaces,"lEEE TRA vol. 12, no. 4, pp. 566-580, Aug. 1996.

S. M. LaValle and J. J. Kuffner, “Randomized kinodynarplanning,”
IJRR vol. 20, no. 5, pp. 378-400, May 2001.

8] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randordikaody-

namic motion planning with moving obstacle$JRR vol. 21, no. 3,
pp. 233-255, 2002.

A. M. Ladd and L. E. Kavraki, “Fast tree-based exploratiof state
space for robots with dynamics,” WAFR 2005, pp. 297-312.

A. Stentz, “The focussed d* algorithm for real-time l@ming,” in

IJCAI, August 1995, pp. 1652—-1659.

J. v. d. Berg and M. Overmars, “Planning the shortest sath amidst
unpredictably moving obstacles,” WAFR July 2006.

S. Petti and T. Fraichard, “Partial motion planning nfiework for
reactive planning within dynamic environments,” AAAIl Intl. Conf.

ICAR Barcelona, Spain, September 2005.

R. Bohlin and L. E. Kavraki, “Path planning using lazynpt in IEEE

ICRA San Fransisco, CA, April 2000, pp. 521-528.

E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-lshsaotion

planning for nonlinear systems with symmetrie§EE TR vol. 21,

no. 6, pp. 1077-1091, December 2005.

15] J. A. Reeds and L. A. Shepp, “Optimal paths for a car tresgboth

forwards and backwardsPacific J. Math, vol. 145, no. 2, pp. 367—
393, 1990.

W. Burgard, M. Moors, C. Stachniss, and F. Schneidendi@inated
multi-robot exploration,”IEEE TR vol. 21, no. 3, 2005.

1 S. LaValle and J. Kuffner, “Rapidly exploring randoneds: Progress

and prospects,” iWAFR 2001, pp. 293-308.

